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ABSTRACT

Self-consistent electronic structure calculations have been performedon ordered

cubic-based magnesium-lithium (Mgx-Li1−x) alloys spanning the concentration range

0 ≤ x ≤ 1, using an ab initio plane wave pseudopotential (PWP) method. The first

principle pseudopotential planewave approach is used within the local density approxi-

mation (LDA) and generalized-gradient approximation (GGA)of the density functional

theory (DFT) framework. We have calculated the binding energy curves and the sys-

tematic trends in various cohesive and elastic properties at zero temperature, as a func-

tion of Li concentration. The calculated equilibrium lattice parametersshow a large

deviation from Vegard’s rule in the Li-rich region whilst the bulk moduli decrease

monotonically with increase in Li concentration. The heats of formation for differ-

ent ground state superstructures predict that the DO3, B2 and DO22 structures would

be the most stable at absolute zero amongst various phases having the Mg3Li, MgLi

and MgLi3 compositions, respectively. This stability is reflected in the electronic den-

sity of states (DOS). Because of the special significance of the isotropicbulk modulus,

shear modulus, Young’s modulus and Poisson’s ratio for technological and engineer-

ing applications, we have also calculated these quantities from the elastic constants.

The elastic constants indicate the softness of the material as more Li is added with



the bcc-based phases becoming mechanically less stable for Li concentration less than

50%. Our results show good agreement within the estimated uncertainty with both

experimental and previous theoretical results.
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1

Chapter 1
INTRODUCTION

1.1 Background

Over the last two decades, there has been a significant increase in the use of light

metals such as Al, Mg, Ti, Li, etc. Furthermore, the consumption rate of these mate-

rials is continually increasing due to societal pressures for high performance, lighter

structural materials, as well as growing demands for battery materials.

At a density of 1.74g/cm3, magnesium is the lightest structural metal, the fac-

tor that place it among the front-runners contesting as possible suitable candidates in

lightweight industrial applications. In addition to its readily availability, constituting

about 2.7% of earth’s crust, magnesium offers several advantages including excel-

lent machinability, good castability, good weldability, good creep resistance, high

thermal conductivity, and extreme lightness. However, a number of challenging key

factors need to be taken into account when considering Mg developments, inpartic-

ular the hexagonal close-packed (hcp) crystal structure of pure Mg, whichseems to

limit its use in structural applications, poor corrosion resistance, increasing cost, high

electrochemical potential and poor cold workability. Conversely, the situation could

be improved by alloy formation with Zn, Li, Al or Mn, leading to a higher specific

strength. An addition of a sufficient quantities of lithium, above 10 weight percent, to
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magnesium causes an importanthcp→ bcc phase change, which induces the desired

improvements in low temperature formability characteristics with less directionality

in properties [1]. It also has a positive effect on the density (decreased) and the duc-

tility and damage tolerance (both increased) of the material. These properties render

magnesium-lithium alloys as a very suitable class of candidates for substitution of

other lightweight structural materials (like aluminum or fibre-reinforced plastics) in

diverse industrial applications: commercial products such as computer housing, parts

for the automotive and aerospace industry, where reduction in the intrinsic weight of

the design is of vital importance [2]. Due to the favourable properties, magnesium

technology is part of a general attempt to obtain a new generation of lighter,more

fuel efficient and less polluting (lessCO2 emmission) vehicles. This goal implies a

multidisciplinary approach in which engineering, physics and chemistry, each must

converge in defining the characteristics of the components made out of light materi-

als.

The high stiffness strength of Mg is owed to the element’s hcp structure which

also makes it difficult to apply slipping modes in the useful engineering directions.

The alloying element, which causes a useful phase change to bcc is lithium [3], as

shown by the phase diagram in Figure 1.1 [4]. Lithium, the lightest metal witha

simple elemental electronic configuration and a broad range of practicalapplications,

has naturally been the subject of both theoretical and experimental investigations for

a long time. Yet its electronic and structural properties remain enigmatic to this
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day [5]. Like other alkali metals it has a bcc room temperature structure, but upon

cooling at low temperatures it undergoes a martensitic transformationaround 80 K.

The transformation was first observed very early [6, 7], but the crystalstructure of the

low-temperature phases of Li have led to some controversy and remained a subject

of debate for several decades. Later, on the basis of additional data [8], Overhauser

[9] proposed that the neutron scattering data were consistent with the 9R structure, a

close-packed phase with nine-layer stacking sequence. Subsequent investigations in

several sets of neutron scattering data confirmed 9R as the primary structure at low

temperature [10]. More recently, analysis of diffuse neutron scatteringdata [11] has

led to the opinion that below 80 K a disordered polytype structure, consisting of the

short-range correlated fcc and hcp phases, coexists with the longer-ranged, ordered

9R structure. Furthermore, upon heating, the 9R phase and the disordered polytype

appear to transform first to an ordered fcc phase before reverting to bcc Li above 150

K [11].

It was not until the early 1930s that the development of magnesium-lithium al-

loys started, as illustrated in Figure 1.2 [12]. Ultralight magnesium-lithium alloys

provide a promising basis for the development of structural metallic materials with

a high strength-to-weight ratio [13]. The effect of Li addition has gained consider-

able importance because it not only makes the Mg-Li alloy lighter (density reduction

from 1.74g/cm3 to about 1.30g/cm3), but also increases the values of the elastic

constants, which cannot be improved using conventional alloying techniques. Exper-



4

Figure 1.1: Mg-Li phase diagram [4].
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imentally, the solubility of other alloying elements in magnesium is limited, restrict-

ing the possibility of improving the mechanical properties and chemical behaviour

[3]. However, numerous difficulties were encountered which were associated with

melting and casting, instability of mechanical properties at room temperature, poor

corrosion resistance and excessive creep at relatively low stresses [14]. The devel-

opment of these alloys was subsequently abandoned during the mid 1940s because

it was only possible to produce Mg-Li alloys which were unstable or stable but not

strong [15]. The strengthening mechanism of this alloy system was not completely

understood, which led to the failure of developing these alloys into a potential mate-

rial for aerospace industries [14].

Recently experimental and theoretical studies of light metal alloys are increas-

ing owing to their usage in the automotive and aerospace industries [13]. The tech-

nological challenge is to produce high-stiffness materials with suitablemechanical

properties. First-principles electronic structure calculations can predict accurate elas-

tic moduli, from which we may infer the degree of ductility of different cubicalloys

[16]. In cubic crystals the ratioC ′/B of shear to bulk modulus has provided a use-

ful criterion for ductility or brittlement. FCC and BCC metal crystalsare generally

intrinsically ductile whenC ′/B < 0.4 and brittle whenC ′/B > 0.5 [16, 17]. In ad-

dition, they lead to a proper understanding of the structural competition between the

various stable and metastable alloy phases. The predicted heats of formation with

respect to different underlying lattices such as fcc or bcc are essential input for calcu-
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Figure 1.2: World production trends for various metals and plastics [12].
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lating effective cluster interactions [18], from which theoretical phase diagrams can

be computed using Monte Carlo [19] or the Cluster Variation Method (CVM) [20].

At the centre of this computational approach lies the attempt to simulateand predict

the properties of ordered cubic-based magnesium-lithium (MgxLi1−x) binary alloys

spanning the concentration range0 ≤ x ≤ 1.

There is a growing interest in combining quantum mechanical electron the-

ory with statistical mechanics, in order to arrive at a first principle description of

configurational thermodynamics in metallic alloys [21]. The idea is to get thecon-

figurational entropy corresponding to a certain alloy composition by starting from

an Ising Hamiltonian [22] in which the many-body cluster interactions are obtained

from electron theory. In this method, one first obtains the relative stabilities of the

ordered equilibrium (stable) phases as well as of the various possible phaseswhich

are difficult to probe experimentally. The essential prerequisite is to have a reliable

and efficient electronic structure method for calculation of the heat of formation of a

large number of ordered superstructures of binary alloys. In addition to this progress

in materials modelling at the electronic level, there have been significant develop-

ments in computational micromechanics and damage mechanics techniques at the

continuum level. These simulations are usually finite element based and compute the

mechanical properties of alloys such as the stress distributions around cracks.

Moreover, Mg-Li alloys are also seen as viable candidates for an efficient al-

loy battery system [23]. While the high activity of lithium makes it attractive as a
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unique energy source for microelectronic devices, a critical issue plaguingexisting

lithium batteries is the cycleability of the lithium electrodes, and hence, the recharge-

bility of the battery system. The formation of a dendritic structure during charg-

ing is one of the major problems associated with pure lithium used as the negative

electrode in a secondary lithium battery. Typically, dendrite growth worsens pro-

gressively during cycling, often leading to both disconnection and electrical isolation

of the active lithium or electrical shorting between electrodes. Lithium intercalation

materials, such as lithiated carbon, LiAl alloys, and Sn-based composite oxides, have

been studied to replace pure lithium in an effort to reduce the tendency for lithium

dendrite formation. The diffusion coefficients for lithium in the Mg-Li alloy elec-

trodes were found to be of two to three orders of magnitude larger than those in other

lithium alloy systems (e.g. LiAl). Mg-Li alloy electrodes also appear to show not

only the potential for higher rate capabilities (power densities) but alsofor larger ca-

pacities (energy densities) which might considerably exceed those of lithiated carbon

or Sn-based electrodes for lithium batteries [23].

1.2 Rationale and Objectives

Owing to their low density, magnesium alloys are the lightest metallic materials for

construction ever known. They are thus extremely attractive for researchers concern-

ing lightweight applications, possibly substituting in the future aluminiumalloys as

well as fibre-reinforced plastics. The main aim is to expand the application of mag-



9

nesium by alloying it with lithium. This group of alloys, to which little attention has

been paid in the past, provides an increased ductility at a comparatively high thermo-

chemical stability. Metallurgical and processing measures have preferably aimed at a

mechanical strengthening of the MgLi-matrix. At the same time the ductility proper-

ties were to be retained to a large extent to preserve a balanced mechanical behaviour

[24]. In addition, magnesium is the eighth mostly abundant metal in nature, consti-

tuting about 2.7% of earth crust [12], though it is becoming more costly on the other

hand due to its technological promises.

The objectives of this thesis are:

(i) to investigate the electronic and structural properties of a series of ordered

superstructures of binary magnesium-lithium (Mg1−xLix) alloys with respect to the

underlying fcc and bcc lattice, usingab initio [25, 26] electronic structure tech-

niques, in particular the plave-wave pseudopotential (PWP) method embodied inthe

CASTEP code.

(ii) to evaluate the elastic moduli of these alloys.

1.3 Outline of the dissertation

In this chapter the material under consideration and the content of this dissertation

have been introduced and our aims and objectives clearly stated. In thenext chapter

, we review various computational modelling techniques, in particular density func-

tional theory (DFT) approaches. In Chapter 3 the plane-wave code, which isused to
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solve the electronic structure, is outlined . The theory of practically simulated results

as well as the structural and electronic results of the current study are presented and

discussed in Chapter 4 and 5, respectively. Finally, in Chapter 6 we summarize our

work by making some conclusions and recomendations for future work.
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Chapter 2
THEORETICAL TECHNIQUES

2.1 Introduction

Computer simulation techniques offer an alternative way of investigating properties

of materials (using computers), whereby the simulator builds a model of a real system

and explores its behaviour. The mathematical model is physically based withthe

exploration being done on a computer. In many ways these simulation studies share

the same mentality as experimental investigations. However, in a simulation there

is absolute control and access to detail, and given enough computer muscle, exact

answers for the model.

The fundamental atomistic principles underlying the structural and functional

behaviour of materials are astonishingly simple: (a) For most purposes, atomicnu-

clei can be treated as classical particles with a given mass and positive charge, (b)

electrons are particles of spin one half, thus obeying the Pauli exclusion principle,

their kinetic behaviour is described by quantum mechanics, and (c) the only relevant

interactions are of an electrodynamic nature, in particular, attractions and repulsions

governed by Coulomb’s law. Based on these fundamental principles it is conceptu-

ally possible to explain and predict the wonderful richness of most physicaland all

chemical properties of matter such as the structure and stability of crystalline phases,
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the mechanical properties of alloys, the magnetic properties of transition metals and

so on. This development in first principle theory has opened up many exciting pos-

sibilities for the study of condensed matter since one is now in a position to predict

properties of systems which were formerly inaccessible to theory and sometimes ex-

periment.

Several factors have contributed to the present success of ab initio calculations

for real materials systems. The first is the formalism of density functional theory

(DFT) [27] and continuing development of approximations to the DFT formalism

for electron exchange and correlation. The second is the subsequent advent of mod-

ern high speed computers (enormous increase in computational power). Thishas

made it possible to carry out calculations on real materials in interesting situations

with sufficient accuracy that there can be meaningful detailed comparison with ex-

perimental measurements. The third is the refinement in band structure calculation

techniques and the invention of theab initio pseudopotentials [25], which have led to

rapid computation of total energies. The density functional method has made it feasi-

ble to calculate the ground state energy and charge density with remarkablyaccurate

results for real solids. This is the starting point for almost all currentfirst-principle

calculations of total energies of solids. Finally, there have been significant new de-

velopment in experimental techniques and materials preparation that aremaking it

possible to probe the structure of matter in ways never realized before. One advance

is the ability to create high pressures and explore the properties of matterover a wide
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Figure 2.1: Major atomistic approaches for the simulation and prediction of structural
and functional properties [29]

range of densities [28]. This is an ideal experimental tool to provide information that

can be compared directly with current theoretical calculations.

Atomistic simulation has become a valued technique in predicting the prop-

erties of materials. Computer modelling at this level is based on twotypes of ap-

proach, namely: the force field or empirical potential methods and quantum mechan-

ical methods. The major atomistic approaches for the simulation and predictionof

structural and functional properties are shown in Figure 2.1 [29]. The first decision
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is between quantum mechanical and force field methods. Although, force field meth-

ods are preferable because of the high computational efficiency, they have not been

successfully developed for metallic alloys and the prediction of their phasediagrams,

so that we must use a quantum mechanical based approach for our research on Mg-

Li alloys. Such an approach can be treated semi-empirically within a tight-binding

model [30] or within a nearly-free-electron model using second-order perturbation

theory [31]. In this thesis, however, we rely on more accurateab initio methods, in

particular density functional theory.

2.1.1 Evolution of DFT methods

This historical review relies heavily on the excellent article by Wimmer[29]. Prior to

the developments of density functional theory, the calculation of energy band struc-

tures for crystalline solids had become a major goal of computational solid state

physics. As shown in Figure 2.2 [29], during the 1960’s, when quantum chemists

began systematic Hartree-Fock studies on small molecules, energyband structure

calculations of solids were possible only for simple systems such as crystals ofcop-

per and silicon containing one or a few atoms per unit cell. The aim of these efforts in

solid state physics were different from those of quantum chemistry. Whereas quan-

tum chemistry focused on theab initio determination of molecular structures and en-

ergies, the goal of energy band structure calculations for solids was the understanding

of conducting and insulating behaviour, the elucidation of the types of bonding, the
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Figure 2.2: Evolution of DFT methods [29]

prediction of electronic excitations such as energy band gaps, and the interpretation

of photoexcitation spectra [29].

To this end, semiempirical pseudopotential theory [32, 33] became a successful

and pragmatic approach especially for semiconductors. All-electron bandstructure

calculations were applied mostly to transition metals and their compounds.Initially,

these calculations were carried out non-self-consistently. For a givencrystal structure

and atomic positions in the lattice, a crystal potential was constructed from super-

posed atomic densities and the energy bands evaluated for selected points in momen-
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tum space without improving the electron density through a self-consistency proce-

dure. The shape of the crystal potential was simplified in the form of a "muffin-tin"

potential [34] with a spherical symmetric potential around the atoms and a constant

potential between the atomic spheres. For close-packed structures suchas fcc Cu,

this is an excellent approximation and substantially simplifies the calculation of the

energy bands. During the 1960’s, self-consistency was introduced still using the sim-

plified "muffin-tin" potential. Around 1970, self-consistent muffin-tin energyband

structure calculations were possible for systems containing a few atoms per unit cell.

At that time, quantum chemists had already recognized the power of total energies

as a tool for geometry optimization of molecules and had developed analytic energy

gradients (forces) that greatly facilitated geometry optimizations. Shape approxima-

tions to the potential are questionable for open molecular structures and hence the

use of the muffin-tin approximation in the form of the so-called multiple-scattering

X-alpha method [35] for molecules and clusters met with skepticism among many ab

initio quantum chemists.

In computational solid state physics, total energy calculations as a predictive

tool for crystal structures and elastic properties of solids came into general use only

in the mid to late 1970’s, which was almost 10 years later than the corresponding

application of the Hartree-Fock method to molecules.

By 1970, density functional theory had become a widely accepted many-body

approach for first-principles calculations on solids, superceding the X-alpha-approach.
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Initially, energy band structure methods such as the augmented plane wave (APW)

method [34] and the Korringa-Kohn-Rostoker (KKR) method, [36, 37] were very

tedious since the system of equations to be solved in each iterative step of the self-

consistency procedure were nonlinear (the matrix elements depended on the energy).

Furthermore, the computer hardware at that time was limited both in processor speed,

but perhaps even more by memory size. A major step forward was the introduction of

linearized methods, especially the linearized augmented plane wave (LAPW) method

[38, 39], and the linearized muffin-tin orbital (LMTO) method [39].

By 1980, quantum chemists had developed analytical second derivatives in

Hartree-Fock theory for the investigation of structural and vibrationalproperties of

molecules. During the same time, computational solid state physicists worked on

the formulation of all-electron self-consistent methods without muffin-tin shape ap-

proximations, such as the full-potential linearized augmented plane wave (FLAPW)

method with total energy capabilities as reviewed by Wimmer et al. [40]. Ana-

lytic first derivatives (forces) within solid state calculations were first introduced in

pseudopotential plane wave methods as reviewed by Payne et al [25] and only fairly

recently in other solid state methods. Larger unit cells of bulk solids with more

degrees of freedom and especially the investigation of surfaces required tools for

predicting the position of atoms, for example in the case of surface reconstructions.

Hence, total energy and force methods for solids and surfaces became more urgent.
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In solid state calculations, the emphasis had shifted from the prediction of elec-

tronic structure effects for a given atomic arrangement to the predictionof structural

and energetic properties as revealed by novel techniques such as extendedx-ray ab-

sorption fine structure spectroscopy (EXAFS) and the scanning tunneling microscope

(STM). Pseudopotential theory, originally used in the form of a parameterized semi-

empirical approach for calculating energy band structures of semiconductors, had

been developed into a first-principles method with rigorous procedures to construct

reliable pseudopotentials [41]. Pseudopotentials turned out to be particularly ele-

gant and useful for the investigation of main-group element semiconductors. Using

the pseudopotential plane wave approach, Car and Parrinello [42] made an impor-

tant step in the unification of electronic structure theory and statistical mechanics.

In this approach, it is possible to simulate the motions of the atomic nuclei as they

would occur, for example, in a chemical reaction while at the same time relaxing the

electronic structure, all within a single theoretical framework. Until then, molecular

dynamics had been mostly the domain of empirical force field approaches which are

not intended for describing the formation and breaking of chemical bonds.

Density functional theory, originally intended for metallic solid state systems,

turned out to be also surprisingly successful for describing the structure and ener-

getics of molecules. First clear evidence for the capabilities of the local density

functional approach for molecular systems was given already in the 1970’s, butonly

recent systematic calculations on a large number of typical molecules together with
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the introduction of gradient corrected density functionals [43] have made density

functional theory an accepted approach for quantum chemistry [44]. These capabil-

ities of density functional theory as a tool for molecular and chemical problems is

remarkable, since the theory was originally developed as an approximate approach

in solid state physics. In this work we have based our approach the density functional

theory.

2.1.2 Semiempirical methods

These are approximate methods which make use of a simplified form of Hamiltonian

as well as adjustable parameters with values obtained from fitting to both experi-

mental and first principles data. Even with increases in computer speedand memory

and the development of efficient algorithms,ab initio methods are not applied rou-

tinely to unit cells with more than dozen atoms. On the other hand, semiempirical

methods are fast enough to be applied routinely to larger systems. Thus, semiem-

pirical methods make electronic structure calculations available for a wider range of

systems.

In materials science a widely-used semi-empirical approach is the tight-binding

model [30] in which the bond or hopping integrals are parameterized followingthe

seminal paper by Slater and Koster [45]. This method has been successfully devel-

oped into a powerful tool for the study of semiconductors and transition metals, in

particular, the interplay between their structural and electronic properties with de-
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fects, surfaces, and interfaces (see, for example [46]). Currentlysignificant efforts

are being made to improve the speed of tight-binding methods in order to study dy-

namic processes such as the deposition of Ag atoms on Cu surfaces [47] and the

effect of irradiation on the stability of materials [48].

The real-space tight-binding recursion method, which was developed in the

early 1970’s [49, 50], presents a promising framework for the fast evaluation of total

energies and forces, since its computational time scales as orderN rather thanN3

as fork-space approaches (whereN is the number of atoms in the unit cell, and

k is a point within the first Brillouin zone of the periodic cell). A novel scheme

by Aoki [51], which generalizes the bond order formalism by Pettifor [52], leads

to a rapidly convergent bond order expansion for transition metals, thus overcoming

some of the earlier difficulties of this approach. This approach has been applied

to the investigation of dislocation cores [53] and Peierls barriers in technologically

important high-temperature intermetallics [54].

2.2 The Hartree-Fock Method

The Hartree-Fock [55, 56] method focuses on the many-body wave functionsΨ(r1, r2, ..., rN)

(where ther1 denotes the coordinates of the 1st electron,r2 the 2nd electron, and so

on) that enter the time-independent Schrödinger equation for the system:

ĤΨk(r1, r2, ..., rN ) = EkΨk(r1, r2, ..., rN ) (2.1)
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whereĤ is the Hamiltonian, i.e., the operator with corresponding eigenvalues

Ek and eigenfunctionsΨk, whereask is a point in space. The Hamiltonian operator

consists of a sum of three terms:

Ĥ = T̂e + Ûext + Ûee (2.2)

where the kinetic energy of the electrons, the interaction with an external po-

tential and the Coulombic electron-electron interaction, can be written respectively

as:

T̂e = −
1

2

∑

i

∇2

i (2.3)

Ûext = −
Nat∑

α

Zα∣∣ri −Rα

∣∣ (2.4)

Ûee =
1

2

∑

i�=j

1

|ri − rj|
(2.5)

In most simulations of materials the external potential of interest is simply the

interaction of the electrons with the atomic nuclei of chargeZα and positionRα. In

this chapter we use atomic units, so thate2 = � = m = 1 wheree is the electronic

charge,� is Planck’s constant, andm is the electronic mass. The unit of energy is,

therefore, the Hartree (where 1 Hartree = 2 Rydbergs = 27.2116 eV) and the unit of

length is the first Bohr radius (so that 1 au = 0.529 Å).

When the Schrödinger equation is solved exactly (e.g., for the hydrogen atom),

the resulting eigenfunctionsΨk form a complete set of functions. The eigenfunction

Ψ0 corresponding to the lowest energyE0, describes the ground state of the system,
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and higher energy values correspond to excited states. Once the functionΨ is known,

the corresponding energy of the system can be calculated as an expectation value of

the HamiltonianĤ, as:

E[Ψ] =

∫
Ψ∗ĤΨdr = 〈Ψ |H|Ψ〉 (2.6)

where the integration is over (two electron) coordinate space and the notation

[Ψ] emphasizes the fact that the energy is afunctional of the wave function. The

energy is always higher than that of the ground state unlessΨ corresponds toΨ0,

since by the variational theorem:

E[Ψ] ≥ E0 (2.7)

Once the functionΨ for a given state of the system is known, then the ex-

pectation value of any quantity for which the operator can be written down, can be

calculated.

In general, the Schrödinger equation cannot be solved exactly. Therefore, ap-

proximations have to be used. The first successful attempt to derive approximate

wave functions for atoms was devised by Hartree in 1928. He approximated the

many-electron wave functionΨ by the product of one-electron functionsφ for each

of the N electrons:

Ψ(r1, r2, ..., rN) = φ1(r1)φ2(r2)...φN (rN) (2.8)
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In this equation,ri are assumed to contain both the positional coordinates and

the spin coordinate of electroni.

The Hartree approximation treats the electrons as distinguishable particles. In

1930 Fock correctly treated the electrons as indistinguishable by proposing an anti-

symmetrized many-electron wave function in the form of a Slater determinant [61]:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) ... φN(r1)
φ1(r2) φ2(r2) ... φN(r2)
. . . .
. . . .
. . . .

φ1(rN) φ2(rN) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣∣

(2.9)

where det indicates a matrix determinant. This single determinant wavefunc-

tion accounts for some basic fermion characteristics such as Pauli’sexclusion prin-

ciple, which introduces the new term ofelectron exchange. Within this so-called

Hartree-Fock method, the expectation value of the total energy is given by:

EHF = 〈Ψ |H|Ψ〉 =
N∑

i=1

Hi +
1

2

N∑

i=1

N∑

j=1

(Jij −Kij) (2.10)

where

Hi =

∫
φ∗i (r)[−

1

2
∇2

i + Ûi]φi(r)dr (2.11)

is an element of the one-electron operatorĥi defined by:

ĥi = −
1

2
∇2

i −
Nnucl∑

α=1

Zα∣∣ri −Rα

∣∣ (2.12)
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whereNnucl is the total number of nuclei in the material. TheJij ’s represent

the Coulomb interaction between electroni and electronj. They are called Coulomb

integrals and are given by:

Jij =

∫ ∫
ρi(r1)ρj(r2)

|r1 − r2|
dr1dr2 =

∫ ∫
φ∗i (r1)φ

∗
j(r2)

1

|r1 − r2|
φi(r1)φj(r2)dr1dr2

(2.13)

The inclusion of Pauli’s exclusion principle within the Slater determinant leads

to an additional termKij, the so-called exchange integral, which is defined by

Kij =

∫ ∫
φ∗i (r1)φj(r1)

1

|r1 − r2|
φi(r2)φ

∗
j(r2)dr1dr2 (2.14)

We see thatKij is similar in form to theJij but the functionsφi andφj have

been exchanged. It follows that electronsi andj have to be of the same spin forKij

to be nonzero due to the orthogonality of their spin parts.

The Hartree-Fock (HF) approximation has been favoured among chemists for

calculating the electronic structure of small molecules with a high accuracy. Impor-

tantly, the HF results can systematically be improved by applying the configuration

interaction (HF-CI) techniques or Møller-Plesset perturbation theory (MP2 or MP4)

[57, 58]. Unfortunately, the HF method resulted in a vanishing density of states at

the Fermi level in the bulk free electron gas, so that this approximation was avoided

by solid state physicists. In turn, they turned to methods based on the electronic den-

sity of the material that Thomas and Fermi had proposed at about the same time as
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Hartree. They had derived a differential equation for the density without resorting

to one-electron orbitals [59, 60]. The Thomas-Fermi (TF) approximation was actu-

ally too crude because it did not include exchange and correlation effects and was

also unable to sustain bound states because of the approximation used for the ki-

netic energy of the electrons. However it set up the basis for the later developments

of density functional theory (DFT), which has been the way of choice in electronic

structure calculations in condensed matter physics during the past three decades and

recently, it also became accepted by the quantum chemistry community because of

its computational advantages compared to HF-based methods [61, 62].

2.3 Density Functional Theory

Density Functional Theory (DFT) focuses on the electronic density of the system

ρ(r). In their seminal paper of 1964 Hohenberg and Kohn [27] proved two key

theorems:

Theorem 1 The total ground state energyE of an electron system is a unique

functional of the electron density, i.e.

E = E[ρ] (2.15)

Theorem 2 This energy functional takes its minimun valueE0 for the correct

ground state densityρ0(r) under variations in the electron densityρ(r) such that the
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number of electrons is kept fixed, i.e.

E0 ≤ E[ρ] (2.16)

for which
∫
ρ(r)dr = N (2.17)

whereN is the number of electrons in the system. The equality in Eq. (2.16)

occurs if and only ifρ(r) = ρ0(r). These two theorems only state that such a func-

tionalE[ρ] exists with the variational property given by Eq. (2.16). In the following

year Kohn and Sham [63] provided a procedure by which we can approximate the

functional and hence solve for the ground state energy and density. They decom-

posed the energy functional as the sum of three components:

E[ρ] = T0[ρ] + U [ρ] + Exc[ρ] (2.18)

The first term is the kinetic energy of electrons in a system which has the same

densityρ(r) as the real system but in which the electrons are assumed to benon-

interacting with the electron-electron interactions turned off. The second term com-

prises the sum of the usual Hartree Coulomb energy and the electrostatic interaction

energy between the electrons and the external potential due to the nuclei i.e.

U [ρ] =

∫
[ÛH((r) + Ûext(r)]ρ(r)dr (2.19)

ÛH [r] =

∫
ρ(r′)

|r′ − r|dr
′ (2.20)
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Ûext[ρ] = −
∑

α

Zα∣∣r −Rα

∣∣ (2.21)

The third term is the so-called exchange-correlation energy functional, that

comprises the sum of the Hartree-Fock exchange energy plus the correlation energy

that remains to make the functional Eq. (2.18) exact.

Thomas-Fermi theory [59, 60] had assumed that the non-interacting kinetic

energy functional for aninhomogeneous system could be approximated by using

the kinetic energy density of a homogeneous free electron gas correspondingto the

densityρ(r) at each point in space, namely

T TF
0 [ρ] = As

∫
ρ(r)

5
3dr (2.22)

whereAs =
3

10
(3π2)

2
3 = 2.871 atomic units. This approximation failed to

describe chemical bonding correctly. Kohn and Sham took the key step of defining

the non-interacting kinetic energy functional in the spirit of the original Schrödinger

equation (2.1), namely

T0[ρ] =
∑

i

ni

∫
ψ∗i (r)[−

1

2
∇2]ψi(r)dr (2.23)

whereni is the occupation number of statei andψi(r) is an orthonormal set of

single-particle wave functions such that

ρ(r) =
N∑

i=1

|ψi(r)|2 (2.24)

The ground state energy is found by minimizing the energyE[ρ] in Eq. (2.18)

with respect to variations in the electron densityρ(r), given by Eq. (2.24), subject
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to the constraint that the number of particles is conserved through Eq. (2.17).Using

variational calculus it may be shown [63] that the ground state energy can be written

E[ρ] =
N∑

i=1

ǫi −
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′| drdr
′ −
∫
Ûxc(r)ρ(r)dr + Exc[ρ] (2.25)

where

Ûxc(r) =
δExc[ρ(r)]

δρ(r)
(2.26)

The occupied energy levelsǫi that enter the sum in the first term of Eq. (2.25)

are the eigenvalues resulting from solving a Schrödinger-like equationfor non-interacting

particles:

[−1
2
∇2 + Ûeff(r)]ψi(r) = ǫiψi(r) (2.27)

where

Ûeff(r) = Ûext(r) + ÛH(r) + Ûxc(r) (2.28)

Thus, Kohn and Sham provided a recipe for solving the ground state energy of a

many-body electron system within an effective one-electron framework provided the

form of the exchange-correlation functional that enters both the Schrödinger equation

(2.27) and the total energy (2.25) is known. This we now turn to in the next section.

2.4 The Exchange-Correlation Functional

Several different schemes have been developed for obtaining approximate forms for

the functional for the exchange-correlation energy. The simplest and yet suprisingly

accurate approximation, for non-magnetic systems is to assume that the exchange-
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correlation energy is dependent only on the local electron densityρ(r) around each

volume elementdr. This is called thelocal density approximation (LDA). The lo-

cal density approximation rests on two basic assumptions: firstly, the exchangeand

correlation effects come predominantly from the immediate vicinity ofthe pointr,

and secondly these exchange and correlation effects do not depend strongly on the

variations of the electron density in the vicinity ofr. If these two conditions are rea-

sonably well fulfilled, then the contribution from the volume elementdr would be the

same as if this volume element were surrounded by a homogeneous electron density

of the constant valueρ(r) within dr. Within LDA the exchange-correlation energy

functional is given by:

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)]dr (2.29)

whereεxc(ρ(r)) is the exchange-correlation energy per particle of a uniform

electron gas. This quantity is split into two parts:

εxc(ρ(r)) = εx(ρ(r)) + εc(ρ(r)) (2.30)

The exchange partεx(ρ(r)) can be derived analytically within the Hartree-Fock

approximation and can be expressed as

εx(ρ(r)) = −
3

4

3

√
3ρ(r)

π
(2.31)
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The correlation part cannot be derived analytically, but can be calculated nu-

merically with high accuracy by means of Monte Carlo simulations [64].

The LDA is generally very successful in predicting structures and ground state

properties of materials but some shortcomings are well documented [65]. These con-

cern in particular: (i) the energies of excited states, in particularthe band gaps in

semiconductors and insulators are systematically underestimated. This is not supris-

ing since DFT is based on a theorem referring to the ground state only. (ii) Generally,

LDA tends to significantly overestimate cohesive energies and underestimate lattice

parameters by up to 3%. In solids, the former is thought to occur because the LDA

does a poor calculation of the total energy in isolated atoms [66]. (iii) The incor-

rect ground state is predicted for some magnetic systems (the most notable example

is Fe which is predicted to be hexagonal close packed and non-magnetic instead of

body-centered cubic and ferromagnetic) and for strongly correlated systems(e.g. the

Mott insulators NiO and La2CuO4 are predicted to be metallic in the LDA). (iv) Van

der Waals interactions are not appropriately described in the LDA, although there are

some recent suggestions for overcoming this problem [67, 68]. In magnetic systems

or in systems where open electronic shells are involved, thelocal spin density ap-

proximation (LSDA) which is the equivalent of the LDA in spin-polarized systems

is employed. LSDA basically consists of replacing the exchange-correlation energy

density with a spin-polarized expression [61].
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During recent years several schemes that go under the generic name of the

generalized-gradient approximation (GGA) attempt to provide improvements to LDA

by expandingExc[ρ]. The expansion is not a simple Taylor expansion, but tries to

find the correct asymptotic behaviour and correct scaling for the usually nonlinear

expansion. These enhanced functionals are frequently called nonlocal or gradient

corrections, since they depend not only upon density, but also the magnitude of the

gradient of the density at a given point. For materials applications, the GGAs pro-

posed by Perdew and co-workers [66, 69, 70, 71, 72], have been widely used and

have proved to be quite successful in correcting some of the deficiencies of theLDA:

the overbinding being largely corrected (the GGAs lead to larger lattice constants and

lower cohesive energies) [73] and the correct magnetic ground state is predicted for

ferromagnetic Fe [74] and antiferromagnetic Cr and Mn [75]. However, there are

also cases where the GGA overcorrects the deficiencies of the LDA and leads to a

large underbinding [65].

The basic idea of GGAs is to express the exchange-correlation energy in the

following form:

EGGA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)]dr +

∫
Fxc[ρ(r),∇ρ(r)]dr (2.32)

where the functionFxc is asked to satisfy a number of formal conditions for the

exchange-correlation hole, such as sum rules, long-range decay and so on. Naturally,
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not all the formal properties can be enforced at the same time, and this differentiates

one functional from another [61].

The form suggested by Becke [70] for the exchange part is:

EGGA
x [ρ↑, ρ↓] = E

LDA
x − β

∑

σ

∫
ρσ(r)

4
3x2σ

1 + 6βxσ sinh
−1 xσ

d3r (2.33)

where

ELDA
x = −Cx

∑

σ

∫
ρ
4
3
σ (r)d

3r, (2.34)

Cx =
3

2

(
3

4π

) 1
3 , xσ = |∇ρσ| /ρ4/3σ andσ denotes either↑ or ↓ electron spin. The

constantβ is a parameter fitted to obtain the correct exchange energy of noble gas

atoms. The GGA improves predicted values of binding and dissociation energies and

brings them to within 10 kJ/mol (about 1.0 eV) of experiment [69].

The following correlation functional as proposed by Perdew and Wang [69]

predicts correlation energies of useful accuracy for an electron gas with slowly vary-

ing density:

EGGA
c [ρ↑, ρ↓] =

∫
ρ(r)εc(ρ↑, ρ↓)d

3r +

∫
Cc(ρ) |∇ρ(r)|2
deΦρ(r)4/3

d3r (2.35)

where

d = 2
1
3

[(
1 + ζ

2

) 5
3

+

(
1− ζ
2

) 5
3

] 1
2

, (2.36)

Φ = 0.1929

[
Cc(∞)
Cc(ρ)

] |∇ρ|
ρ7/6

, (2.37)
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ζ = (ρ↑− ρ↓)/ρ andCc(ρ) is a rational polynomial of the density that contains

seven fitting parameters.

The correlation energy per particle of the uniform electron gas,εc(ρ↑, ρ↓), is

taken from a parametrization by Perdew and Zunger [76] of the Ceperly-Alder[77]

Monte Carlo results.

In this thesis we have used the most recent form of GGA due to Perdew-Burke-

Ernzerhof (PBE) [72, 78]. They write the exchange functional in a form which con-

tains an explicit enhancement factorFx over the local exchange, namely:

EPBE
x [ρ↑, ρ↓] =

∫
ρ(r)εLDA

x [ρ(r)]Fxc(ρ, ξ, s)dr (2.38)

whereρ is the local density,ξ is the relative spin polarization, ands = |∇ρ(r)| /(2kFρ)

is the dimensionless density gradient. Following [43] the enhancement factor iswrit-

ten

(
sFx =

1

κ+ s2µ

(
κ+ s2µ+ s2κµ

))
(2.39)

whereµ = β(π2/3) = 0.21951with β = 0.066725 being related to the second-

order gradient expansion [71]. This form was chosen because it

(i) satisfies the uniform scaling condition,

(ii) recovers the correct uniform electron gas limit becauseFx(0) = 1,

(iii) obeys the spin-scaling relationship,

(iv) recovers the local spin density approximation (LSDA) linear response limit

for s −→ 0, namelyFx(s) −→ 1 + µs2, and
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(v) satisfies the local Lieb-Oxford bound [79],εx(r) ≥ −1.679ρ(r)4/3, that is,

Fx(s) ≤ 1.804, for all r, provided thatκ ≤ 0.804. PBE chooses the largest allowed

value,κ = 0.804.

The correlation energy on the otherhand is written in the form:

EPBE
c [ρ↑, ρ↓] =

∫
ρ(r)

[
εLDA
c (ρ, ζ) +H[ρ, ζ, t]

]
dr (2.40)

with

H[ρ, ζ, t] = γφ3In

{
1 +

βγ2

t
[

1 +At2

1 +At2 +A2t4
]

}
(2.41)

Here,t = |∇ρ(r)| / (2φksρ) is a dimensionless density gradient,ks = (4kF/π)
1/2

is the TF screening wave number andφ(ζ) =
[
(1 + ζ)2/3 + (1− ζ)2/3

]
/2 is a spin-

scaling factor. The quantityβ is the same for the exchange termβ = 0.066725, and

γ = 0.031091. The functionA has the following form:

A =
β

γ

[
e
−εLDAc

[ρ]

γφ3 − 1
]−1

(2.42)

So defined, the correlation termH satisfies the following properties [61]:

(i) it tends to the correct second-order gradient expansion in the slowlyvarying

(high-density) limit (t −→ 0),

(ii) it approaches minus the uniform electron gas correlation−εLDA
c for rapidly

varying densities (t −→ ∞), thus making the correlation energy vanish (this results

from the correlation hole sum rule), and
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(iii) it cancels the logarithmic singularity ofεLDA
c in the high-density limit,

thus forcing the correlation energy to scale to a constant under uniform scaling of the

density.

We will see in chapter 4 that this PBE exchange-correlation gives good results

for the Mg-Li alloy system.
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Chapter 3
PLANE WAVE PSEUDOPOTENTIAL

METHOD

In this chapter we outline the methodology of solving the Kohn-Sham equation,

Eq. (2.27), using a plane wave basis and approximating the ion cores with pseudopo-

tentials. We will end with a brief discussion of the commercial softwarepackage

CASTEP that will be used in subsequent chapter.

3.1 Plane Wave Basis Sets

The plane-wave pseudopotential (PWP) method begins by representing the system

by a 3-dimensional periodic supercell. This allows Bloch’s theorem to simplifythe

task of solving the Kohn-Sham equation. This is because Bloch’s theorem which is

based upon the periodicity of the system, reduces the infinite number of one-electron

wavefunctions in the real system to only the number of electrons in the chosen su-

percell. Following Bloch’s theorem, the wavefunction can be written as the product

of a cell periodic part and a wavelike part:

ψi(r) = exp(ik · r)fi(r). (3.1)
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The first term is the wavelike part and the second term is the cell periodic part

of the wavefunction, which can be expressed by expanding it into a finite number of

planewaves whose wave vectors are the reciprocal lattice vectors ofthe crystal,

fi(r) =
∑

G

ci, G exp(iG · r) (3.2)

whereG are the reciprocal lattice vectors. Therefore each electronic wavefunc-

tion is written as a sum of plane waves,

ψi(r) =
∑

G

ci,k+G exp[i(k +G) · r]. (3.3)

The problem of solving the Kohn-Sham equation has now been mapped onto

the problem of expressing the wavefunction in terms of an infinite number of recip-

rocal space vectors for each pointk within the first Brillouin zone of the periodic

cell. For metallic systems a dense set ofk points is required to define the Fermi sur-

face precisely and to reduce the magnitude of the error in the total energy which may

arise due to inadequacy of thek-point sampling. We will see later in chapter 4 that

the computed total energy converges as the density ofk points increases so that the

error due to thek-point sampling can be made as small as needed. In principle, a

converged electronic potential and total energy can always be obtained provided that

the computational time and memory are available to calculate the electronic wave

functions at a sufficiently dense set ofk points [25].
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The Fourier series in Eq. (3.3) is, in principle, infinite. However, thecoeffi-

cientsci,k+G are associated with plane waves of kinetic energy(�2/2m)
∣∣k +G

∣∣2.

The plane waves with a smaller kinetic energy typically play a more important role

than those with a very high kinetic energy. The introduction of a plane wave energy

cutoff reduces the basis set to a finite size. This kinetic energy cutoff willlead to an

error in the total energy of the system but in principle it is possible to make this er-

ror arbitrarily small by increasing the size of the basis set by allowing a larger energy

cutoff. In principle, the cutoff energy should be increased until the calculated total

energy converges within the required tolerance [25]. We will see later in chapter 4

that this is essential for the phase stability study of Mg-Li alloys where the absolute

values of the total energies of different structures are compared.

The main advantage of expanding the electronic wavefunctions in terms of a

basis set of plane waves is that the Kohn-Sham equation take a particularly simple

form. Substitution of Equation 3.3 into the Kohn-Sham equation, (2.27), gives

∑

G
′

{ �
2

2m

∣∣k +G
∣∣2 δGG′+Uext(G−G

′
)+UH(G−G

′
)+Uxc(G−G

′
)}ci,k+G′ = εici,k+G′ .

(3.4)

We see immediately that the reciprocal space representation of thekinetic en-

ergy is diagonal with the various potential contributions being described in terms of

their Fourier components. The usual method of solving the plane wave expansionof

the Kohn-Sham equation is by diagonalisation of the Hamiltonian matrix whose el-
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ementsHk+G,k+G
′ , are given by the terms in curly brackets above. The size of the

matrix is determined by the choice of cutoff energy

Ec =
�
2

2m

∣∣k +Gc

∣∣2 (3.5)

and will be intractably large for systems that contain both valence and core

electrons. This classical problem was solved by advent of the powerful concept of

pseudopotentials.

3.2 Pseudopotential Approximation

The fundamental idea of pseudopotentials is to replace the real potential, arising

from the nuclear charge and the core electrons, with an effective potential, within a

core region of radius Rc, as illustrated schematically in Figure 3.1. Certain demands

are then placed on this effective potential. It must be such that the valence orbital

eigenvalues are the same as those in an all-electron calculation onthe atom. It must

also preserve the continuity of the wavefunctions and their first derivatives across

the core boundary. Finally, integrating the charge in the core region should give the

same answer for the pseudo-atom and the all-electron one, that is, the pseudopotential

must benorm-conserving. A pseudopotential that satisfies these demands will have

the same scattering properties, at energies corresponding to valence eigenvalues, as

the ionic core it replaces. The self-consistent field equations (Eqs. 2.24 and 2.27) are

carried out only for the valence electrons. Moreover, since the core electrons which
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Figure 3.1: Schematic illustration of all-electron (solid lines) and pseudoelectron
(dashed lines) potentials and their corresponding wave functions. The radiusat which
all-electron and pseudoelectron values match is designatedRc [25].

do not influence the properties of the solid phase are removed from the problem,

much higher numerical precisions can be achieved. Thus, systems involving heavy

atoms are not much more complicated than those with light ones.

The phase shift produced by the ionic core is different for each angular mo-

mentum component (s, p, d, etc.) of the valence wavefunction. Thus, the scattering

from the pseudopotential must be angular momentum dependent. The most general

form for a pseudopotential is:



41

VNL =
∑

|lm〉Vl〈lm| (3.6)

where| lm〉 are spherical harmonics andVl is the pseudopotential for angular

momentuml [90]. A pseudopotential that uses the same potential in each angu-

lar momentum channel is called a local pseudopotential. Local pseudopotentials are

computationally much more efficient than nonlocal ones. However, only a few ele-

ments such as aluminium can be described accurately using local pseudopotentials.

Lithium, in particular, requires a careful non-local treatment due to the absence of

anyp states in its ion core.

An important recent concept in pseudopotential applications is the degree of

hardness of a pseudopotential. A pseudopotential is consideredsoft when it requires

a small number of Fourier components for its accurate representation andhard other-

wise. Norm conservation ensures the scattering properties remain correct away from

the eigenvalues to linear order in the energy [91] and also ensures that the pseudo-

wavefunction matches the all-electron wavefunction beyond a cutoff radius that de-

fines the core region. Within the core region, the pseudo wavefunction has no nodes

and is related to the all-electron wavefunction by thenorm-conservation: that is, both

wavefunctions carry the same charge. These potentials can be made very accurate at

the price of having to use a very high energy cutoff. Early development of accurate

norm-conserving pseudopotentials quickly showed that the potentials for the firstrow

elements such as Li turn out to be extremelyhard [41]. Various schemes have been
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suggested to improve convergence properties of norm-conserving pseudopotentials

[92].

Despite the best attempts to optimize their performance for the first rowele-

ments [93, 94], a more radical approach was required, as suggested by Vanderbilt

[95]. This involves relaxing the norm-conserving requirement in order togener-

ate muchsofter pseudopotentials,ultrasoft pseudopotentials (USP). In the ultrasoft

pseudopotential scheme, the pseudo-wave-functions are allowed to be assoft as pos-

sible within the core region, so that the cutoff energy can be reduced dramatically.

USP have another advantage besides being muchsofter than their norm-conserving

counterparts. The generation algorithm guarantees good scattering properties over a

pre-specified energy range, which results in much better transferability and accuracy

of the pseudopotentials. This leads to high accuracy and transferabilityof the poten-

tials, although at a price of computational efficiency. Typically it is foundthatEc is

about half that for a norm-conserving pseudopotential, which means less thanone-

third as many plane waves are required. In chapter 4 the Mg-Li alloys are modelled

with Vanderbilt ultrasoft pseudopotentials.

3.3 Grids and Fast-Fourier transforms

Real- and reciprocal-space grids are another key feature of the PWP method.Ex-

pressing the wavefunction as an expansion in a finite set of plane waves leads nat-

urally to the idea of a reciprocal-space grid. However, it is advantageous to have a
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real-space representation too, on the related real-space grid [96]. Fast Fourier trans-

forms (FFT’s) are used to transform the data between the two spaces ina highly effi-

cient manner. The direct lattice vectors of the real-space supercell are denoteda1, a2

anda3. The reciprocal lattice vectorsbi are defined by the relationai · bj = 2πδij,

whereδij = 1 for i = j but zero otherwise. In practicebi is constructed using

b1 = a2 × a3/(a1 · a2 × a3), (3.7)

b2 = a3 × a1/(a1 · a2 × a3), (3.8)

b3 = a1 × a2/(a1 · a2 × a3). (3.9)

A reciprocal lattice vectorG is given by

G = n1b1 + n2b2 + n3b3 (3.10)

whereni are integers . A plane waveexp(iG · r) is commensurate with the

supercell, and the set plane waves whose wavevectors are defined by equation3.10

above is an orthogonal set [96]. The real-space grid is formed by dividing the lattice

vectorsa1, a2 anda3 into N1, N2 andN3 points. A point in the supercell is then

denoted

(l1, l2, l3)r =
l1
N1
a1 +

l2
N2
a2 +

l3
N3
a3, (3.11)
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where theli are integers in the range0 ≤ li ≤ (Ni − 1). The real-space grid

can be viewed as the lattice of points for the lattice vectorsαi = ai/Ni. The cor-

responding reciprocal lattice vectors are given byβi = Nibi because of the relation

αi · βj = 2πδij. The vectorsβi are the reciprocal-space supercell vectors. The

reciprocal-space grid is the lattice of points for the vectorsbi. Within the reciprocal-

space supercell a point is given by equation 3.10 with0 ≤ ni ≤ (Ni − 1). In each

supercell there areN1N2N3 = N points. It can be said that discrete Fourier trans-

forms, or at least plane waves, impose these relationships between the grids. The

productsG · r are independent of the supercell dimensions.

Although pseudopotentials have reduced the number of plane waves required,

that number is still large. FFT’s play a role of equal importance because theyallow

the calculation to scale well with system size.

3.4 Broadening (smearing) scheme

In ab initio electronic structure and total-energy calculations the integrals over the

Brillouin zone are commonly replaced by the sum over a mesh ofk-points. This

approach is very efficient for insulators, but for metallic systems convergence with

respect to the number ofk-points becomes slow. The introduction of fractional oc-

cupation numbers is a convenient way to improve thek-space integration and in ad-

dition to stabilize the convergence in the iterative approach to self-consistency [97].

In these broadening schemes the eigenstates are occupied according to a gaussian-
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like smearing of each energy level. The remaining task is to effectively convert these

eigenvalues into an electronic density of statesn(E). The Fermi level,EF , can then

be found from the electron count

N =

∫
dEn(E)θ(EF − E), (3.12)

after which the band energy can be determined:

Eband =

∫
dEEn(E)θ(EF − E) = E0. (3.13)

In an insulator the approximation toEband improves monotonically as the num-

ber ofk-points is increased, whilst for metals the process breaks down as the Fermi

level is in the middle of an occupied band. Accurately determining Eq. 3.13 then

requires an extremely large number ofk-points.

It has long been recognized that this problem can be alleviated by ‘smearing‘

the step functionθ(EF − E) into a smooth weighting functionfT (E) [83]. Gillan

[98] provided a formal basis for this technique, beginning from the observation that

the Fermi-Dirac function

fT (E) = 1/{1 + exp[(E − µ(T ))/T ]} (3.14)

is the weighting function which minimizes the free energy

Aband(T ) = Eband(T )− TS(T ), (3.15)
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whereT is a fictitious "temperature", the chemical potentialµ(T ) approaches

EF asT → 0, andS is the associated entropy

S(T ) =

∫
dEn(E){fT (E)InfT (E) + [1− fT (E)]In[1− fT (E)]}. (3.16)

NowEband is also an explicit function ofT

Eband(T ) =

∫
dEEn(E)fT (E). (3.17)

Gillan then showed that at low temperatures

Eband(T ) = E0 ±
1

2
γT 2 +O[T n], (3.18)

Aband(T ) = E0 ±
1

2
γT 2 +O[T n]. (3.19)

Later, Grotheer and Fähnle [99] showed thatn ≥ 4. From this they deduced

that

U(T ) = [Eband(T ) +Aband(T )]/2 = E0 +O[T
4]. (3.20)

TheT 4 dependence of the correction to the ground-state energy should allow

one to use a relatively large broadening temperature and extrapolate back toT = 0

via Eq. 3.20. SinceT is large, the integrand of Eq. 3.17 cuts off smoothly with in-

creasing energy, decreasing the number ofk-points needed to provide an accurate

energy. Broadening methods, using either Eq. 3.14 or some other weighting function
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[99] which satisfies Eq. 3.20, have been widely used in most recent articlesin Phys-

ical Review B since 1998. In these papers the value of the broadening "temperature"

or equivalent ranges from 2 mRy [100] to 20 mRy [101]. Only one paper [97] gives

any justification for the choice of a particular temperature.

3.5 Advantages of PWP method

The PWP approach has several advantages over other methods, such as those based

on localized atomic orbitals. These are:

(i) convergence with respect to the completeness of the basis set is easily

checked by extending the cut-off energy (i.e. the highest kinetic energy in the PW

basis),

(ii) Fast-Fourier-Transforms (FFT) facilitate the solution of the Poisson equa-

tion, and

(iii) forces on atoms and stresses on the unit cell may be calculated directly via

the Hellmann-Feynman [102] theorem, without applying Pulay corrections for the

site-dependence of the basis set [103].

The main disadvantage is that the chemical insights gained by a description

of bonding between localized orbitals is not immediately apparent. However, new

codes remove this deficiency by transforming from the PW description to alocalized

orbital description once the PWP calculations have converged to the relaxedground

state structure.
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3.6 CASTEP code

The planewave pseudopotential (PWP) calculations for the solution of the Kohn-

Sham equation of Density Functional Theory (DFT) were performed using CASTEP

(Cambridge Serial Total Energy Package) [26] with the generalized gradientapproxi-

mation for the exchange correlation energy functional. CASTEP is a pseudopotential

total-energy code which employs special point integration over the Brillouin zone

and a plane wave basis for the expansion of the wavefunctions. We used the PBE

form of the GGA [72], which was designed to be more robust and accurate than the

original GGA formulation. The total-energy code used, CASTEP, performs a varia-

tional solution to the Kohn-Sham equations by using a density mixing scheme [73]

to minimize the total energy and also conjugate gradients to relax the ions under the

influence of the Hellmann-Feynman forces.

CASTEP uses fast fourier transforms (FFT) to provide an efficientway of trans-

forming various entities (wavefunctions, potentials) from real to reciprocal space and

back as well as to reduce the computational cost and memory requirement for oper-

ating with the Hamiltonian on the electronic wave functions, a planewave basis for

the expansion of the wavefunctions. The convergence of this expansion is controlled

by a single parameter, namely the highest frequency at which the series is terminated

(conventionally defined as the highest kinetic energy of a plane wave). In this work

the summation over the Brillouin zone has been performed with weighted summa-

tion over wave vectors generated by Monkhorst-Pack scheme [104], which produces
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a uniform mesh ofk points in reciprocal space. A BFGS-based minimization tech-

nique was used for performing geometry optimization, either at ambient conditions

or under external stress [26]. The Pulay density of mixing scheme [25] with conju-

gate gradient solver is applied and pseudopotentials parametrized in the reciprocal

space, as implemented in the CASTEP code. An updated iterative (due tothe inverse

Hessian) is based on the calculated stress tensor and atomic forces.

Ultrasoft pseudopotentials of Vanderbilt form [95] were utilized. The above

methodology produces very "soft" pseudopotentials which drastically reduce the num-

ber of plane waves needed to achieve convergence of the calculated properties. The

pseudopotentials were generated using the PBE exchange correlation functional. We

used convergence criterion of less than 2 x 10−5 eV on total energy change per atom,

10−3 Å on the displacement of atoms, 0.05 eVÅ−1 on the residual forces and 0.1 GPa

on the residual bulk stress.
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Chapter 4
THEORY OF PRACTICAL RESULTS

4.1 Introduction

The phase diagram of Mg-Li, which is shown in Figure 1.1, is determined by the free

energies of the different competing phases [105]. In particular, above room temper-

ature we find the hcp and bcc phases centered on the magnesium and lithium rich

ends of the phase diagram respectively. We see that whereas we have only about 15

at% solubility of Li into Mg, we have about 70% solubility of Mg into Li. At con-

centrations around 50%, the bcc phase remains stable even at very low temperatures,

although local short range ordering of B2 (CsCl) type has been observed [106, 107].

A metastable fcc phase has been found after cold working alloys with from 13.4to

19.7 at% Mg [7, 107].

Hafner [31] in a seminal paper 30 years ago predicted the variation of the heats

of formation of disordered bcc, hcp and fcc phases using second-order perturba-

tion theory within the nearly-free-electron model. He successfully accounted for the

metastability of the observed fcc phase and the wide domain of bcc phase stability.

In this thesis we examineordered superstructures of Mg-Li alloys with respect to un-

derlying fcc and bcc lattices using ab initio DFT. Although these low temperature

ordered ground states have not been observed, our first principles data base could
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be used in the future to fit a cluster expansion [18] and hence perform CVM [20]

or Monte Carlo [19] simulations of the temperature and concentration dependence

of the Mg-Li phase diagrams. In addition we will use DFT to predict the variation

in the elastic moduli within these ordered superstructures and point out an interest-

ing correlation between the tetragonal shear modulus and the relative stability of the

corresponding fcc and bcc lattices.

In this chapter we, therefore, begin by presenting the ordered superstructures

with respect to underlying fcc and bcc lattices of the Mg-Li alloys in whichwe are

interested. This will then be followed by convergence tests on the choice ofthe

energy cutoff that determines the number of plane waves, onk-point sampling, and

on the smearing width (broadening "temperature") for phases that are veryclose in

energy. The elasticity theory is summarized in the last part of this section.

4.2 The bcc- and fcc-based ordered structures

In this thesis we consider ordered structures with respect to fcc and bcc underlying

lattices due to their promising potential in structural applications. Inparticular, we

examine Mg-Li alloys with the stoichiometries 3:1 and 1:1 which preserve the cubic

symmetry, as illustrated in Fig.4.1. In order to study small additions of Mg andLi

to pure Li and Mg metals respectively, we also examine the 7:1 stoichiometry with

respect to the fcc lattice and the 15:1 stoichiometry with respect to the bcc lattice.

These two ordered lattices retain the cubic symmetry as can be seen in Fig.4.1. Thus,
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we will discuss the energetics of the cubic fcc-based phases, L12 (MgLi 3, Mg3Li,

and (MgLi7, Mg7Li) and the cubic bcc-based phases B2 (MgLi), B32 (MgLi), DO3

(MgLi 3), Mg3Li) and (MgLi15, Mg15Li). In addition, we will examine the tetragonal

L10 (MgLi) and DO22 (MgLi 3, Mg3Li) phases.

4.3 Convergence tests

4.3.1 Cut-off energy

We show that obtaining converged total energies with respect to the energy cutoff is

vital before attempting any structural predictions, since often we arelooking at en-

ergy differences of the order of about5meV/atom. Single point energy calculations

were performed (at the experimental lattice constant where available) for different

kinetic energy cutoffs at various number ofk-points within GGA-PBE. The method

used was employed because of its robustness for metallic systems. In Figures 4.2

and 4.3, we show the plots of the total energy against kinetic energy cutoff, from

which the energy cutoff employed in each structure was determined. We see that

these curves are jagged for low cutoff energies but become smoother as the cutoff

energy is increased. Thus the kinetic energy cut-off of500 eV was chosen as the en-

ergy differences were less than5 meV/atom at this point (as shown in Figures 4.2

and 4.3). The reason for the jagged appearance of the E-V curve is the discontinuous

change in the number of plane waves used at that cut-off energy. We used ultrasoft
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Figure 4.1: The ordered (i) fcc-based and (ii) bcc-based Mg-Li superstructures con-
sidered in this study.
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Figure 4.2: Plots of total energy against kinetic energy cut-off for Mg in hcp,fcc and
bcc lattices.

pseudopotentials [95], which require significantly less computational resources than

norm-conserving potentials [93].

4.3.2 k-points

Since we are comparing energies of different structures with different unit cell vol-

umes and Brillouin shapes, sizes, andk-point sampling, we need a very good con-

vergence of the energy. An appropriate choice of thek-point set is important for
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Figure 4.3: Plots of total energy against kinetic energy cut-off for Li in hcp, fcc and
bcc lattices.
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achieving balance between accuracy and efficiency. The Brillouin zonesampling

was carried out using the number ofk points as indicated in Table 4.1, within the ir-

reducible part of the zone with the total in the full zone in brackets. This corresponds

to the Monkhorst-Pack set of points given in the third column [104]. In this part, we

show the convergence of the total energies with respect to thek-point sampling set

size, as illustrated in the plots of total energy against number ofk-points for Mg (Fig-

ure 4.4) and Li (Figure 4.5). The total energy was considered converged when the

change was within1 meV and5 meV per atom for elemental metals and alloys re-

spectively, and from this,k-points used were then chosen as listed in Table 4.1, since

further increase of thek-point density had no significant effect on calculated proper-

ties. An increasedk-point set reduces the finite basis set correction and makes cell

relaxation more accurate at a fixed energy cutoff.

4.3.3 Smearing width

In CASTEP calculations for metallic systems, a Gaussian-like smearing width of

each energy level,σ, is introduced to eliminate discontinuous changes in energy when

an energy band crosses the Fermi level during the self-consistently procedure. This

smearing width is set at a relatively large value, at first, to ensure convergence of our

self-consistency procedure. When the procedure is converged thenσ is decreased

by halving in every six iterations untilσ is no less than the specific minimum value.

The values of the initial and final Gaussian-like smearing width of each energy level
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Figure 4.4: Plots of total energy versus number ofk-points within the irreducible
Brillouin zone for Mg in hcp, fcc and bcc lattices.
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Figure 4.5: Plots of total energy against number ofk-points within the irreducible
Brillouin zone for Li in hcp, fcc and bcc lattices.
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Structure Number ofk-points Monkhorst-Pack set No. ofk-points x No. of atoms
in unit cell

Mg (hcp) 96 (784) 14 x 14 x 8 192
Mg (fcc) 56 (864) 12 x 12 x 12 224
Mg (bcc) 56 (864) 12 x 12 x 12 112
Mg15Li (bcc) 10 (48) 6 x 6 x 6 160
Mg7Li 20 (256) 8 x 8 x 8 640
Mg3Li (L12) 56 (864) 12 x 12 x 12 224
Mg3Li (DO22) 30 (200) 10 x 10 x 4 240
Mg3Li (DO3) 20 (256) 8 x 8 x 8 320
MgLi (L10) 75 (500) 10 x 10 x 10 300
MgLi (B2) 56 (864) 12 x 12 x 12 112
MgLi (B32) 20 (256) 8 x 8 x 8 320
MgLi3 (L12) 56 (864) 12 x 12 x 12 224
MgLi3 (DO22) 30 (200) 10 x 10 x 4 240
MgLi3 (DO3) 20 (256) 8 x 8 x 8 320
MgLi7 20 (256) 8 x 8 x 8 640
MgLi15 (bcc) 10 (48) 6 x 6 x 6 160
Li (hcp) 96 (784) 14 x 14 x 8 192
Li (fcc) 56 (864) 12 x 12 x 12 224
Li (bcc) 56 (864) 12 x 12 x 12 112

Table 4.1: The number of k-points in the irrerucible part of the Brillouin zone used
in the calculations for all stuctures considered. The numbers in bracketsrefer to the
total number of k points sampled in the full Brillouin zone.
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in the present calculations were set at0.4 and0.1 eV , respectively for alloys and0.1

and0.01 eV , respectively for elemental metals since their energy differences are very

small.

4.4 Elasticity

The elastic properties of a solid are important because they relate to various funda-

mental solid-state properties, such as equation of state, phonon spectra, etc. [80].

From materials physics perspective, the elastic constantsCij contain some of the

more important information that can be obtained from ground-state total-energy cal-

culations. Elastic constants for most pure metals are available overa wide range

of temperature in the literature [81, 82]. In contrast, data for alloys and intermetal-

lic compounds are much more limited. Although the bulk modulus is oftenhas been

calculated, calculations of the other elastic constants are relatively scarce [83].

The elastic constants of a material describe its response to externally applied

strain or, the stress required to maintain a given deformation. For small deformations

we expect a quadratic dependence of the crystal energyE on the strain (Hooke’s

law). Both stress and strain have three tensile and three shear components, giving

six components in total. The linear elastic constants form a 6x6 symmetric matrix,

having 27 different components, such thatσi = Cijεj for small stresses,σ, and

strains,ε [82]. Any symmetry in the structure can make some of these components

equal, and/or some strictly zero. A cubic crystal thus has only three different symme-
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try elements (C11, C12 andC44) with each representing three equal elastic constants

(C11 = C22 = C33, C12 = C23 = C31, C44 = C55 = C66). A single strain with

non-zero first and fourth components can give stresses relating to all three of these

coefficients, yielding a very efficient method of obtaining elastic constants for the

cubic system. A full account of the symmetry of stress, strain and elastic constants

is given by Nye [84]. The elastic constants determine the response of the crystal to

external forces, as characterized by bulk modulus (B), shear modulus (C ′), Young’s

modulus (E), Poisson’s ratio (ν) and shear anisotropy factor (A). They play an im-

portant part in determining the strength of the material. These elastic moduli are

given by the following expressions for a cubic crystal:

B = 1

3
(C11 + 2C12), C ′ = 1

2
(C11 − C12), ν = C12

C11+C12
andA = 2C44

C11−C12
.

The requirement of mechanical stability in a cubic crystal leads to the following

restrictions on the elastic constants [85]:

(C11 − C12) > 0, C11 > 0, C44 > 0, (C11 + 2C12) > 0.

The single-crystal shear moduli for the {100} plane along the [010] direction

and for the {110} plane along the [110] direction in a cubic crystal are given byC44

andC ′, respectively. The shear constantC44 is related to an orthorhombic deforma-

tion, whereas theC ′ is related to a tetragonal deformation and its size reflects the

degree of stability of the crystal with respect to a tetragonal shear [86].

For crystals with a tetragonal structure, such as L10 and DO22 , there are six

independent elastic constants in the contracted matrix notation,C11, C12, C13, C33,
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C44, andC66. A set of six independent total-energy calculations is necessary to de-

termine these elastic constants. The elastic moduli can be derived fromthese elastic

constants as follows:

B = 1

9
(2C11 + C33 + 4C13 + 2C12), C ′ = 1

15
(2C11 + C33 − C12 − 2C13 +

6C44 + 3C66), E = C33 − 2νC13, ν = C13
C11+C12

andA1 = 2C66
C11−C12

(on basal plane),

A2 =
4C44

C11+C33−2C13
(on (010) plane).

The requirement that the crystal be stable against any homogeneous elastic

deformation places restrictions on the elastic constants, just as in thecubic case. For

tetragonal crystals, these stability restrictions are as follows [85]:

(C11−C12) > 0, (C11+C33−2C13) > 0,C11 > 0,C33 > 0,C44 > 0,C66 > 0,

(2C11 + C33 + 2C12 + 4C13) > 0.

A hexagonal crystal has 6 different symmetry elements (C11, C12, C13, C33, C44,and

C66), only 5 of them are independent sinceC66 = 1

2
(C11 − C12).

The stability restrictions do not tell us anything further about the relative mag-

nitudes of the various elastic constants. The problem of ductile versus brittleresponse

of crystals require their fracture strength in addition to their plastic deformability.

Pugh [87] introduced the quotient of bulk modulus to shear modulus,B/C ′, for poly-

crystalline phases as a measure of fracture or toughness in metals. A high value of

B/C ′ is associated with ductility and a low value with brittleness. The critical value

which separates ductile and brittle materials is about 1.75 [80]. This parameter is

mostly applied for cubic materials. The factor that measures the stability of a crystal
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against shear is Poisson’s ratio (ν). It provides more information about the character-

istic of the bonding forces than any of the other elastic constants [88]. The smaller

value ofν indicates that the compound is relatively stable against shear. It has been

provedν = 0.25 is the lower limit for central-force solids and 0.5 is the upper limit,

which corresponds to infinite elastic anisotropy [89].

In metals and alloys behaving like isotropic media, the Young’s modulus is

proportional to the bulk modulus when the Poisson’s ratio is close to1

3
. This is shown

by the relation between hydrostatic bulk modulus and Young’s modulus expressed by

Poisson’s ratioν appearing in the relationE = 3 (1− 2ν)B.
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Chapter 5
RESULTS

5.1 Equilibrium Atomic Volume

In this chapter, the predicted cohesive properties are presented with discussions of

various observed trends including the deviations from Vegard’s law [108] displayed

by the equilibrium atomic volumes and the variation in the heats of formation across

the Mg-Li alloy series. This is then followed by a discussion of the electronic struc-

ture in the form of the density of states (DOS). The latter is used to provide a Jones-

type analysis of the structural trends across the Li-Mg phase diagram as theaverage

number of electrons per atom (e/a) changes from 1 to 2. Finally the elastic moduli

are analysed and an interesting correlation with the relative energy difference be-

tween the corresponding fcc and bcc ordered superstructures is observed.

We performed geometry optimization calculations for all the Mg-Li systems

illustrated in Figure 4.1 together with the end elements Mg and Li. We used the

GGA-PBE exchange-correlation functional. We commenced the self consistent it-

erations using as an input the experimental lattice constants where available. We

used a kinetic energy cut-off of500 eV with the number ofk-points as specified in

Table 4.1. These had been deduced from plots of the total energy against kinetic en-

ergy cut-off and total energy versus number ofk-points, respectively, to optimize
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our structures as discussed in section 4.3. Since our pseudopotential choice wasul-

trasoft, the CASTEP interface increased the recommended FFT grid automatically:

this is required to reproduce accurately the augmentation charge [26]. Ourcalculated

equilibrium lattice parameters and equilibrium atomic volumes are listed in Tables

5.1 and 5.2, for fcc- and bcc-based superstructures respectively, with some available

experimental and theoretical results for comparison.

Figure 5.1 shows the predicted variation in equilibrium atomic volume across

the Mg-Li alloy series. We see that with increasing Li composition thevolume

shrinks in a V-shaped manner with the minimum at the equiatomic composition for

both the fcc- and bcc-based structures. This behaviour deviates from both Vegard’s

law [108] and Zen’s law [115] , which assume a linear dependence on the lattice con-

stant or mean atomic volume, respectively. This is illustrated for Zen’s law in Fig. 5.1

by the solid and dashed lines. This trend is also observed in the earlier experiments

of Levinson [106].

5.2 Equation of state and bulk modulus

The equation of state for metals is obtained by computing the pressure

P = −dE
dV

(5.1)

for different volumesV . The resultingP -V curves for these systems are shown

in Figure 5.2. We observe from this plot thatP increases as the volume is decreased
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Lattice constants (Å) Volume (Å3/atom)
Structure Calculated a0 Experimental a Calculated c0 Experimental c Calc. V0 Exp. V
Hcp

Mg 3.195 3.209[107] 5.211 5.211[107] 23.037 23.240[10

3.195[109] 5.185[109] 22.912[109]

Li 3.050 3.111[7] 4.922 5.093[7] 19.825 21.344[7]

3.103[109] 5.068[109] 21.133[109]
Fcc

Mg 4.530 23.246 23.071[11

4.524[109] 23.149[109]
Mg7Li 8.990 22.712
Mg3Li (L12) 4.458 22.154

4.478[110] 22.450[110]
Mg3Li (DO22) 4.481 8.724 21.895

4.453[110] 8.906[110] 22.073[110]
MgLi (L10) 4.820 3.487 20.258

4.385[110] 4.385[110] 21.080[110]
MgLi3 (L12) 4.309 19.998

4.336[110] 20.374[110]
MgLi3 (DO22) 4.307 8.681 20.128

4.332[110] 8.664[110] 20.323

MgLi7 8.610 8.754[107] 19.942 20.964[10

Li 4.307 4.410[6] 19.973 21.442[6]

4.386[109] 21.089[109]

[6] Experiment at -196◦C.
[107] Experiment at 20◦C.
[109] Calculated
[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.

Table 5.1: Calculated hcp equilibrium lattice constants a0 and c0 for elementary Mg
and Li and the calculated lattice constants a0 for the underlying fcc lattices of ordered
Mg-Li compounds. The calculated atomic volumes are also shown, together with
available experimental and theoretical counterparts.
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Lattice constant (Å) Atomic volume (Å3/atom)
Structure Calculated a0 Experimental a Calculated V0 Experimental V
Bcc

Mg 3.585 3.573[107] 23.033 22.807[107]

3.594[111] 23.238[111]
Mg15Li 7.136 22.714
Mg3Li (DO3) 7.024 21.652

7.030[110] 21.713[110]
MgLi (B1) 5.620 22.190

MgLi (B2) 3.420 3.485[106] 19.996 21.163[106]

3.434[110] 3.477[107] 20.25[110] 21.018[107]

3.380[112] 19.304[112]
MgLi (B32) 6.948 20.964

6.676[112] 18.601[112]
MgLi3 (DO3) 6.846 20.051

6.872[110] 20.280[110]

MgLi3 (bcc) 3.500[106] 21.437[106]

MgLi15 6.842 7.010[113] 20.025 21.529[113]

6.824[114] 19.861[114]

Li 3.424 3.510[106] 20.068 21.622[106]

3.478[109] 3.491[7] 21.044[109] 21.272[7]

[7] Experiment at 78 K.
[106] Experiment.
[107] Extrapolated hypothetical.
[107] Experiment at -183◦C.
[112] Calculated using Linear combination-of-atomic-orbitals (LCAO).
[113] Experiment at 20◦C.
[114] Calculated using LMTO.
[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.

Table 5.2: The calculated bcc equilibrium lattice constants a0 for elementary Mg and
Li and the calculated lattice constants a0 for the underlying bcc lattices of ordered
Mg-Li compounds. The calculated atomic volumes are also shown, together with
available experimental and theoretical counterparts
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Figure 5.1: Atomic volumes of ordered Mg-Li compounds as a function of Li con-
centration (triangles and circles correspond, respectively, to bcc- andfcc-based super-
structures) together with experimental data of Levinson [106]. Zen’s law is indicated
by solid lines with respect to both bcc- and fcc-based superstructures.
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fcc-structure Bulk Modulus (GPa)
Calculated Experimental

This work Skriver[110]
Mg 34.11
Mg7Li 33.99
Mg3Li (L12) 27.15 29.45
Mg3Li (DO22) 28.03 28.87
MgLi (L10) 25.25 24.17

Mg3Li7 (30 at.% Mg) 16.1[116]
MgLi3 (L12) 19.07 18.76
MgLi3 (DO22) 17.49 18.84

MgLi4 (20 at.%Mg) 16.80 14.3[116]
MgLi7 16.42

MgLi9 (10 at.%Mg) 13.2[116]
Li 13.92

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[116] BCC phase at room temperature.

Table 5.3: The bulk moduli for fcc elemental Mg and Li as well as for fcc-based
Mg-Li alloys

as expected. The equilibrium bulk modulus, which reflects the curvature of the bind-

ing energy curves or slope of theP -V curves at the equilibrium volumeV0, is defined

by

B = −V0
(
dP

dV

)
= V0

d2E

dV 2
. (5.2)

The equilibrium bulk moduli for elemental Mg and Li in both fcc as well as

bcc phases and for Mg-Li order structures with respect to the fcc and bcc lattices are

given in Tables 5.3 and 5.4, respectively. We observe that the bulk moduli decrease

monotonically with an increase in Li concentration. We see that our calculated bulk

moduli agree reasonably well with other theoretical counterparts and fairly so with

experiment.
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Figure 5.2: Equation of states for the bcc- and fcc-based Mg-Li alloys understudy.
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bcc-structure Bulk Modulus (GPa)
Calculated Experimental

Mg 37.57
Mg15Li 32.94
Mg3Li (DO3) 32.76

30.47[110]

65 at.% Mg 25.0[116]
MgLi (B1) 16.74
MgLi (B2) 22.11

20.25[110]

20.7[116]
MgLi (B32) 25.25
MgLi3 (DO3) 18.04

18.78[110] 15.0[116]
MgLi15 23.12

Li 12.00 12.6[144]

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[116] BCC phase at room temperature.

Table 5.4: The bulk moduli for bcc elemental Mg and Li as well as for bcc-based
Mg-Li alloys
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5.3 Heats of formation

The heat of formation is one of the prime thermodynamic ingredients in the free en-

ergy to determine phase diagrams, the other being entropy. Hence studying the rela-

tive stability of the different cubic-based superstructures, it is convenient to consider

the formation energy(Eform) of each structure. The formation energy is responsible

for the relative stability of the phases at low temperatures where entropic contribu-

tions are not important. The phase equilibria are determined by drawing thecommon

tangent [117] lines between the free energy curves of neighbouring compounds. The

heat of formation of the alloy Mg1−xLix is defined by

E
Mg1−xLix
form = E

Mg1−xLix
total − [xELi

solid + (1− x)EMg
solid] (5.3)

whereEMg1−xLix
total is the total energy of the alloy,EMg

solid andELi
solid are the total

energies of the stable structures of elemental Mg and Li, andx and(1 − x) refer to

the fractional concentrations of the constituent elements.

5.3.1 Li and Mg in hcp, fcc and bcc phases

The heats of formation (eq. 5.3) depend on finding the energies of the constituent

elements in their ground state structure. As can be seen from Table 5.5, our results

predict hcp Mg structure to be energetically favoured over the fcc andbcc structures,

consistent with experimental and other theoretical results [118, 119, 120]. For el-

emental Li, the situation is more complicated. The stable structure of Liis bcc at
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temperatures above78◦K. Earlier work by Barrett [7] reported that at78◦K the hcp

phase coexists with the bcc phase, and that cold working at low temperatures pro-

duces the fcc phase at the expense of hcp and bcc phases, Li having undergone a

martensitic transformation. However, a later study [8] showed that the ground-state

structure of Li is neither hcp nor fcc, but a 9R-related complex close-packed struc-

ture suggested by Overhauser [9]. As shown in Table 5.5, our results found that

hcp Li is more stable than both fcc and bcc at zero temperature, although wedid

not compute 9R due to the large size of its unit cell. However, there is only avery

small energy difference between the phases, hcp being only0.06 meV more stable

than fcc. Since it is well known that the phases of Li are extremely close inen-

ergy [5, 121, 122, 123, 124, 125, 126], geometry optimizations had to be performed

with great caution. The smearing width is periodically halved during the planewave

pseudopotential calculation. We used0.01 and0.1 eV for minimum and maximum

smearing widths respectively, since values as low as0.01 eV have been previously

used to calculate the converged energy [25, 26]. However, we must stress that these

energy differences are so small that even a change in choice of exchange-correlation

functional can alter the predictions [121].

5.3.2 Fcc- and bcc-based ordered Mg-Li alloys

The calculated values of the heats of formation of the Mg-Li systems considered in

this study are summarized in Table 5.6, with asterisks denoting the predicted most
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Equilibrium total energy Energy relative to hcp
Element Phase E0 (eV/atom) (meV/atom)

This work Experiment[127]
Mg hcp -977.892621 0.00 0.000

fcc -977.877264 15.36 27.04
bcc -977.858844 33.78 32.27

Li hcp -190.029049 0.00 0.00
fcc -190.028985 0.06 0.48
bcc -190.027526 1.52 1.61

[127] Experimental thermodynamically based estimates using CALPHAD approach.

Table 5.5: Calculated equilibrium energies as well as energies relative to most stable
phase, hcp, for pure elements (Mg and Li) in various phases. Experimental results
are thermodynamic estimates within the CALPHAD approach.
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stable phases amongst competing structures for a given stoichiometry. Figure 5.3

shows the plot of the heats of formation of the Mg-Li system versus composition.

We see that the curve takes a V-shape, with its minimum at the equi-concentration

MgLi compound. This is in agreement with the experimental heats of formation

of liquid Mg-Li alloys at 1000◦C [128] and the theoretical DFT results of Skriver

[110]. This excellent agreement between theory and experiment is fortuitous, since

the ordered structures should have heats of formation that are about30% lower in

energy than the corresponding enthalpies of formation of the disordered liquid state

[129].

At 50-50 concentration, the B2 structure is clearly seen as the most stable

phase, since it has the lowest formation energy amongst its competing counterparts

(Table 5.6). Our calculations predict that the B2 structure is lower by26 meV/atom

than that of B32. These results agree quantitatively with the earlier pseudopoten-

tial calculations by Hafner and Weber [112], and Hafner [31], who found B2 to be

lower in energy by116 meV/atom and88 meV/atom respectively. Our predicted

heat of formation for the B2 structure of−73.4meV/atom is in excellent agreement

with Skriver’s DFT result of−73.5 meV/atom [110]. Experimentally, a tendency

towards B2 (CsCl) type ordering has been observed at low temperatures[106, 107].

Interestingly, the difference in the calculated energy differenceof the L10 and B2

phases is small, which suggests that both phases might be present at very lowtem-

peratures, if only the kinetics were fast enough for phase transitions. We observed
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Ordered structure Eform (meV/atom)
This work Skriver[110] Experimental[128]

A15B
Mg15Li (bcc) 11.25
A7B
Mg7Li -3.33
A3B
Mg3Li (L12) -23.96 -21.2
Mg3Li (DO22) -18.82 -20.7
Mg3Li (DO3) -38.32* -48.7* -39.2
AB
MgLi (B2) -73.41* -73.5* -56.7
MgLi (B32) -47.72
MgLi (L10) c/a = 0.72 -72.01

c/a = 1 -44.16 -37.2
AB3
MgLi3 (L12) -36.61 -28.3
MgLi3 (DO22) -37.43* -34.4
MgLi3 (DO3) -31.12 -37.4* -31.0
AB7
MgLi7 -20.00
AB15
MgLi15 (bcc) -5.28

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[128] Experiment for liquid alloys at 1000◦C.

Table 5.6: Heats of formation of Mg-Li alloys predicted by this work and by Skriver
[109] for ordered structures compared to experimental values for liquid alloys at 1000
degrees celsius [Mashovetz and Puchkov]. Asteriks denote the most stable phase at
that composition predicted by this work and Skriver [109].

a huge energy difference between our L10 result and Skriver’s. This was caused by

the fact that Skriver did not relax the c/a ratio so that his underlying lattice is truly

"fcc", hence MgLi (L10) becomes very unstable compared to B2, whilst ours was re-

laxed toc/a = 0.72. It became evident when we did a calculation with fixed ratio of

c/a = 1 that our result and Skriver’s were in reasonable agreement.

The heat of formation for Mg3Li in the three phases (Table 5.6) shows clearly

the preferred stability of the DO3 phase over the L12 and DO22 phases. The heat of
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Figure 5.3: Predicted heats of formation for Mg-Li compounds compared with dis-
ordered experimental results[128] . The common tangent construction for stability
limits of the different phases is indicated by the solid lines.
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formation of Mg3Li in the L12 structure is higher by14.36 meV/atom compared to

the DO3 phase, with the DO22 phase being even bigger. Our predicted phase stabil-

ity ordering is the same as that of Skriver [110]. In the MgLi3 compound, the DO22

structure has the lowest formation energy with the L12 and DO3 phases lying only

0.82 and6.32 meV/atom higher, respectively. This slight difference between L12

and DO22 indicates a strong stability contest between these phases at this concen-

tration. We see that Skriver predicts the DO3 phase to be more stable than DO22.

However, this is probably because he did not relax the c/a axial ratio from its ideal

value of2.00. We found an equilibrium value of2.02 (Table 5.1).

In Figure 5.3, the solid common tangent lines are constructed for the stability

limits of the different phases. Among the structures considered, the most energeti-

cally favourable intermetallic phases at absolute zero are the DO3 Mg3Li, B2 MgLi,

DO22 MgLi 3 and MgLi7 compounds. The L12 and DO22 structures are metastable at

25% Li, while the B1, B32 and L10 structures are metastable at50% Li. Our equi-

librium calculations predict DO3 to be the most stable structure at A3B composition,

while at AB3 the DO22 structure shows more stability than its competitors.

The Mg-rich compounds, the bcc supercell Mg15Li and the fcc supercell Mg7Li,

lie well above the tangent line connecting hcp Mg (Eform= 0 eV ) with DO3 Mg3Li.

This clearly indicates the instability of the bcc and fcc Mg-Li compounds around

this region. This instability supports Hafner’s earlier work [31] that hcpMg-Li com-

pounds are dominant in the region with less than18% Li concentration. The for-
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mation energy of Mg3Li in both the DO22 and L12 structures lie above tangent line,

which indicates the instability of the fcc lattice in this region. The energetically

favoured phase is DO3. Most of Mg-Li compounds at the Li-rich side lie either ex-

actly or very close to the line connecting B2 MgLi with elemental hcp Li. As far as

the stability is concerned in this region, fcc-based compounds are having an upper

hand over the bcc-based compounds. In both regions, our predicted stability pro-

file is in full agreement with Hafner’s earlier work [31] on disordered Li-Mg solid

solutions using second order perturbation theory.

5.4 Electronic density of states

Mg and Li are very good nearly-free-electron metals. This implies thattheir elec-

tronic properties can be understood by first considering those of a free electron

gas, in which the eigenvaluesE vary parabolically with the wave vectork asE =

(�2/2m)k2. Filling up these states with 2 electrons each following Pauli’s exclusion

principle, we arrive at the concept of the Fermi surface, which is spherical for a free

electron gas. As is well known, the corresponding density of statesn(E) of a free

electron gas varies as the square root of the energy.

The electronic densities of states (DOS) for the hcp, fcc and bcc phases of Mg

and Li are presented in Figure 5.4, using the CASTEP plane-wave methodology as

discussed in section 3.6. We have taken the Fermi levelEF as the zero energy. The

occupied part of the DOS for both Mg and Li in all three lattices show approximate
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Figure 5.4: Density of states from CASTEP for elemental (a) Mg and (b) Li atoms in
hcp, fcc and bcc lattices.
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free-electron behaviour. This confirms that Mg and Li are good nearly-free electron

(NFE) metals since their occupied DOS are only a relatively small perturbation of

the free-electron density of states. However, we observe that Li, in all its three con-

sidered phases, displays very strong deviations from free-electron behaviourabove

the Fermi energy. This is a direct consequence of this first-row element havingno

p core electrons. This leads to large energy gaps opening up at the Brillouin zone

boundary, and hence large deviations from free-electron behaviour in the unoccupied

region of the DOS aboveEF .

The partial and total DOS for the Mg-Li ordered structures with respectto fcc-

and bcc-based lattices are shown in Figures 5.5-5.9. They agree with otherDFT cal-

culations in the literature [111, 114, 133]. We see that for all these different ordered

phases the occupied region of the total DOS is approximately free-electronlike. The

partial DOS reflects the primarily s-type bonding on the Li sites, but the hybridized

s-p bonding at the Mg sites, as expected for these monovalent and divalent metals,

respectively. Table 5.7 gives the calculated DOS at the Fermi level,n(EF ), for the

1:1 and 3:1 stoichiometries.

This relation between structural stability and the behaviour of the DOS in the

vicinity of the Fermi energy can be formalized by a Jones-type analysis [134]. Using

a rigid-band model, the theory shows how structure in the density of states translates

into an energy difference for competing phases as a function of the electron count.

Within the rigid-band approximation we assume that the bands of hcp, fcc, and bcc
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Figure 5.5: The total density of states (DOS) and partial density of states(PDOS) for
MgLi compound in (a) L10, (b) B2 and (c) B32 structures, respectively.
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Figure 5.6: Total and partial density of states for Mg3Li composition in (a) L12, (b)
DO3 and (c) DO22 structures.
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Figure 5.7: Total and partial density of states for MgLi3 composition in (a) L12, (b)
DO3 and (c) DO22 structures.
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Figure 5.8: The total density of states (DOS) and partial density of states (PDOS) of
fcc-based superstructures, (a) Mg7Li and (b) MgLi7, respectively.
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Figure 5.9: The total density of states (DOS) and partial density of states (PDOS) of
bcc-based superstructures, (a) Mg15Li and (b) MgLi15, respectively.
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Compound Structure n(EF )
(states/eV/atom)

Mg3Li L12 0.417
DO22 0.312∗

DO3 0.367

MgLi B2 0.399∗

B32 0.445
L10 0.412

MgLi3 L12 0.346∗

DO22 0.669
DO3 0.564

Table 5.7: The total density of states at EF , n(EF ) (in states/eV per atom), of Mg3Li
and MgLi3, in L12, DO22 and DO3 phases, and MgLi in B2, B32 and L10 phases,
respectively. Asteriks denote the predicted stable phase.
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lithium remain unchanged (or rigid) on alloying. A Jones analysis then statesthat the

structural energy difference between any two lattices at the same atomic volume is

given by

∆U = ∆Uband = ∆

[∫ EF

En(E)dE

]
, (5.4)

wheren(E) is the electronic density of states (DOS) per atom. The Fermi

energyEF is determined by the number of valence electrons per atom,N ≡ e/a,

according to

N =

∫ EF

n(E)dE. (5.5)

Jones showed that the energy difference equation (5.4) allows us to link the

relative stability of competing structures to the relative behaviourof the correspond-

ing DOS. To help us understand the behaviour of the bandstructure energy,∆Uband,

we exploit the following expressions for the first and second derivatives of∆Uband

(equation 5.4) with respect to the electron number,N , as follows:

d

dN
(∆Uband) = ∆

[
dEF

dN
EFn(EF )

]
= ∆EF , (5.6)

d2

dN2
(∆Uband) = ∆

[
1

n(EF )

]
, (5.7)

wheren(EF ) is the DOS at the Fermi energy for the electron numberN = e/a.

Taking the difference of equation (5.6) for two different structures, we see that the
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derivative of the energy difference is zero at certain special band fillings for which

the two Fermi energies are equal. At these values ofN , the bandstructure energy

differance∆Uband is extremal or possibly (in rare cases) a saddlepoint. To identify

a maximum or a minimum, we take the difference of the inverses of their DOS at

EF , as given on the right-hand side of equation (5.7). If one of the structures has a

lower DOS at this Fermi level, an extremum is present and this structurehas a lower

energy.

We employed the ab initio TB-LMTO-ASA (tight-binding-linear muffin-tin or-

bitals within atomic sphere approximation) method [39, 135, 136] to calculate the

DOS for the hcp, fcc and bcc Li structures using the equilibrium cell parameters pre-

dicted by the CASTEP code (Section 4.4). To simulate the alloying with Mg, we

keep the Li band structures for hcp, fcc and bcc structures fixed and calculate the

bandstructure energies for an electron number varying between 0 and 2.

The difference of the bandstructure energies as a function of electron number

is shown in Figure 5.10, together with the Fermi energy difference and DOS, all

plotted againstN = e/a rather than energy. The top panel is the output quantity we

are interested in, namely the bandstructure energy difference. The hcp-fcc energy

difference curve has a minimum aroundN = 1.0 where the hcp DOS is lowest

and a maximum aroundN = 1.6 where the fcc DOS is lowest, whereas the hcp-

bcc curve has a minimum aroundN = 1.1 where the hcp DOS is lowest and a

maximum aroundN = 1.75 where the bcc DOS is lowest. The middle panel shows
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the first derivative of the energy function, i.e. the Fermi energy difference ∆EF .

This quantity has a positive slope where the hcp DOS lies below both the fcc and bcc

DOS, and vice versa. The bottom panel presents the input, namely the DOS functions

for the different phases. The central point is that this gives essentiallythe second

derivative of∆Uband. Thus, where the bcc DOS lies above the fcc DOS, the curvature

of the energy difference function is such that the bcc structure will eventually become

more stable. We see that with increasing electron concentration, the sequence of

stable phases is hcp-fcc-bcc-hcp, in agreement with previous theoretical predictions

[31].

5.5 Elastic properties

From the perspective of materials physics, the elastic constantsCij contain some of

the more important information that can be obtained from ground-state total-energy

calculations. A given crystal structure cannot exist in a stable or metastable phase

unless its elastic constants obey certain relationships. TheCij also determines the

response of the crystal to external forces, as characterized by the bulkmodulus, shear

modulus, Young’s modulus, and Poisson’s ratio, and so play an important role in

determining the strength of a material [81]. First-principles calculations that use

periodic boundary conditions assume the existence of a single crystal, so all elastic

constants can be determined by direct computation. The calculatedCij can then be

used to check the experimental bulk and shear moduli, if available, and tocalibrate
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model calculations. In addition, the elastic constants can be used to checkthe phase

stability of proposed compounds [137, 138]. First-principles calculations can thus

be used to predict the existence and properties of new materials and phases. In a

theoretical search for new materials, an interesting and important area of research is

to study binary compounds that exhibit high melting temperatures and large elastic

constants (which roughly correlate with "strength"). These alloys might begood

candidates for new structural materials, were they are not brittle [81].For a cubic

crystal to be mechanically stable it has to satisfy the following criterion:B = (C11+

2C12)/3 > 0, C ′ = (C11 − C12)/2 > 0, C44 > 0 at the equilibrium of the equation

of state, whereB andC ′ are the bulk and shear modulus, respectively.

We performed calculations of the elastic moduli of Mg-Li alloys using CASTEP

in Materials Studio version 3.0 [96]. Practical methods of determining theelastic co-

efficients from first principles usually set either the stress (or the strain) to a small

finite value, optimize any free parameters of the structure, and calculate the strain

(or stress). With a careful choice of the applied deformation, the elastic moduli can

then be determined. Applying a given homogeneous deformation (the strain) and

calculating the resulting stress requires far less computational effort,since the unit

cell is fixed and only the ionic positions require optimization. This is the method

implemented in the current work. The elastic properties were calculated by comput-

ing the components of the stress tensor for small strains using the method developed

by Nielsen and Martin [139]. For small strain, theC11andC12 elastic constants are
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derived from the harmonic relationC11 = σ1/ǫ1 andC12 = σ2/ǫ1, whereσi and

ǫi represent respectively, the stress and the applied strain. The macroscopic stress

in the solid is computed for a small strain by the use of the stress theorem, and the

forces on the atoms are derived from the Hellman-Feynman theorem [102]. For an

ǫ4 strain (uniaxial strain in the(111) direction) there are internal displacements of

the sublattices, and the atomic positions in the unit cell are not determined only by

symmetry. Kleinmann [140] defines an internal strain parameterξ that describes the

displacements of the atoms.

The application of strain on the lattice implies a lowering of symmetryfrom

that of the crystal, therefore very accurate total-energy calculations are required since

the energy differences involved are of the order of10 to 1000 µeV/atom. This cir-

cumstance requires the use of a finek-point mesh. The calculations were considered

converged when the maximum force on atoms was below0.01 eV/Å, the total en-

ergy change per atom was less than4x10−4 eV/atom and the displacement of atoms

was below4x10−4Å. Both the energy and the stress were Pulay corrected to reduce

any remaining finite basis set errors. The calculations were done at ourtheoretically

determined (equilibrium) lattice constants for each structure, with aplane-wave ba-

sis set defined by an energy cut-off of500 eV for pure elements and400 eV for the

ordered superstructures, a very small smearing width of0.1 eV and sufficient sets

of k-points. These parameters are essential because the Fermi energy and hence the

total energy depend quite sensitively on them.
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For each of the structures, six different values of the strain±0.0008, ±0.0024

and±0.004were used. The value of the stress is calculated for each strain. A linear fit

of the stress-strain relationship for each component of the stress is computed and its

gradient provides the value of the elastic constant. With our choice of special k-points

in the full Brillouin zone and cut-off energy, the energy per atom was converged

to 0.1 meV/atom and4 meV/atom or less for pure elements and superstructures,

respectively.

The calculated elastic constants for the Mg-Li systems are compared toavail-

able experimental data and the results of other calculations in Table 5.8. We find that

the elastic constants of pure Mg in the hcp phase are in acceptable agreement with

experimental results [130] as well as previous theoretical results [141] with the ex-

ception ofC44 which is about50% too small. The elastic constants of the fcc lattice

Mg are also in good agreement with the available theoretical results while the bcc

phase is found to be mechanically unstable, since the tetragonal shear modulusC ′ is

negative. Our results for pure Li show mechanical stability in all threephases with

the elastic constants being in good agreement with both experimental [143] and pre-

vious theoretical results [81, 141], except for the case ofC11 andC44 of the bcc

lattice which are overestimated.

Our calculated elastic constants for tetragonal systems show a smallvalue of

C44 in comparison toC66, which means that the tetragonal unit cell is more easily

deformed by a pure shear abouta andb axes in comparison to thec axis, with the
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Composition Structure C11 C12 C44 C13 C33 C66 B V0
d2E
dV 2

GPa GPa GPa GPa GPa GPa GPa GPa
Mg This work hcp 59.84 24.25 8.31 16.09 70.56 17.80 33.67
Calculated[141] hcp 66.20 22.10 18.00 16.60 62.50 22.05 33.94
Experiment[130] hcp 63.48 25.94 18.42 21.70 66.45 18.77 35.40
Mg This work fcc 42.75 30.96 23.09 - - - 34.89 34.11
Calculation[142] fcc 46.00 27.40 30.00 - - - 33.60
Mg This work bcc 25.65 39.41 35.96 - - - 34.82 37.57
Mg15Li This work bcc 55.77 24.70 50.93 - - - 35.06 32.94
Mg7Li This work fcc 22.21 29.47 24.23 - - - 27.05 33.99
Mg3Li This work L12 25.78 29.93 24.50 - - - 28.54 27.15
Calculated[110] 29.45

DO22 24.30 28.17 30.44 27.64 23.63 31.13 26.60 28.03
Calculated[110] 28.87

DO3 39.96 25.59 41.03 - - - 30.38 32.76
Calculated[110] 30.47
MgLi B2 37.51 19.70 25.91 - - - 25.64 22.11
Calculated[110] 20.25
Exp.[128] 55% Mg B2 32.20 19.80 26.60 - - - 23.90
Exp.[128] 45% Mg B2 28.50 20.50 19.40 - - - 23.20

B32 30.99 24.55 28.55 - - - 26.70 25.25
L10 53.66 1.37 33.57 19.95 31.18 10.98 24.47 25.25

Calculated[110] 24.17
MgLi3 This work L12 25.76 15.94 18.68 - - - 19.21 19.07
Calculated[110] 18.76

DO22 28.86 13.86 21.66 14.49 27.37 23.27 18.97 17.49
Calculated[110] 18.84

DO3 19.42 17.79 15.42 - - - 18.33 18.04
Calculated[110] 18.78
MgLi7 This work fcc 15.83 16.95 11.70 - 16.58 16.42
MgLi15 This work bcc 18.24 13.25 11.52 - - - 14.92 23.12
Li This work hcp 24.34 4.76 6.37 4.54 24.86 9.79 11.25
Li This work fcc 17.51 11.42 9.31 - - - 13.45 13.92
Calculated[81] fcc 14.10 7.80 8.60 - - - 9.90
Li This work bcc 19.65 10.93 16.12 - - - 13.84 12.00
Calculated[141] bcc 13.00 11.00 11.40 - - - 11.60
Calculated[81] bcc 15.60 14.80 11.20 - - - 10.60
Experiment[143] bcc 14.50 12.10 11.60 - - - 13.00
Experiment[144] bcc 13.50 11.40 8.80 - - - 12.10

Table 5.8: Calculated elastic properties of Mg-Li alloys at equilibrium lattice para-
meters. The bulk moduli determined from elastic constants is compared with the
ones calculated from equation of states.
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Composition Structure C′ B/C′ E ν A
GPa GPa

Mg This work hcp 15.80 2.13 64.41 0.19 A1 = 1.00
A2 = 0.34

Calculated[141] hcp 20.92 1.62 56.26 0.19 -
Experiment[130] hcp - - 45.00 0.35 -
Mg This work fcc 5.89 5.92 16.75 0.42 3.92
Calculation[142] fcc 9.30 3.61 25.54 0.37 3.23
Mg This work bcc -6.88 5.06 -22.09 0.61 -5.23
Mg15Li This work bcc 15.54 2.26 40.60 0.31 3.28
Mg7Li This work fcc -3.63 7.45 -11.41 0.57 -6.28
Mg3Li This work L12 -2.08 13.72 -6.38 0.54 -11.81

DO22 17.65 1.51 -5.50 0.53 A1 = −16.09
A2 = −16.57

DO3 7.19 4.23 19.97 0.39 5.71
MgLi This work B2 8.91 2.88 23.94 0.34 2.91
Experiment[128] 55% Mg B2 8.33 - 17.12 0.38 4.29
Experiment[128] 45% Mg B2 5.44 - 11.35 0.42 4.85

B32 3.22 8.29 9.30 0.44 8.87
L10 22.11 1.11 16.71 0.36 A1 = 0.42

A2 = 2.99
MgLi3 This work L12 4.91 3.91 13.58 0.38 3.80

DO22 16.13 1.18 17.54 0.34 A1 = 3.10
A2 = 3.18

DO3 0.82 22.35 2.42 0.48 18.92
MgLi7 This work fcc -0.56 29.60 -1.70 0.52 -20.89
MgLi15 This work bcc 2.50 5.97 7.09 0.42 4.62
Li This work hcp 2.32 4.85 23.44 0.16 A1 = 1.00

A2 = 0.63
Li This work fcc 3.05 4.42 8.49 0.39 3.06
Calculated[81] fcc 5.80 1.71 14.00 0.35 2.73
Li This work bcc 4.36 3.17 11.83 0.36 3.70
Calculated[141] bcc 1.00 11.60 2.91 0.46 11.40
Calculated[81] bcc 3.40 3.12 9.30 0.40 16.70
Experiment[144] bcc 3.90 3.10 10.50 0.36 8.38

Table 5.9: Other derived elastic moduli of Mg-Li alloys, namely shear modulus (C’),
the ratio of bulk modulus to shear modulus (B/C’), Young’s modulus (E), Poisson’s
ratio (v) and the shear anisotropy factor (A).



97

exception of L10 structure wherein the opposite is the case. The smallC44 value

indicates that Mg-Li alloys are marginally stable with respect to the〈010〉 shear on

the(010) plane in this region.

In Table 5.9, we list the values ofB/C ′ of Mg-Li alloys together with their

shear modulus(C ′), Young’s modulus(E), Poisson’s ratio (ν) and shear anisotropy

factor(A). The bulk moduli decrease monotonically with the addition of Li content.

The bulk moduli obtained from elastic constants agrees well with the experimental

and other previous theoretical results including the ones extracted from equation of

states. TheB/C ′ values of 1.11, 1.18 and 1.51 for MgLi (L10), MgLi3 (DO22) and

Mg3Li (DO22) , respectively, suggest that these compounds to be brittle, while the

remaining ones appear to be ductile since their values are above the critical value of

1.75. The values ofB/C ′ for all our Mg-Li systems, except for compounds listed

above, are generally larger than those of pure elements, Mg and Li. It isalso inter-

esting to note that cubic Mg3Li (DO3) structure is the only phase that is stable at this

concentration and has a positive value of Young’s modulusE. For most of our struc-

tures, the derivedν is slightly higher than the isotropic value of1
3
, thus resulting to

E being less thanB. We also observed that an increase in Li content increases the

Poisson ratio as well as the anisotropy.

The elastic constants of our cubic Mg-Li systems listed in Table 5.8 obey the

stability conditions as outlined in Section 4.4, including the fact thatC12 must be

smaller thanC11, except for Mg bcc, Mg7Li, Mg3Li (L1 2) and MgLi7 structures. The
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conditions also lead to a restriction on the magnitude ofB. SinceB is a weighed

average ofC11 andC12 and stability requires thatC12 be smaller thanC11, we are

then left with the result thatB is required to be intermediate in value betweenC11

andC12,

C12 < B < C11.

The elastic constants in Table 5.8 for tetragonal phases, L10 and DO22 strucutres,

satisfy all of the above conditions. In particular,C12 is smaller thanC11 andC13 is

smaller than the average ofC11 andC33. The only structure that does not satisfy these

stability restrictions is Mg3Li in DO22 phase, thus showing mechanical instability.

Figure 5.11 presents in (a) the tetragonal shear modulusC ′ of our ordered bcc-

and fcc-based superstructures and (b) the predicted energy differencebetween the

corresponding bcc and fcc ordered compounds relative to hcp Mg and Li lattices,

both plotted against the electron per atom ratio ranging from 1 (Li) to 2 (Mg). We

find an interesting correlation between these quantities, that, in the region where bcc

is very stable compared to fcc, the shear modulus is positive for bcc but negative

for fcc (i.e. the fcc lattice is the mechanically unstable) and vice versa. The similar

behaviour had been pointed out earlier for elemental transition metals by Craievich et

al [145] and B2 and L10 TiAl by Sob et al [146]. This reflects the underlying change

in hcp to fcc to bcc to hcp structural stability as the electron per atom ratio changes

from 1 (Li) to 2 (Mg).
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Figure 5.11: Plot of (a) tetragonal shear modulusC ′of ordered bcc- and fcc-based
Mg-Li superstructures and (b) the relative formation energies of the corresponding
bcc and fcc Mg-Li compounds, against the electron per atom ratio.
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Chapter 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

The first principles pseudopotential calculations based on the generalizedgradient

approximation (GGA) within density functional theory (DFT) have been utilized to

succesfully investigate the cohesive, electronic and elastic properties of cubic-based

Mg-Li alloys. In addition to calculating all of the equilibrium structural parame-

ters (Sec. 5.1-5.4) we have also obtained values for all of the zero-pressureelastic

constants (Sec. 5.5) for the Mg-Li compounds considered in this study.

We found that with increasing Li composition the volume shrinks and some

kind of a parabolic or V-shaped trend with minimum at the equiatomic composition

was observed in both fcc and bcc structures. This behaviour is clearly shown in

Figure 5.1, wherein, Vegard’s law [108] or Zen’s law [115] , which assumes a linear

dependence of the lattice constants or mean atomic volumes, respectively,of solid

solutions with composition (as shown in Fig. 5.1 by solid lines), is directly violated

in both fcc- and bcc-based superstructures as expected and this was also observed

in earlier experiments [106] as well as previous theoretical investigations [31]. The

trend of decrease in the Mg-rich region until50 atomic per cent solute, at which the
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behaviour is slowly reversed in the Li-rich region, of the lattice constant with the

addition of Li for bcc structures was also obtained from earlier experiments [106].

Our results predict hcp Mg structure to be energetically favoured over the

fcc and bcc structures, consistent with experimental and other theoretical results

[118, 119, 120]. Our results showed that hcp Li is more stable than both fcc and bcc

at zero temperature, agreeing with the experiment [7], but with only a very small en-

ergy difference (especially between fcc and hcp). Since it is known that these phases

(Li) are close in energy [5, 122, 121, 123, 124, 125, 126], geometry optimizations

had to be performed with great caution. As a function of concentration, the heats

of formation plot shows a V-shape curve, with a minimum at the equi-concentration

MgLi compound, which is in agreement with the experimental work [128] and pre-

vious theoretical results [141]. The predicted heats of formation for all the different

ground state superstructures result in a representative stability profile, which shows

that the DO3, B2 and DO22 structures are the most stable amongst various phases hav-

ing Mg3Li, MgLi and MgLi3 compositions, respectively. In both regions (Mg-rich

and Li rich sides), our predicted stability profile is in full agreement with Hafner’s

earlier work [31] on disordered Li-Mg solid solutions.

The general trend in the total DOS is that from the bottom of the valence band

the DOS increases smoothly as a function of energy as they would in a free-electron

system up toEF or just slightly above it. The Jones-analysis method compliments the
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heats of formation, DOS and elastic constants results in that the predicted structural

stability profile is hcp-fcc-bcc-fcc, in agreement with previous results of Hafner [31].

The bulk moduli decrease monotonically with the addition of Li content. The

equation of state bulk moduli is in good agreement with both the experimental[116]

and other previous theoretical [110] results. TheB/C ′ values of 1.11, 1.18 and

1.51 for MgLi (L10), MgLi3 (DO22) and Mg3Li (DO22) respectively, suggest that

these compounds to be brittle, while the remaining ones appear to be ductile since

their values are above the critical value of 1.75. These following structures, Mg

bcc, Mg7Li, Mg3Li (L1 2), Mg3Li (DO22) and MgLi7 were found to be mechanically

unstable. We also observed that an increase in Li content increases the Poisson ratio

as well as the anisotropy.

6.2 Future work and recommendations

The predicted heats of formation with respect to different underlying lattices such as

fcc or bcc will be used as an essential input for calculating effective cluster interac-

tions, from which theoretical phase diagrams can be computed using Monte Carlo

[19] or the Cluster Variation Method (CVM) [20].

The elastic moduli calculated here, in particular, Young’s modulus and Poisson

ratio, will serve as an input to an object oriented finite (OOF) [147] element program.

This program (OOF) will be used on the micrographs (pixels) of Mg-Li samples ob-

tained from the electron microscope (EM) to initiate microstructuralstudies of these
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alloys. These includes simulations of stress distributions and predictionsof mechan-

ical behaviour (evolution with temperature, pressure and composition) of alloys and

fracture processes.

This work will form the basis for future study in collaboration with the CSIR

on the strengthening of Mg-Li alloys by the addition of ternary elements.
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