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ABSTRACT

Self-consistent electronic structure calculations have been perfamediered
cubic-based magnesium-lithium (i, _,) alloys spanning the concentration range
0 < z < 1, using an ab initio plane wave pseudopotential (PWP) method. The first
principle pseudopotential planewave approach is used within the local densibxappr
mation (LDA) and generalized-gradient approximation (GGA)of the dengiigtional
theory (DFT) framework. We have calculated the binding energy curveshansl/ts-
tematic trends in various cohesive and elastic properties at zero @m@eias a func-
tion of Li concentration. The calculated equilibrium lattice parametbsv a large
deviation from Vegard's rule in the Li-rich region whilst the bulkoduli decrease
monotonically with increase in Li concentration. The heats of formatayrdiffer-
ent ground state superstructures predict that the, B2 and DQ, structures would
be the most stable at absolute zero amongst various phases havingsthie Wigj_i
and MgLk compositions, respectively. This stability idleeted in the electronic den-
sity of states (DOS). Because of the special significance of the isotsafkienodulus,
shear modulus, Young’'s modulus and Poisson’s ratio for technological and engineer-
ing applications, we have also calculated these quantities from thtcet@nstants.

The elastic constants indicate the softness of the material as more Li id adltie



the bcc-based phases becoming mechanically less stable for Li conicerigas than
50%. Our results show good agreement within the estimated uncertairtybotin

experimental and previous theoretical results.
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Chapter 1
INTRODUCTION

1.1 Background

Over the last two decades, there has been a significant increase iretbé light
metals such as Al, Mg, Ti, Li, etc. Furthermore, the consumption rateesit mate-
rials is continually increasing due to societal pressures for high pedioce, lighter
structural materials, as well as growing demands for battery mksteria

At a density of 1.74y/cm?, magnesium is the lightest structural metal, the fac-
tor that place it among the front-runners contesting as possible suitablidatsdn
lightweight industrial applications. In addition to its readily availapjlconstituting
about 2.7% of earth’s crust, magnesium offers several advantages includelg exc
lent machinability, good castability, good weldability, good creep rasc, high
thermal conductivity, and extreme lightness. However, a number of chailgkgy
factors need to be taken into account when considering Mg developmepéstit
ular the hexagonal close-packed (hcp) crystal structure of pure Mg, \sb@ms to
limit its use in structural applications, poor corrosion resistancega&sing cost, high
electrochemical potential and poor cold workability. Conversely, thuagon could
be improved by alloy formation with Zn, Li, Al or Mn, leading to a higher sifie

strength. An addition of a sufficient quantities of lithium, above 10 weightqrgr to



magnesium causes an importanp — bcec phase change, which induces the desired
improvements in low temperature formability characteristidh vess directionality

in properties [1]. It also has a positive effect on the density (deedad the duc-
tility and damage tolerance (both increased) of the material. These pespender
magnesium-lithium alloys as a very suitable class of candidates fotitstibs of
other lightweight structural materials (like aluminum or fibre-refnéal plastics) in
diverse industrial applications: commercial products such as computer housisg, pa
for the automotive and aerospace industry, where reduction in the intringjbtved

the design is of vital importance [2]. Due to the favourable properties, magnesi
technology is part of a general attempt to obtain a new generation of lightee
fuel efficient and less polluting (le€s0, emmission) vehicles. This goal implies a
multidisciplinary approach in which engineering, physics and chemistri, st
converge in defining the characteristics of the components made out of liggtina
als.

The high stiffness strength of Mg is owed to the element’s hcp structhiehw
also makes it difficult to apply slipping modes in the useful engineeringtitores.
The alloying element, which causes a useful phase change to bcc is lithiuns [3], a
shown by the phase diagram in Figure 1.1 [4]. Lithium, the lightest metal avith
simple elemental electronic configuration and a broad range of praagipatations,
has naturally been the subject of both theoretical and experimentaligatests for

a long time. Yet its electronic and structural properties remaigreatic to this



day [5]. Like other alkali metals it has a bcc room temperature struychurteupon
cooling at low temperatures it undergoes a martensitic transformataamd 80 K.

The transformation was first observed very early [6, 7], but the crgstatture of the
low-temperature phases of Li have led to some controversy andmedhaisubject

of debate for several decades. Later, on the basis of additional data [8haDser

[9] proposed that the neutron scattering data were consistent with thiel@Ruge, a
close-packed phase with nine-layer stacking sequence. Subsequent ati@sim
several sets of neutron scattering data confirmed 9R as the primarjustrat low
temperature [10]. More recently, analysis of diffuse neutron scatteatay[11] has

led to the opinion that below 80 K a disordered polytype structure, consisting of the
short-range correlated fcc and hcp phases, coexists with the longer-randgedor
9R structure. Furthermore, upon heating, the 9R phase and the disordered polytype
appear to transform first to an ordered fcc phase before reverting ta bbote 150

K [11].

It was not until the early 1930s that the development of magnesium-lithium al-
loys started, as illustrated in Figure 1.2 [12]. Ultralight magnesiitinim alloys
provide a promising basis for the development of structural metallic mataviéh
a high strength-to-weight ratio [13]. The effect of Li addition has gained conside
able importance because it not only makes the Mg-Li alloy lighter (deresituction
from 1.74¢/cm? to about 1.3Q7/cm?), but also increases the values of the elastic

constants, which cannot be improved using conventional alloying techniguper-
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imentally, the solubility of other alloying elements in magnesium istkahj restrict-
ing the possibility of improving the mechanical properties and chemical batvavi
[3]. However, numerous difficulties were encountered which were asgolcivith
melting and casting, instability of mechanical properties at room teryetgpoor
corrosion resistance and excessive creep at relatively lonsesg¢$4]. The devel-
opment of these alloys was subsequently abandoned during the mid 1940s because
it was only possible to produce Mg-Li alloys which were unstable or staltiedt
strong [15]. The strengthening mechanism of this alloy system was not completely
understood, which led to the failure of developing these alloys into a pdterdia-
rial for aerospace industries [14].

Recently experimental and theoretical studies of light metal allaysareas-
ing owing to their usage in the automotive and aerospace industriesTh8]tech-
nological challenge is to produce high-stiffness materials with suitalglehanical
properties. First-principles electronic structure calculations cagigraccurate elas-
tic moduli, from which we may infer the degree of ductility of different cudlioys
[16]. In cubic crystals the rati@”/ B of shear to bulk modulus has provided a use-
ful criterion for ductility or brittlement. FCC and BCC metal crystale generally
intrinsically ductile wherC’/B < 0.4 and brittle wherC’/B > 0.5 [16, 17]. In ad-
dition, they lead to a proper understanding of the structural competitiorebatihe
various stable and metastable alloy phases. The predicted heats ofidormih

respect to different underlying lattices such as fcc or bcc are eabeptit for calcu-
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lating effective cluster interactions [18], from which theoreticahgd diagrams can
be computed using Monte Carlo [19] or the Cluster Variation Method (CVM) [20].
At the centre of this computational approach lies the attempt to simamhateredict
the properties of ordered cubic-based magnesium-lithium,(§g.) binary alloys
spanning the concentration rangjel = < 1.

There is a growing interest in combining quantum mechanical electron the-
ory with statistical mechanics, in order to arrive at a first pplecdescription of
configurational thermodynamics in metallic alloys [21]. The idea is to getdime
figurational entropy corresponding to a certain alloy composition byirsgaftom
an Ising Hamiltonian [22] in which the many-body cluster interactions ararwdata
from electron theory. In this method, one first obtains the relative diabilbof the
ordered equilibrium (stable) phases as well as of the various possible ptiasisbs
are difficult to probe experimentally. The essential prerequisite is\we haeliable
and efficient electronic structure method for calculation of the heairafdtion of a
large number of ordered superstructures of binary alloys. In addition to thisgsg
in materials modelling at the electronic level, there have been signifidevelop-
ments in computational micromechanics and damage mechanics techniques at the
continuum level. These simulations are usually finite element basedamulite the
mechanical properties of alloys such as the stress distributions arowhd.cra

Moreover, Mg-Li alloys are also seen as viable candidates for an effiale

loy battery system [23]. While the high activity of lithium makes it attiee as a



unigue energy source for microelectronic devices, a critical issue plagaisting
lithium batteries is the cycleability of the lithium electrodes, anddeg the recharge-
bility of the battery system. The formation of a dendritic structure duringgzhar
ing is one of the major problems associated with pure lithium used as the megativ
electrode in a secondary lithium battery. Typically, dendrite growthsesas pro-
gressively during cycling, often leading to both disconnection and edatisolation

of the active lithium or electrical shorting between electrodes. Wwithintercalation
materials, such as lithiated carbon, LiAl alloys, and Sn-based coteposgdes, have
been studied to replace pure lithium in an effort to reduce the tendendighium
dendrite formation. The diffusion coefficients for lithium in the Mg-Lisllelec-
trodes were found to be of two to three orders of magnitude larger than those in other
lithium alloy systemsdg. LiAl). Mg-Li alloy electrodes also appear to show not
only the potential for higher rate capabilities (power densities) butfaldarger ca-
pacities (energy densities) which might considerably exceed those ofdidigarbon

or Sn-based electrodes for lithium batteries [23].

1.2 Rationale and Objectives

Owing to their low density, magnesium alloys are the lightest metaikterials for
construction ever known. They are thus extremely attractive feareters concern-
ing lightweight applications, possibly substituting in the future aluminalioys as

well as fibre-reinforced plastics. The main aim is to expand the apiplicaf mag-



nesium by alloying it with lithium. This group of alloys, to which littl&t@ntion has
been paid in the past, provides an increased ductility at a compayatigél thermo-
chemical stability. Metallurgical and processing measures hafenably aimed at a
mechanical strengthening of the MgLi-matrix. At the same time the ductildapenr

ties were to be retained to a large extent to preserve a balancedmtatib@haviour

[24]. In addition, magnesium is the eighth mostly abundant metal in nature j-const
tuting about 2.7% of earth crust [12], though it is becoming more costly on the other
hand due to its technological promises.

The objectives of this thesis are:

(i) to investigate the electronic and structural properties of asefierdered
superstructures of binary magnesium-lithium (Mg_i ) alloys with respect to the
underlying fcc and bcc lattice, usirgp initio [25, 26] electronic structure tech-
niques, in particular the plave-wave pseudopotential (PWP) method embodied in
CASTEP code.

(i) to evaluate the elastic moduli of these alloys.

1.3 Outline of thedissertation

In this chapter the material under consideration and the content of this dissertat
have been introduced and our aims and objectives clearly stated. methehapter
, We review various computational modelling techniques, in particulasitiefunc-

tional theory (DFT) approaches. In Chapter 3 the plane-wave code, whiskdsto
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solve the electronic structure, is outlined . The theory of practicaiykited results
as well as the structural and electronic results of the current stedyrasented and
discussed in Chapter 4 and 5, respectively. Finally, in Chapter 6 we atir@our

work by making some conclusions and recomendations for future work.
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Chapter 2
THEORETICAL TECHNIQUES

2.1 Introduction

Computer simulation techniques offer an alternative way of invegtigg@iroperties

of materials (using computers), whereby the simulator builds a modekad aystem

and explores its behaviour. The mathematical model is physically basedheith
exploration being done on a computer. In many ways these simulation sthdies s
the same mentality as experimental investigations. However, in alaion there

is absolute control and access to detail, and given enough computer muscle, exa
answers for the model.

The fundamental atomistic principles underlying the structural and functional
behaviour of materials are astonishingly simple: (a) For most purposes, atamic
clei can be treated as classical particles with a given mass antiivpadiarge, (b)
electrons are particles of spin one half, thus obeying the Pauli exclusiorighe,
their kinetic behaviour is described by quantum mechanics, and (c) the onlgmelev
interactions are of an electrodynamic nature, in particular, attr@stnd repulsions
governed by Coulomb’s law. Based on these fundamental principles it is cancept
ally possible to explain and predict the wonderful richness of most phyaichhll

chemical properties of matter such as the structure and stability aatiiys phases,
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the mechanical properties of alloys, the magnetic properties of transietelsrand
so on. This development in first principle theory has opened up many exciting pos-
sibilities for the study of condensed matter since one is now in a position dicpre
properties of systems which were formerly inaccessible to theory andtsoes ex-
periment.

Several factors have contributed to the present success of ab indigedens
for real materials systems. The first is the formalism of density fanat theory
(DFT) [27] and continuing development of approximations to the DFT formalism
for electron exchange and correlation. The second is the subsequent advent of mod-
ern high speed computers (enormous increase in computational power)haghis
made it possible to carry out calculations on real materials in isti@ge situations
with sufficient accuracy that there can be meaningful detailed cosgawith ex-
perimental measurements. The third is the refinement in band struelatgation
techniques and the invention of thleinitio pseudopotentials [25], which have led to
rapid computation of total energies. The density functional method has madsiit
ble to calculate the ground state energy and charge density with remasacahisate
results for real solids. This is the starting point for almost all curfiest-principle
calculations of total energies of solids. Finally, there have been signifnew de-
velopment in experimental techniques and materials preparation thatakiag it
possible to probe the structure of matter in ways never realized befagea@vance

is the ability to create high pressures and explore the properties of roattea wide
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Choices of Computational Approaches

Structural and dynamical
properties

Thermochemical, electronic,

R optical and magnetic properties
mechanical

Figure 2.1: Major atomistic approaches for the simulation and prediction of stalictur
and functional properties [29]

range of densities [28]. This is an ideal experimental tool to provide infoomé#tat
can be compared directly with current theoretical calculations.

Atomistic simulation has become a valued technique in predicting the prop-
erties of materials. Computer modelling at this level is based ontypes of ap-
proach, namely: the force field or empirical potential methods and quantum mechan-
ical methods. The major atomistic approaches for the simulation and predition

structural and functional properties are shown in Figure 2.1 [29]. The firgtidec
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is between quantum mechanical and force field methods. Although, force &¢fd m

ods are preferable because of the high computational efficiency, they have not been
successfully developed for metallic alloys and the prediction of their ptiageams,

so that we must use a quantum mechanical based approach for our research on Mg-
Li alloys. Such an approach can be treated semi-empirically nvahight-binding

model [30] or within a nearly-free-electron model using second-order perturbation
theory [31]. In this thesis, however, we rely on more accuahtenitio methods, in

particular density functional theory.

2.1.1 Evolution of DFT methods

This historical review relies heavily on the excellent article by Wim{@éi. Prior to

the developments of density functional theory, the calculation of energy bard str
tures for crystalline solids had become a major goal of computational solid state
physics. As shown in Figure 2.2 [29], during the 1960’s, when quantum chemists
began systematic Hartree-Fock studies on small molecules, ebargly structure
calculations of solids were possible only for simple systems such as crystaip-of

per and silicon containing one or a few atoms per unit cell. The aim of themesafi

solid state physics were different from those of quantum chemistry. Wéeren-

tum chemistry focused on ttad initio determination of molecular structures and en-
ergies, the goal of energy band structure calculations for solids was the tamding

of conducting and insulating behaviour, the elucidation of the types of bonding, the
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Iivolution of Computational Methods

Combination
with DFT

Gradient corrections

Solid State Physics Statistical Mechanics Quantum Chemistry

Figure 2.2: Evolution of DFT methods [29]

prediction of electronic excitations such as energy band gaps, and the eta¢igr
of photoexcitation spectra [29].

To this end, semiempirical pseudopotential theory [32, 33] became a sfidces
and pragmatic approach especially for semiconductors. All-electron siancture
calculations were applied mostly to transition metals and their compoumtally,
these calculations were carried out non-self-consistently. For a giystal structure
and atomic positions in the lattice, a crystal potential was constidoben super-

posed atomic densities and the energy bands evaluated for selectedrpointaén-
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tum space without improving the electron density through a self-consistency proce-
dure. The shape of the crystal potential was simplified in the form of affinatih"
potential [34] with a spherical symmetric potential around the atoms and aacbnst
potential between the atomic spheres. For close-packed structureasstmhCu,
this is an excellent approximation and substantially simplifies the edloul of the
energy bands. During the 1960's, self-consistency was introduced stid) the¢ sim-
plified "muffin-tin" potential. Around 1970, self-consistent muffin-tin enebgynd
structure calculations were possible for systems containing a few atarasipeell.
At that time, quantum chemists had already recognized the power of total @nergi
as a tool for geometry optimization of molecules and had developed analytic energy
gradients (forces) that greatly facilitated geometry optimizati@ape approxima-
tions to the potential are questionable for open molecular structures and hence t
use of the muffin-tin approximation in the form of the so-called multiple-edaty
X-alpha method [35] for molecules and clusters met with skepticisongmany ab
initio quantum chemists.

In computational solid state physics, total energy calculations asdictive
tool for crystal structures and elastic properties of solids came energl use only
in the mid to late 1970’s, which was almost 10 years later than the conmdsp
application of the Hartree-Fock method to molecules.

By 1970, density functional theory had become a widely accepted many-body

approach for first-principles calculations on solids, superceding thehaapproach.
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Initially, energy band structure methods such as the augmented plane wawé) (A
method [34] and the Korringa-Kohn-Rostoker (KKR) method, [36, 37] were very
tedious since the system of equations to be solved in each iterativefstee self-
consistency procedure were nonlinear (the matrix elements depended on thg.ener
Furthermore, the computer hardware at that time was limited both in pacgseed,

but perhaps even more by memory size. A major step forward was the intraao€ti
linearized methods, especially the linearized augmented plane wa\). method

[38, 39], and the linearized muffin-tin orbital (LMTO) method [39].

By 1980, quantum chemists had developed analytical second derivatives in
Hartree-Fock theory for the investigation of structural and vibratipnaperties of
molecules. During the same time, computational solid state physicasteed on
the formulation of all-electron self-consistent methods without muffirstiape ap-
proximations, such as the full-potential linearized augmented plane wh¥d>{iv)
method with total energy capabilities as reviewed by Wimmer et al. . [#0ja-
lytic first derivatives (forces) within solid state calculationsre first introduced in
pseudopotential plane wave methods as reviewed by Payne et al [25] and only fairly
recently in other solid state methods. Larger unit cells of bulk solidk wiore
degrees of freedom and especially the investigation of surfacesredcools for
predicting the position of atoms, for example in the case of surface reaotisns.

Hence, total energy and force methods for solids and surfaces became maite urge
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In solid state calculations, the emphasis had shifted from the prediztielec-
tronic structure effects for a given atomic arrangement to the predictistructural
and energetic properties as revealed by novel technigues such as extengeb-
sorption fine structure spectroscopy (EXAFS) and the scanning tunnelingsoope
(STM). Pseudopotential theory, originally used in the form of a paranzettsemi-
empirical approach for calculating energy band structures of semicondultats
been developed into a first-principles method with rigorous procedures taqwcinst
reliable pseudopotentials [41]. Pseudopotentials turned out to be pariicelerl
gant and useful for the investigation of main-group element semiconductseisg U
the pseudopotential plane wave approach, Car and Parrinello [42] made an impor-
tant step in the unification of electronic structure theory and statistieghanics.

In this approach, it is possible to simulate the motions of the atomic nuclei gs the
would occur, for example, in a chemical reaction while at the same taging the
electronic structure, all within a single theoretical framework.ildhen, molecular
dynamics had been mostly the domain of empirical force field approaches which ar
not intended for describing the formation and breaking of chemical bonds.

Density functional theory, originally intended for metallic solid stateeys,
turned out to be also surprisingly successful for describing the structurenamd e
getics of molecules. First clear evidence for the capabilities of thal ldensity
functional approach for molecular systems was given already in the 1970@nlyut

recent systematic calculations on a large number of typical moleculethéwgeith
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the introduction of gradient corrected density functionals [43] have made density
functional theory an accepted approach for quantum chemistry [44k€Tdepabil-

ities of density functional theory as a tool for molecular and chemical problems i
remarkable, since the theory was originally developed as an approximateaabpr

in solid state physics. In this work we have based our approach the demsitiohal

theory.

2.1.2 Semiempirical methods

These are approximate methods which make use of a simplified form ofltdaian
as well as adjustable parameters with values obtained from fittingtto éogeri-
mental and first principles data. Even with increases in computer spekshemory
and the development of efficient algorithnad, initio methods are not applied rou-
tinely to unit cells with more than dozen atoms. On the other hand, semieaipiri
methods are fast enough to be applied routinely to larger systems. Thuspsem
pirical methods make electronic structure calculations availainla fvider range of
systems.

In materials science a widely-used semi-empirical approach igjtmetiinding
model [30] in which the bond or hopping integrals are parameterized follothieg
seminal paper by Slater and Koster [45]. This method has been suchedsftdl-
oped into a powerful tool for the study of semiconductors and transition spétal

particular, the interplay between their structural and electronic ptiepewrith de-
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fects, surfaces, and interfaces (see, for example [46]). Currsigthyficant efforts

are being made to improve the speed of tight-binding methods in order to study dy-
namic processes such as the deposition of Ag atoms on Cu surfaces [47] and the
effect of irradiation on the stability of materials [48].

The real-space tight-binding recursion method, which was developed in the
early 1970's [49, 50], presents a promising framework for the fast evaludtionad
energies and forces, since its computational time scales as Srdather thanV3
as fork-space approaches (wheheis the number of atoms in the unit cell, and
k is a point within the first Brillouin zone of the periodic cell). A novel sofe
by Aoki [51], which generalizes the bond order formalism by Pettifor [52], leads
to a rapidly convergent bond order expansion for transition metals, thusomaiang
some of the earlier difficulties of this approach. This approach has been applied
to the investigation of dislocation cores [53] and Peierls barriersghrtologically

important high-temperature intermetallics [54].

2.2 TheHartree-Fock Method

The Hartree-Fock [55, 56] method focuses on the many-body wave fun@ti@nsr, ..., 7n)
(where ther; denotes the coordinates of the 1st electr@grihe 2nd electron, and so

on) that enter the time-independent Schrdodinger equation for the system:

HU(Ty,Ta, ..., TN) = B0y (T1, Ta, ..., Ty (2.1)
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whereH is the Hamiltonian, i.e., the operator with corresponding eigenvalues
E). and eigenfunction¥,, whereask is a point in space. The Hamiltonian operator

consists of a sum of three terms:

A ~ A A

H e T Ueat + Uee (22)

where the kinetic energy of the electrons, the interaction with an extpora

tential and the Coulombic electron-electron interaction, can be wriggpectively

as:
. 1
T.=—3 Z \% (2.3)
. Nat Za
Uea:t - - ; m (24)
A 1 1
Uee = 5 ; ‘?Z —F]‘ (25)

In most simulations of materials the external potential of interesthiplyi the
interaction of the electrons with the atomic nuclei of chafgeand positionR,. In
this chapter we use atomic units, so thht= 74 = m = 1 wheree is the electronic
charge,h is Planck’s constant, ana is the electronic mass. The unit of energy is,
therefore, the Hartree (where 1 Hartree = 2 Rydbergs = 27.2116 eV) and the unit of
length is the first Bohr radius (so that 1 au = 0.529 A).

When the Schrodinger equation is solved exactly (e.g., for the hydrogen atom),
the resulting eigenfunctiond,, form a complete set of functions. The eigenfunction

U, corresponding to the lowest energly, describes the ground state of the system,
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and higher energy values correspond to excited states. Once the fulgigmnown,
the corresponding energy of the system can be calculated as an expectatgoofva

the Hamiltonian#, as:

mm:/hﬁmm:awmw> (2.6)
where the integration is over (two electron) coordinate space and tagamot
[U] emphasizes the fact that the energy iuactional of the wave function. The

energy is always higher than that of the ground state unlessrresponds ta,

since by the variational theorem:

E[U] > E, (2.7)

Once the functionV for a given state of the system is known, then the ex-
pectation value of any quantity for which the operator can be written doampe
calculated.

In general, the Schrddinger equation cannot be solved exactly. Therglere, a
proximations have to be used. The first successful attempt to derive apptexim
wave functions for atoms was devised by Hartree in 1928. He approximated the
many-electron wave functiowr by the product of one-electron functiondor each

of the N electrons:

\I](FLFQ? "'7?]\[) = ¢1(71)¢2(72)¢N(7N) (28)



23

In this equation7; are assumed to contain both the positional coordinates and
the spin coordinate of electran

The Hartree approximation treats the electrons as distinguishablel@srtin
1930 Fock correctly treated the electrons as indistinguishable by proposing an anti

symmetrized many-electron wave function in the form of a Slaterohétant [61]:

(2.9)

\I]HF =

4

01N Ga(FN) . On(PN)

where det indicates a matrix determinant. This single determinavefuac-
tion accounts for some basic fermion characteristics such as Pexdligsion prin-
ciple, which introduces the new term elffiectron exchange. Within this so-called

Hartree-Fock method, the expectation value of the total energy is given by:

Eyp = (U|H|T) = ZHJF;ZZ i — Kij) (2.10)

=1 j=1

where

1= [ 610593 + 0o, (ar (2.11)

is an element of the one-electron operatpdefined by:

Nnuet

__V2 Z |7~l

(2.12)

I
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where N, is the total number of nuclei in the material. THg’s represent
the Coulomb interaction between electiicand electrory. They are called Coulomb

integrals and are given by:

— szpjrz B . *_#4_ -
sz // ’7“1 _ 7“2‘ dridre = //¢z (Tl)¢j(7’2) ’71 _72’¢z(r1)¢](7’2)d71d?2
(2.13)

The inclusion of Pauli’'s exclusion principle within the Slater determineads

to an additional ternik(;;, the so-called exchange integral, which is defined by

. . _ 1 N —
Kij = //@ (Tl)¢j(7’1)m¢i(r2)¢j(7’2)05716172 (2.14)
We see that{;; is similar in form to theJ;; but the functions, andgbj have

been exchanged. It follows that electrarend; have to be of the same spin féf;;

to be nonzero due to the orthogonality of their spin parts.

The Hartree-Fock (HF) approximation has been favoured among chemists for

calculating the electronic structure of small molecules with a higlii@cy. Impor-
tantly, the HF results can systematically be improved by applying the coniigura
interaction (HF-CI) techniques or Mgller-Plesset perturbation thedB2(or MP4)
[57, 58]. Unfortunately, the HF method resulted in a vanishing densityatéstat
the Fermi level in the bulk free electron gas, so that this approximatas avoided
by solid state physicists. In turn, they turned to methods based on tisoeie den-

sity of the material that Thomas and Fermi had proposed at about the saenadi
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Hartree. They had derived a differential equation for the density with@atrtiag

to one-electron orbitals [59, 60]. The Thomas-Fermi (TF) approximation wtas a

ally too crude because it did not include exchange and correlation effects and was
also unable to sustain bound states because of the approximation used for the ki-
netic energy of the electrons. However it set up the basis for thedatelopments

of density functional theory (DFT), which has been the way of choice in eleictr
structure calculations in condensed matter physics during the past threlesecal
recently, it also became accepted by the quantum chemistry communitysieech

its computational advantages compared to HF-based methods [61, 62].

2.3 Density Functional Theory

Density Functional Theory (DFT) focuses on the electronic density of themsyste
p(7). In their seminal paper of 1964 Hohenberg and Kohn [27] proved two key
theorems:

Theorem 1 The total ground state enerdy of an electron system is a unique

functional of the electron density, i.e.

E = E[p| (2.15)

Theorem 2 This energy functional takes its minimun valég for the correct

ground state density,(7) under variations in the electron densit{) such that the
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number of electrons is kept fixed, i.e.
Eq < Ep] (2.16)

for which

/ p(T)dr = N (2.17)
whereN is the number of electrons in the system. The equality in Eq. (2.16)
occurs if and only ifp(7) = p,(T). These two theorems only state that such a func-
tional E'[p| exists with the variational property given by Eq. (2.16). In the following
year Kohn and Sham [63] provided a procedure by which we can approximate the
functional and hence solve for the ground state energy and density. They decom-

posed the energy functional as the sum of three components:

Elp] = To[p] + Ulp] + Exc[p] (2.18)

The first term is the kinetic energy of electrons in a system which has the sam
density p(7) as the real system but in which the electrons are assumed riorbe
interacting with the electron-electron interactions turned off. The second term com
prises the sum of the usual Hartree Coulomb energy and the electrostataction

energy between the electrons and the external potential due to the nuclei i.e.

Ulpl = / 04 () + Ut () ()7 (2.19)

a7’ (2.20)
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il == 3 & _ZC;_%Q} (2.21)
The third term is the so-called exchange-correlation energy functidimei
comprises the sum of the Hartree-Fock exchange energy plus the torrelaergy
that remains to make the functional Eq. (2.18) exact.
Thomas-Fermi theory [59, 60] had assumed that the non-interacting kinetic
energy functional for annhomogeneous system could be approximated by using

the kinetic energy density of a homogeneous free electron gas corresptmdineg

densityp(7) at each point in space, namely

170 = A, [ pl)bar (2.22)

where A, = 1—30(37r2)§ = 2.871 atomic units. This approximation failed to
describe chemical bonding correctly. Kohn and Sham took the key step of defining
the non-interacting kinetic energy functional in the spirit of the origin&r8dinger

equation (2.1), namely
* (— 1 2 =
Tlpl = 3 [ i3 Vo )ir 2.23)

wheren; is the occupation number of statand,(7) is an orthonormal set of

single-particle wave functions such that
N

p(r) = [T’ (2.24)
=1

The ground state energy is found by minimizing the endifpy} in Eq. (2.18)

with respect to variations in the electron dengity), given by Eq. (2.24), subject
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to the constraint that the number of particles is conserved through Eq. (RI4iny

variational calculus it may be shown [63] that the ground state energy canttenw
L[ [ p@)e)
Elpl =) e—5 | | ====drdr — | Up(T)p(T)dr + E 2.2
g ;E 2// 7] /ch(r)p(r)dwr el (229)

where

0(7) = 2zellD] (2.26)

op(T)
The occupied energy levetsthat enter the sum in the first term of Eq. (2.25)
are the eigenvalues resulting from solving a Schrédinger-like equatioion-interacting

particles:
(5 V2 + Degs P) = () (2.27)

where

A A A A

Uep(T) = Ueat(T) + U (T) + Use(T) (2.28)
Thus, Kohn and Sham provided a recipe for solving the ground state energy of a
many-body electron system within an effective one-electron frameprmavided the
form of the exchange-correlation functional that enters both the Schrodingeraquati

(2.27) and the total energy (2.25) is known. This we now turn to in the next section.

2.4 The Exchange-Correlation Functional

Several different schemes have been developed for obtaining approxomnatefor
the functional for the exchange-correlation energy. The simplest and yetiagfyr

accurate approximation, for non-magnetic systems is to assume that the exchange
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correlation energy is dependent only on the local electron dep@ilyaround each
volume elementl7. This is called thdocal density approximation (LDA). The lo-

cal density approximation rests on two basic assumptions: firstly, the exchadge
correlation effects come predominantly from the immediate vicinityhef point7,

and secondly these exchange and correlation effects do not depend strongly on the
variations of the electron density in the vicinity@flf these two conditions are rea-
sonably well fulfilled, then the contribution from the volume elemé&nivould be the

same as if this volume element were surrounded by a homogeneous electron densit
of the constant valug(7) within dr. Within LDA the exchange-correlation energy

functional is given by:

ELPAl] = / PP)eaclp (T dT (2.29)

wheree,.(p(T)) is the exchange-correlation energy per particle of a uniform

electron gas. This quantity is split into two parts:

exe(p(T)) = €x(p(T)) + ec(p(T)) (2.30)

The exchange patt.(p(7)) can be derived analytically within the Hartree-Fock

approximation and can be expressed as

o) = 5 20 231)

™
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The correlation part cannot be derived analytically, but can be caldutate
merically with high accuracy by means of Monte Carlo simulations [64].

The LDA is generally very successful in predicting structures and groural stat
properties of materials but some shortcomings are well documented [65e €he-
cern in particular: (i) the energies of excited states, in partidharband gaps in
semiconductors and insulators are systematically underestimateds Hlossupris-
ing since DFT is based on a theorem referring to the ground state only. (er&lsy,
LDA tends to significantly overestimate cohesive energies and undeatstiattice
parameters by up to 3%. In solids, the former is thought to occur because the LDA
does a poor calculation of the total energy in isolated atoms [66]. (iii) Therinc
rect ground state is predicted for some magnetic systems (the mostenexaiohple
is Fe which is predicted to be hexagonal close packed and non-magneticliobtea
body-centered cubic and ferromagnetic) and for strongly correlated sy&eagmshe
Mott insulators NiO and LgCuQ, are predicted to be metallic in the LDA). (iv) Van
der Waals interactions are not appropriately described in the LDA, althoughaher
some recent suggestions for overcoming this problem [67, 68]. In magnetic systems
or in systems where open electronic shells are involved|dted spin density ap-
proximation (LSDA) which is the equivalent of the LDA in spin-polarized systems
is employed. LSDA basically consists of replacing the exchange-caoorlahergy

density with a spin-polarized expression [61].
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During recent years several schemes that go under the generic name of the
generalized-gradient approximation (GGA) attempt to provide improvements to LDA
by expandingF.,..[p]. The expansion is not a simple Taylor expansion, but tries to
find the correct asymptotic behaviour and correct scaling for the usually nonlinear
expansion. These enhanced functionals are frequently called nonlocal or gradient
corrections, since they depend not only upon density, but also the magnitutke of t
gradient of the density at a given point. For materials applications, theSGiBa:
posed by Perdew and co-workers [66, 69, 70, 71, 72], have been widely used and
have proved to be quite successful in correcting some of the deficienciesL.dd#he
the overbinding being largely corrected (the GGAs lead to largec¢attinstants and
lower cohesive energies) [73] and the correct magnetic ground state istpreftir
ferromagnetic Fe [74] and antiferromagnetic Cr and Mn [75]. Howevergthee
also cases where the GGA overcorrects the deficiencies of the LDAeand to a
large underbinding [65].

The basic idea of GGAs is to express the exchange-correlation energy in the

following form:

EGSA[p] = / PT)eaclp ()T + / Folp() Vp(ldr  (2:32)

where the functiorF,. is asked to satisfy a number of formal conditions for the

exchange-correlation hole, such as sum rules, long-range decay and so on.Watural
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not all the formal properties can be enforced at the same time, and thiedtitges
one functional from another [61].

The form suggested by Becke [70] for the exchange part is:

EYSAp. p| = BEPA — / d°F 2.33
o201 p Z 1+ 653:0 smh Ty : ( )
where
EPA — 0, Y / 0} (7). (2.34)
c, =3 (%)é = |Vp,| /ps’® ando denotes eithet or | electron spin. The

constants is a parameter fitted to obtain the correct exchange energy of noble gas
atoms. The GGA improves predicted values of binding and dissociation eaeml
brings them to within 10 kJ/mol (about 1.0 eV) of experiment [69].

The following correlation functional as proposed by Perdew and Wang [69]

predicts correlation energies of useful accuracy for an electron gashwly vary-

ing density:
Co(p) [Vp(@) 4

B pp) = [ oo+ [CETEDLE @)

where
[N =)
d=2 < 5 ) +<—2 )] : (2.36)
& = 0.1929 {CC(OO)} [Vl (2.37)
' Celp) | p7¢” '
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¢ = (p; —p;)/pandC.(p) is a rational polynomial of the density that contains
seven fitting parameters.

The correlation energy per particle of the uniform electron gagy, p,), is
taken from a parametrization by Perdew and Zunger [76] of the Ceperly-pdgr

Monte Carlo results.

In this thesis we have used the most recent form of GGA due to Perdew-Burke-
Ernzerhof (PBE) [72, 78]. They write the exchange functional in a form which co

tains an explicit enhancement facty over the local exchange, namely:

EPBEp, )] = / PT)EPA ()] Fuelp, €, 5)dT (2.38)

wherep is the local density is the relative spin polarization, and= |V p(7)| /(2krp)
is the dimensionless density gradient. Following [43] the enhancement faetot-is

ten

(SFQIj = +152,u (li + 5%+ s%,u)) (2.39)
wherep = 5(72/3) = 0.21951 with 3 = 0.066725 being related to the second-
order gradient expansion [71]. This form was chosen because it
(i) satisfies the uniform scaling condition,
(i) recovers the correct uniform electron gas limit becatis@) = 1,
(iii) obeys the spin-scaling relationship,

(iv) recovers the local spin density approximation (LSDA) lineapogsse limit

for s — 0, namelyF,(s) — 1+ us?, and
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(v) satisfies the local Lieb-Oxford bound [79],(7) > —1.679p(7)*/?, that is,

F,(s) < 1.804, for all 7, provided that: < 0.804. PBE chooses the largest allowed

value,x = 0.804.

The correlation energy on the otherhand is written in the form:

EPPE (. py) = / p(7) [494(0,C) + Hlp. ¢ 1]] dF (2.40)
with
By? 1+ At?
Hip. ¢, 1] = 1¢*In {1 P MJ} (2.41)

Heret = |Vp(F)| / (26k,p) is a dimensionless density gradieint= (4kz/7)"/>
is the TF screening wave number apd) = [(1 + O 41— 5)2/3] /2 is a spin-
scaling factor. The quantity is the same for the exchange tefim= 0.066725, and

~v = 0.031091. The functionA has the following form:

b | _czpalel -1
A=— © e — 1 (2.42)
v

So defined, the correlation terfh satisfies the following properties [61]:

(i) it tends to the correct second-order gradient expansion in the si@amyng
(high-density) limit { — 0),

(ii) it approaches minus the uniform electron gas correlatiefi”* for rapidly
varying densitiest(— o), thus making the correlation energy vanish (this results

from the correlation hole sum rule), and
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(iii) it cancels the logarithmic singularity of22?4 in the high-density limit,
thus forcing the correlation energy to scale to a constant under uniformgscélime
density.

We will see in chapter 4 that this PBE exchange-correlation gives gaottse

for the Mg-Li alloy system.
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Chapter 3
PLANE WAVE PSEUDOPOTENTIAL
METHOD

In this chapter we outline the methodology of solving the Kohn-Sham equation,
Eq. (2.27), using a plane wave basis and approximating the ion cores with pseudopo-
tentials. We will end with a brief discussion of the commercial softwzaekage

CASTEP that will be used in subsequent chapter.

3.1 Plane Wave Basis Sets

The plane-wave pseudopotential (PWP) method begins by representing the system
by a 3-dimensional periodic supercell. This allows Bloch’s theorem to simibidy

task of solving the Kohn-Sham equation. This is because Bloch’s theorerh ghic
based upon the periodicity of the system, reduces the infinite number of oneelectr
wavefunctions in the real system to only the number of electrons in the chosen s
percell. Following Bloch’s theorem, the wavefunction can be writterhagptoduct

of a cell periodic part and a wavelike part:

() = exp(ik - T) fi(T). (3.1)
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The first term is the wavelike part and the second term is the cellgenpart
of the wavefunction, which can be expressed by expanding it into a finite number of

planewaves whose wave vectors are the reciprocal lattice vecttirs ofystal,

£i(F) = cigexp(iG - T) (3.2)

€
whereG are the reciprocal lattice vectors. Therefore each electroniefwac-

tion is written as a sum of plane waves,

V,(F) = ZC“EJE expli(k + G) - 7). (3.3)

€

The problem of solving the Kohn-Sham equation has now been mapped onto
the problem of expressing the wavefunction in terms of an infinite number of recip-
rocal space vectors for each poktwithin the first Brillouin zone of the periodic
cell. For metallic systems a dense sekqfoints is required to define the Fermi sur-
face precisely and to reduce the magnitude of the error in the total energy wajch m
arise due to inadequacy of tlkepoint sampling. We will see later in chapter 4 that
the computed total energy converges as the denskypaints increases so that the
error due to thé-point sampling can be made as small as needed. In principle, a
converged electronic potential and total energy can always be obtaioadeut that
the computational time and memory are available to calculate th&@iexwave

functions at a sufficiently dense setlopoints [25].
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The Fourier series in Eq. (3.3) is, in principle, infinite. However, ¢beffi-
cientsc;;, ¢ are associated with plane waves of kinetic eneffgy2m) |k +§|2.
The plane waves with a smaller kinetic energy typically play a more iraporole
than those with a very high kinetic energy. The introduction of a plane waveyne
cutoff reduces the basis set to a finite size. This kinetic energy cutoffea to an
error in the total energy of the system but in principle it is possible toenthis er-
ror arbitrarily small by increasing the size of the basis set bywatig a larger energy
cutoff. In principle, the cutoff energy should be increased until the cdkedlgotal
energy converges within the required tolerance [25]. We will see |latehapter 4
that this is essential for the phase stability study of Mg-Li alloysnetiee absolute
values of the total energies of different structures are compared.

The main advantage of expanding the electronic wavefunctions in terms of a
basis set of plane waves is that the Kohn-Sham equation take a particiriaplg s

form. Substitution of Equation 3.3 into the Kohn-Sham equation, (2.27), gives

Z{% %+ T Sy + Ut (G )4 Ut (G- )4 Une (C—T N esspr = sciros -
“ (3.4)

We see immediately that the reciprocal space representation kinitc en-
ergy is diagonal with the various potential contributions being describednrstef

their Fourier components. The usual method of solving the plane wave expahsion

the Kohn-Sham equation is by diagonalisation of the Hamiltonian matrix wHese e
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ementsH;_ 7., are given by the terms in curly brackets above. The size of the

matrix is determined by the choice of cutoff energy

|a—
E.=—k+3G.| (3.5)
2m
and will be intractably large for systems that contain both valence arel cor

electrons. This classical problem was solved by advent of the powerfuépbo€

pseudopotentials.

3.2 Pseudopotential Approximation

The fundamental idea of pseudopotentials is to replace the real potensaiga
from the nuclear charge and the core electrons, with an effective paitemithin a
core region of radius Ras illustrated schematically in Figure 3.1. Certain demands
are then placed on this effective potential. It must be such thatalemee orbital
eigenvalues are the same as those in an all-electron calculatitve atom. It must
also preserve the continuity of the wavefunctions and their first derigaticeoss
the core boundary. Finally, integrating the charge in the core region sho@dhgv
same answer for the pseudo-atom and the all-electron one, that is, the psentiipote
must benorm-conserving. A pseudopotential that satisfies these demands will have
the same scattering properties, at energies corresponding to valganeatues, as
the ionic core it replaces. The self-consistent field equations (Egs. 2.24 afcd&2

carried out only for the valence electrons. Moreover, since the dec&r@ns which
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Figure 3.1: Schematic illustration of all-electron (solid lines) andudselectron
(dashed lines) potentials and their corresponding wave functions. The aadibgh
all-electron and pseudoelectron values match is desigiratgb].

do not ifluence the properties of the solid phase are removed from the problem,
much higher numerical precisions can be achieved. Thus, systems involving heavy
atoms are not much more complicated than those with light ones.

The phase shift produced by the ionic core is different for each angular mo-
mentum component (s, p, d, etc.) of the valence wavefunction. Thus, the iscpatter
from the pseudopotential must be angular momentum dependent. The most general

form for a pseudopotential is:
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where| [,,,) are spherical harmonics anlis the pseudopotential for angular
momentum! [90]. A pseudopotential that uses the same potential in each angu-
lar momentum channel is called a local pseudopotential. Local pseudopctemnéal
computationally much more efficient than nonlocal ones. However, only ale-
ments such as aluminium can be described accurately using local pseudajstent
Lithium, in particular, requires a careful non-local treatment dudéoabsence of
anyp states in its ion core.

An important recent concept in pseudopotential applications is the degree of
hardness of a pseudopotential. A pseudopotential is considsofidvhen it requires
a small number of Fourier components for its accurate representatidraahather-
wise. Norm conservation ensures the scattering properties remagatcaway from
the eigenvalues to linear order in the energy [91] and also ensures that the pseudo-
wavefunction matches the all-electron wavefunction beyond a cutofiigatat de-
fines the core region. Within the core region, the pseudo wavefunction has no nodes
and is related to the all-electron wavefunction bybem-conservation: that is, both
wavefunctions carry the same charge. These potentials can be madectgat@aat
the price of having to use a very high energy cutoff. Early development of aecurat
norm-conserving pseudopotentials quickly showed that the potentials for thevirst

elements such as Li turn out to be extremiadyd [41]. Various schemes have been
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suggested to improve convergence properties of norm-conserving pseudopotentials
[92].

Despite the best attempts to optimize their performance for the firselew
ments [93, 94], a more radical approach was required, as suggested by Vanderbilt
[95]. This involves relaxing the norm-conserving requirement in ordegeoer-
ate muchsofter pseudopotentialgjltrasoft pseudopotentials (USP). In the ultrasoft
pseudopotential scheme, the pseudo-wave-functions are allowed tedieasspos-
sible within the core region, so that the cutoff energy can be reduced dcafhati
USP have another advantage besides being reaftdy than their norm-conserving
counterparts. The generation algorithm guarantees good scattering propestias o
pre-specified energy range, which results in much better transfgyainitl accuracy
of the pseudopotentials. This leads to high accuracy and transferalbitiig poten-
tials, although at a price of computational efficiency. Typically it is fotimat £.. is
about half that for a norm-conserving pseudopotential, which means lesertban
third as many plane waves are required. In chapter 4 the Mg-Li alieysadelled

with Vanderbilt ultrasoft pseudopotentials.

3.3 Gridsand Fast-Fourier transforms

Real- and reciprocal-space grids are another key feature of the PWP métkod.
pressing the wavefunction as an expansion in a finite set of plane waves leads nat

urally to the idea of a reciprocal-space grid. However, it is advantagechave a
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real-space representation too, on the related real-space gridH&&] Fourier trans-
forms (FFT's) are used to transform the data between the two spaadsghly effi-
cient manner. The direct lattice vectors of the real-space superealkaoted:, a,
andas. The reciprocal lattice vectots are defined by the relation -l_yj = 2m0y;,

wheres,;; = 1 for i = j but zero otherwise. In practidgis constructed using

51 = 62 X 53/(61 . 52 X 53), (37)
52 = 63 X 51/(61 . 52 X 53), (38)
l_73 =ua; X 62/(61 c Qg X 63). (39)

A reciprocal lattice vecto€ is given by

G = nqby + ngby + nsbs (3.10)
wheren; are integers . A plane wawvep(iG - 7) is commensurate with the
supercell, and the set plane waves whose wavevectors are defined by eguidion
above is an orthogonal set [96]. The real-space grid is formed by dividenattice
vectorsa;, a; andas into Ny, N, and N3 points. A point in the supercell is then

denoted

lhh_ a3 _
(I, 12, 13) A AR (3.11)

=
I
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where thel; are integers in the range< [; < (N; — 1). The real-space grid
can be viewed as the lattice of points for the lattice vectgrs- a@;/N;. The cor-
responding reciprocal lattice vectors are giveny= N;b; because of the relation
a; - 3; = 2md;;. The vectors3; are the reciprocal-space supercell vectors. The
reciprocal-space grid is the lattice of points for the vectar§Vithin the reciprocal-
space supercell a point is given by equation 3.10 with n; < (IV; — 1). In each
supercell there ar&/; N, N3 = N points. It can be said that discrete Fourier trans-
forms, or at least plane waves, impose these relationships betweendbke Ghie
productsG - 7 are independent of the supercell dimensions.

Although pseudopotentials have reduced the number of plane waves required,
that number is still large. FFT’s play a role of equal importance becausetiosy

the calculation to scale well with system size.

3.4 Broadening (smearing) scheme

In ab initio electronic structure and total-energy calculations the integrals beer t
Brillouin zone are commonly replaced by the sum over a mesk-pbints. This
approach is very efficient for insulators, but for metallic systems agevee with
respect to the number &points becomes slow. The introduction of fractional oc-
cupation numbers is a convenient way to improvekkspace integration and in ad-
dition to stabilize the convergence in the iterative approach tocseléistency [97].

In these broadening schemes the eigenstates are occupied according taangauss
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like smearing of each energy level. The remaining task is to effdgtconvert these
eigenvalues into an electronic density of statég'). The Fermi level £, can then

be found from the electron count

N = / dEn(E)0(Ep — E), (3.12)

after which the band energy can be determined:

Ehyang = / dEEn(E)(Er — E) = E,. (3.13)

In an insulator the approximation fg,,,,;, improves monotonically as the num-
ber of k-points is increased, whilst for metals the process breaks down as the Ferm
level is in the middle of an occupied band. Accurately determining Eq. 3413 th
requires an extremely large numberkepoints.

It has long been recognized that this problem can be alleviated by ‘smearing’
the step functio(Er — E) into a smooth weighting functioifir(E) [83]. Gillan
[98] provided a formal basis for this technique, beginning from the observ#tat

the Fermi-Dirac function

Jr(E) = 1/{1 + exp[(E — u(T))/T1} (3.14)

is the weighting function which minimizes the free energy

Aband(T) = Eband(T) - TS(T), (315)
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whereT' is a fictitious "temperature", the chemical potentiél’) approaches

Er asT — 0, andS is the associated entropy

S(T) = / AEn(E){ fr(E)Infr(E) + [1 — fo(E)In[l — fr(E)]}.  (3.16)

Now Ej,,.q IS also an explicit function of’

Buona(T) = [ dEEN(E)f1(E). (3.17)

Gillan then showed that at low temperatures
1
Ehana(T) = Eo £ §7T2 + O[T, (3.18)

Apana(T) = Bo % 59T? + O[T"]. (3.19)
Later, Grotheer and Fahnle [99] showed that 4. From this they deduced

that

U(T) = [Byana(T) 4 Avana(T)]/2 = Eo + O[T"]. (3.20)
TheT* dependence of the correction to the ground-state energy should allow
one to use a relatively large broadening temperature and extrapolate BAck ©®
via Eq. 3.20. Sincq is large, the integrand of Eq. 3.17 cuts off smoothly with in-
creasing energy, decreasing the numbek-pbints needed to provide an accurate

energy. Broadening methods, using either Eq. 3.14 or some other weighting function
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[99] which satisfies Eq. 3.20, have been widely used in most recent aitidRiys-
ical Review B since 1998. In these papers the value of the broadening "temperature”
or equivalent ranges from 2 mRy [100] to 20 mRy [101]. Only one paper [97] gives

any justification for the choice of a particular temperature.

3.5 Advantages of PWP method

The PWP approach has several advantages over other methods, such aaghdse b
on localized atomic orbitals. These are:

(i) convergence with respect to the completeness of the basis setilis eas
checked by extending the cut-off energy (i.e. the highest kinetic energy in the PW
basis),

(if) Fast-Fourier-Transforms (FFT) facilitate the solution of thesBon equa-
tion, and

(iii) forces on atoms and stresses on the unit cell may be calculactigivia
the Hellmann-Feynman [102] theorem, without applying Pulay corrections for the
site-dependence of the basis set [103].

The main disadvantage is that the chemical insights gained by a descript
of bonding between localized orbitals is not immediately apparent. Hoyweeer
codes remove this deficiency by transforming from the PW descriptiototzatized
orbital description once the PWP calculations have converged to the rejexaad

State structure.
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3.6 CASTEP code

The planewave pseudopotential (PWP) calculations for the solution of the Kohn-
Sham equation of Density Functional Theory (DFT) were performed using CRSTE
(Cambridge Serial Total Energy Package) [26] with the generalized gragipndxi-
mation for the exchange correlation energy functional. CASTEP is a pseudoplotentia
total-energy code which employs special point integration over the Brillaane

and a plane wave basis for the expansion of the wavefunctions. We used the PBE
form of the GGA [72], which was designed to be more robust and accurate than the
original GGA formulation. The total-energy code used, CASTEP, performsia va
tional solution to the Kohn-Sham equations by using a density mixing scheme [73]
to minimize the total energy and also conjugate gradients to relax teaurmer the
influence of the Hellmann-Feynman forces.

CASTEP uses fast fourier transforms (FFT) to provide an effiei@ytof trans-
forming various entities (wavefunctions, potentials) from real tgp®cal space and
back as well as to reduce the computational cost and memory requiremepefe
ating with the Hamiltonian on the electronic wave functions, a planewavs fmas
the expansion of the wavefunctions. The convergence of this expansion islezhtr
by a single parameter, namely the highest frequency at which the serigniisatd
(conventionally defined as the highest kinetic energy of a plane waveisimork
the summation over the Brillouin zone has been performed with weighted summa

tion over wave vectors generated by Monkhorst-Pack scheme [104], which psoduc
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a uniform mesh ok points in reciprocal space. A BFGS-based minimization tech-
nique was used for performing geometry optimization, either at ambient conditions
or under external stress [26]. The Pulay density of mixing scheme [25] with conju-
gate gradient solver is applied and pseudopotentials parametrized irciocal
space, as implemented in the CASTEP code. An updated iterative (theitverse
Hessian) is based on the calculated stress tensor and atomic forces.

Ultrasoft pseudopotentials of Vanderbilt form [95] were utilized. The above
methodology produces very "soft" pseudopotentials which drastically redeceitm-
ber of plane waves needed to achieve convergence of the calculated progérées
pseudopotentials were generated using the PBE exchange correlation funttienal
used convergence criterion of less than 2 1€V on total energy change per atom,
103 A on the displacement of atoms, 0.05 eVfon the residual forces and 0.1 GPa

on the residual bulk stress.
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Chapter 4
THEORY OF PRACTICAL RESULTS

4.1 Introduction

The phase diagram of Mg-Li, which is shown in Figure 1.1, is determined byeke fr
energies of the different competing phases [105]. In particular, above roopete
ature we find the hcp and bcc phases centered on the magnesium and lithium rich
ends of the phase diagram respectively. We see that whereas we have only about 15
at% solubility of Li into Mg, we have about 70% solubility of Mg into Li. Atie
centrations around 50%, the bcc phase remains stable even at very Iperagunes,
although local short range ordering of B2 (CsCl) type has been observed [106, 107].
A metastable fcc phase has been found after cold working alloys with frontd 3.4
19.7 at% Mg [7, 107].

Hafner [31] in a seminal paper 30 years ago predicted the variation oétts h
of formation of disordered bcc, hcp and fcc phases using second-order perturba-
tion theory within the nearly-free-electron model. He successfultpacted for the
metastability of the observed fcc phase and the wide domain of bcc phadiystabi
In this thesis we examinadered superstructures of Mg-Li alloys with respect to un-
derlying fcc and bcc lattices using ab initio DFT. Although these low teatpes

ordered ground states have not been observed, our first principles data base could
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be used in the future to fit a cluster expansion [18] and hence perform CVM [20]
or Monte Carlo [19] simulations of the temperature and concentration dependence
of the Mg-Li phase diagrams. In addition we will use DFT to predict the tiana

in the elastic moduli within these ordered superstructures and point ontexest-

ing correlation between the tetragonal shear modulus and the relatiuéystftihe
corresponding fcc and bcc lattices.

In this chapter we, therefore, begin by presenting the ordered supausdgict
with respect to underlying fcc and bcc lattices of the Mg-Li alloys in whighare
interested. This will then be followed by convergence tests on the choitigeof
energy cutoff that determines the number of plane wave&-paoint sampling, and
on the smearing width (broadening "temperature”) for phases that arelesey/in

energy. The elasticity theory is summarized in the last part of thisosec

4.2 Thebcc- and fcc-based ordered structures

In this thesis we consider ordered structures with respect to fcc and declying
lattices due to their promising potential in structural applicationspdriicular, we
examine Mg-Li alloys with the stoichiometries 3:1 and 1:1 which presére cubic
symmetry, as illustrated in Fig.4.1. In order to study small additions of MgLand
to pure Li and Mg metals respectively, we also examine the 7:1 stoichipmvéh
respect to the fcc lattice and the 15:1 stoichiometry with respettid bcc lattice.

These two ordered lattices retain the cubic symmetry as can be segMiriFThus,



52

we will discuss the energetics of the cubic fcc-based phases(MdLis, MgsLi,
and (MgLk, Mg-Li) and the cubic bcc-based phases B2 (MgLi), B32 (MgLi), PO
(MgLis), MgsLi) and (MgLiys, Mg;sLi). In addition, we will examine the tetragonal

L1, (MgLi) and DO,, (MgLi3, MgsLi) phases.

4.3 Convergencetests

4.3.1 Cut-off energy

We show that obtaining converged total energies with respect to the eneaffyisut

vital before attempting any structural predictions, since often weomleng at en-

ergy differences of the order of abdutneV/atom. Single point energy calculations
were performed (at the experimental lattice constant where availfavleifferent
kinetic energy cutoffs at various numberlofpoints within GGA-PBE. The method
used was employed because of its robustness for metallic systemsguires-é.2

and 4.3, we show the plots of the total energy against kinetic energy cutoff, from
which the energy cutoff employed in each structure was determined. ¥hae
these curves are jagged for low cutoff energies but become smoother as the cutoff
energy is increased. Thus the kinetic energy cut-offtdfel” was chosen as the en-
ergy differences were less thannel’/atom at this point (as shown in Figures 4.2

and 4.3). The reason for the jagged appearance of the E-V curve is the discontinuous

change in the number of plane waves used at that cut-off energy. We usedftiltra
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Figure 4.1: The ordered (i) fcc-based and (ii) bcc-based Mg-Li supetstasccon-
sidered in this study.



54

-977.87

—&— hcp -

-977.88

-977.89
-977.90 1
-977.91 4

-977.92
977.86 4 | —e— fec

-977.88

-977.90

-977.92 4

Total energy (eV/atom)

-977.94

—8— bce

-977.84 1

-977.86

-977.88

-977.90 4

-977.92 T T T
200 300 400 500 600

Kinetic energy cutoff (eV)

Figure 4.2: Plots of total energy against kinetic energy cut-off for Mg in fazpand
bcc lattices.

pseudopotentials [95], which require significantly less computational resotivae

norm-conserving potentials [93].

4.3.2 k-points

Since we are comparing energies of different structures with different ethval-
umes and Brillouin shapes, sizes, dagoint sampling, we need a very good con-

vergence of the energy. An appropriate choice of khgoint set is important for
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achieving balance between accuracy and efficiency. The Brillouin gangling
was carried out using the numberlopoints as indicated in Table 4.1, within the ir-
reducible part of the zone with the total in the full zone in brackets. Thigsponds

to the Monkhorst-Pack set of points given in the third column [104]. In this part, we
show the convergence of the total energies with respect tk-h@int sampling set
size, as illustrated in the plots of total energy against numblespafints for Mg (Fig-

ure 4.4) and Li (Figure 4.5). The total energy was considered converged wben t
change was withii meV and5 meV per atom for elemental metals and alloys re-
spectively, and from thik-points used were then chosen as listed in Table 4.1, since
further increase of thk-point density had no significant effect on calculated proper-
ties. An increasedt-point set reduces the finite basis set correction and makes cell

relaxation more accurate at a fixed energy cutoff.

4.3.3 Smearing width

In CASTEP calculations for metallic systems, a Gaussian-likeasimg width of
each energy levet;, is introduced to eliminate discontinuous changes in energy when
an energy band crosses the Fermi level during the self-consistently precéddhis
smearing width is set at a relatively large value, at first, tasmsonvergence of our
self-consistency procedure. When the procedure is convergedrtieedecreased

by halving in every six iterations unti is no less than the specific minimum value.

The values of the initial and final Gaussian-like smearing width of eactygtevel
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Figure 4.4: Plots of total energy versus numbekefoints within the irreducible
Brillouin zone for Mg in hcp, fcc and bcc lattices.
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Structure Number dk-points Monkhorst-Pack set  No. kfpoints x No. of atoms
in unit cell

Mg (hcp) 96 (784) 14x14x8 192
Mg (fcc) 56 (864) 12x12x12 224
Mg (bcc) 56 (864) 12x12x12 112
MgisLi (bcc) 10 (48) 6x6x6 160
Mg-Li 20 (256) 8x8x8 640
MgsLi (L15) 56 (864) 12x12x12 224
MgsLi (DO22) 30 (200) 10x10x 4 240
MgsLi (DO3) 20 (256) 8x8x8 320
MgLi (L1g) 75 (500) 10x10x 10 300
MgLi (B2) 56 (864) 12x12x12 112
MgLi (B32) 20 (256) 8x8x8 320
MgLis (L1s) 56 (864) 12x12x12 224
MgLis (DO22) 30 (200) 10x10x 4 240
MgLis (DO3) 20 (256) 8x8x8 320
MgLi~ 20 (256) 8x8x8 640
MgLiys (bcc) 10 (48) 6x6x6 160
Li (hcp) 96 (784) 14x14x8 192
Li (fcc) 56 (864) 12x12x12 224
Li (bcc) 56 (864) 12x12x12 112

Table 4.1: The number of k-points in the irrerucible part of the Brillouin zoné use
in the calculations for all stuctures considered. The numbers in bragetgo the
total number of k points sampled in the full Brillouin zone.
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in the present calculations were setatand0.1 ¢V, respectively for alloys andl. 1
and0.01 eV, respectively for elemental metals since their energy differeneageay

small.

4.4 Elasticity

The elastic properties of a solid are important because they relatgitus funda-
mental solid-state properties, such as equation of state, phonon spectri8d3.
From materials physics perspective, the elastic constaptsontain some of the
more important information that can be obtained from ground-state toéafye cal-
culations. Elastic constants for most pure metals are availablecowede range
of temperature in the literature [81, 82]. In contrast, data for alloys aredmetal-
lic compounds are much more limited. Although the bulk modulus is oftenhas been
calculated, calculations of the other elastic constants are relativatce [83].

The elastic constants of a material describe its response to exterppligca
strain or, the stress required to maintain a given deformation. Falt daformations
we expect a quadratic dependence of the crystal enBrgy the strain (Hooke’s
law). Both stress and strain have three tensile and three shear congyareinyg
six components in total. The linear elastic constants form a 6x6 symmeditiexm
having 27 different components, such that= C;;e; for small stressesy, and
strains,e [82]. Any symmetry in the structure can make some of these components

equal, and/or some strictly zero. A cubic crystal thus has only three diffsyenme-
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try elements (;, C1» andCy,) with each representing three equal elastic constants
(C11 = Csy = C33, C1p = Cy3 = C31, Cyy = Cs5 = Cgg). A single strain with
non-zero first and fourth components can give stresses relating toesd! dfithese
coefficients, yielding a very efficient method of obtaining elastic constiortthe
cubic system. A full account of the symmetry of stress, strain andelaststants
is given by Nye [84]. The elastic constants determine the response of thal ¢oyst
external forces, as characterized by bulk modulgs 6hear modulus{’), Young’s
modulus ), Poisson’s ratio) and shear anisotropy factad). They play an im-
portant part in determining the strength of the material. These elastic rmaréul
given by the following expressions for a cubic crystal:

B =

(011 + 2012), O = (011 — 012), V= Gz andA = _2Cas

g > = tnien e

The requirement of mechanical stability in a cubic crystal leads tailmfing
restrictions on the elastic constants [85]:

(C11 — C19) >0,C1y > 0,Cyy >0, (Cy1 +2C12) > 0.

The single-crystal shear moduli for the {100} plane along the [010] direction
and for the {110} plane along the [D] direction in a cubic crystal are given 6y,
and(’, respectively. The shear constany, is related to an orthorhombic deforma-
tion, whereas th&" is related to a tetragonal deformation and its sifteots the
degree of stability of the crystal with respect to a tetragonal shear [86].

For crystals with a tetragonal structure, such ag &id DQ, , there are six

independent elastic constants in the contracted matrix notatign(',, C13, Css,
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Cy, andCygg. A set of six independent total-energy calculations is necessary to de-
termine these elastic constants. The elastic moduli can be derivedHes® elastic
constants as follows:

B = §(2C11 4 O3 +4C13 + 2C1,), C' = (201 + Cs3 — Ca — 2C13 +

6C4s + 3Cs6), E = Ca3 — 20013, v = C“Cf’cm andA; = % (on basal plane),

Ay = g—=se— (on (010) plane).

The requirement that the crystal be stable against any homogeneous elastic
deformation places restrictions on the elastic constants, just as coltihecase. For
tetragonal crystals, these stability restrictions are as foll@bk [

(C11—C12) >0, (C11+C33—2C13) > 0,C1; > 0,C33 > 0,Cyy > 0, Cg > 0,
(2C11 + Cs3 + 2C12 + 4C13) > 0.

A hexagonal crystal has 6 different symmetry elemefits,(C12, C13, Cs3, Cyg and
Ceg6), Only 5 of them are independent sinCg; = %(CH — C19).

The stability restrictions do not tell us anything further about the redatiag-
nitudes of the various elastic constants. The problem of ductile versus tegfiense
of crystals require their fracture strength in addition to their plastiocnability.
Pugh [87] introduced the quotient of bulk modulus to shear modétys;, for poly-
crystalline phases as a measure of fracture or toughness in metals. A higlofa
B/C" is associated with ductility and a low value with brittleness. Tlitcet value

which separates ductile and brittle materials is about 1.75 [80]. Thenpeter is

mostly applied for cubic materials. The factor that measures the $yaifita crystal
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against shear is Poisson’s ratig.(It provides more information about the character-
istic of the bonding forces than any of the other elastic constants [88]. Théesmal
value ofv indicates that the compound is relatively stable against shear. It bas be
provedr = 0.25 is the lower limit for central-force solids and 0.5 is the upper limit,
which corresponds to infinite elastic anisotropy [89].

In metals and alloys behaving like isotropic media, the Young’s modulus is
proportional to the bulk modulus when the Poisson’s ratio is cIo§ernis Is shown
by the relation between hydrostatic bulk modulus and Young’s modulus expressed by

Poisson’s ratiar appearing in the relatioh = 3 (1 — 2v) B.
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Chapter 5
RESULTS

5.1 Equilibrium Atomic Volume

In this chapter, the predicted cohesive properties are presented sailisdions of
various observed trends including the deviations from Vegard's law [18]alred
by the equilibrium atomic volumes and the variation in the heats of formatimssc
the Mg-Li alloy series. This is then followed by a discussion of the ed&at struc-
ture in the form of the density of states (DOS). The latter is used to¢eaviJones-
type analysis of the structural trends across the Li-Mg phase diagram asditagye
number of electrons per atom (e/a) changes from 1 to 2. Finally the elastialim
are analysed and an interesting correlation with the relativeggrdifference be-
tween the corresponding fcc and bcc ordered superstructures is observed.

We performed geometry optimization calculations for all the Mg-Li syste
illustrated in Figure 4.1 together with the end elements Mg and Li. We used t
GGA-PBE exchange-correlation functional. We commenced the selfstensit-
erations using as an input the experimental lattice constants wherebévaild/e
used a kinetic energy cut-off 600 eV with the number ok-points as specified in
Table 4.1. These had been deduced from plots of the total energy against kinetic en-

ergy cut-off and total energy versus numberkspoints, respectively, to optimize
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our structures as discussed in section 4.3. Since our pseudopotential choide was
trasoft, the CASTEP interface increased the recommended FFT grid atitaty:

this is required to reproduce accurately the augmentation charge [26¢afeutated
equilibrium lattice parameters and equilibrium atomic volumes arallistélables

5.1 and 5.2, for fcc- and bcc-based superstructures respectively, with aailable
experimental and theoretical results for comparison.

Figure 5.1 shows the predicted variation in equilibrium atomic volume acros
the Mg-Li alloy series. We see that with increasing Li composition tbkime
shrinks in a V-shaped manner with the minimum at the equiatomic composition for
both the fcc- and bce-based structures. This behaviour deviates from bottd’'sega
law [108] and Zen's law [115] , which assume a linear dependence on the lattice con-
stant or mean atomic volume, respectively. This is illustrated éor&law in Fig. 5.1
by the solid and dashed lines. This trend is also observed in thereaqtieriments

of Levinson [106].

5.2 Equation of state and bulk modulus

The equation of state for metals is obtained by computing the pressure

dE

P=_"—
av

(5.1)

for different volumed/. The resultingP-V curves for these systems are shown

in Figure 5.2. We observe from this plot thatincreases as the volume is decreased
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Lattice constants (A) Volume (Batom)
Structure Calculatedha Experimentala Calculategc Experimentalc Calc. Yy Exp. V
Hcp
Mg 3.195 3.206107 5.211 5.21107 23.037 23.244¢
3.105109 5185109 22913109
Li 3.050 3.1110 4.922 5.098/] 19.825 21.344
3.103109 5.066109 21.133109
Fcc
Mg 4.530 23.246 23,0711
4524109 23.14¢109
Mg Li 8.990 22.712
MgsLi (L1,)  4.458 22.154
4.47110 22450110
MgsLi (DOs,)  4.481 8.724 21.895
4.453110 8.006110 22073110
Mgli(Ll,)  4.820 3.487 20.258
4.385110 4.385110 21.08¢110
MgLis (L1s)  4.309 19.998
4336110 20.374110
MgLis (DOss)  4.307 8.681 20.128
4.333110 8.664110 20.323
MglLi- 8.610 8.754107 19.942 20.964C
Li 4.307 4.4100 19.973 21.448)
4.386109 21.08¢109

[6] Experiment at -198C.

[107] Experiment at 20C.

[109] Calculated

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA

Table 5.1: Calculated hcp equilibrium lattice constaptarad ¢ for elementary Mg

and Li and the calculated lattice constant$a the underlying fcc lattices of ordered
Mg-Li compounds. The calculated atomic volumes are also shown, together with
available experimental and theoretical counterparts.
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Lattice constant (A) Atomic volume (Batom)

Structure Calculatedha Experimentala Calculated)V Experimental V

Bcc

Mg 3.585 3.578107 23.033 22.80A07
3.504111 23.238111

MgysLi 7.136 22.714

MgsLi (DO3)  7.024 21.652
7.03¢110 21.713110

MgLi(Bl)  5.620 22.190

MgLi(B2)  3.420 3.485106 19.996 21.16406
3434110 3477107 20251110 21014107
3.380112 19.304112

MgLi(B32)  6.948 20.964
6.676112 18.604112

MgLis (DOs)  6.846 20.051
6.872110 20.280110

MgLis (bcc) 3500106 214371106

MgLi 6.842 7.016113 20.025 21.524-13
6.824114 19.861114

Li 3.424 3.516106 20.068 21.628.06
3476109 3401/ 21.044109 21 2737

7] Experiment at 78 K.
[106] Experiment
[107] Extrapolated hypothetical.
[107] Experiment at -183C.
[112] Calculated using Linear combination-of-atomic-orbitals (LCAO)
[113] Experiment at 28C.

[114]
[110]

Calculated using LMTO.
Calculated by exact muffin-tin orbitals (EMTO) method with GGA.

Table 5.2:

The calculated bcc equilibrium lattice constaptsiaelementary Mg and

Li and the calculated lattice constantsfar the underlying bcc lattices of ordered
Mg-Li compounds. The calculated atomic volumes are also shown, together with
available experimental and theoretical counterparts
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Figure 5.1: Atomic volumes of ordered Mg-Li compounds as a function of Li con-
centration (triangles and circles correspond, respectively, to bcdeedtdhsed super-
structures) together with experimental data of Levinson [106]. Zen's landisated

by solid lines with respect to both bcc- and fcc-based superstructures.
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fce-structure Bulk Modulus (GPa)
Calculated Experimental
This work ~ Skriver{110]

Mg 3411

Mg-Li 33.99

MgsLi (L15) 27.15 29.45

MgsLi (DO4) 28.03 28.87

MgLi (L1o) 25.25 24.17

MgsLi- (30 at.% Mg) 16.1116
MgLis (L1,) 19.07 18.76

MgLi; (DOss) 17.49 18.84

MgLi, (20 at.%Mg)  16.80 141316
MgLi-, 16.42

MgLi, (10 at.%Mg) 135116
Li 13.92

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[116] BCC phase at room temperature.

Table 5.3: The bulk moduli for fcc elemental Mg and Li as well as for fcseloh
Mg-Li alloys

as expected. The equilibrium bulk modulus, whichieets the curvature of the bind-

ing energy curves or slope of tie V' curves at the equilibrium volumie), is defined

by

dP d*E

The equilibrium bulk moduli for elemental Mg and Li in both fcc as well as
bcc phases and for Mg-Li order structures with respect to the fcc and ticesadre
given in Tables 5.3 and 5.4, respectively. We observe that the bulk moduli decrea
monotonically with an increase in Li concentration. We see that our eaémlibulk
moduli agree reasonably well with other theoretical counterparts arig $ai with

experiment.
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bcc-structure

Bulk Modulus (GPa)

Calculated Experimental
Mg 37.57
MgysLi 32.94
MgsLi (DO3) 32.76

30.47110
65 at.% Mg 256116
MgLi(Bl)  16.74
MgLi(B2)  22.11

20.25110

20.7116

MgLi (B32)  25.25

18.7¢110 15,9116
MgLi s 23.12
Li 12.00 12,6144

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[116] BCC phase at room temperature.

Table 5.4: The bulk moduli for bcc elemental Mg and Li as well as for bcc-based
Mg-Li alloys
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5.3 Heatsof formation

The heat of formation is one of the prime thermodynamic ingredients in theriree e
ergy to determine phase diagrams, the other being entropy. Hence studyinigithe re
tive stability of the different cubic-based superstructures, it ivenient to consider

the formation energyEy,,,) of each structure. The formation energy is responsible
for the relative stability of the phases at low temperatures wherematcontribu-

tions are not important. The phase equilibria are determined by drawingtheon
tangent [117] lines between the free energy curves of neighbouring compounds. The

heat of formation of the alloy Mg, Li, is defined by

Mgi_zLig Mgi_zLig Li M
Efofrln, "= Etotgzll — [zEs;lid + (1 - x)Esolgd] (53)
Mgi—zLig

whereF

o is the total energy of the alloy;™¢. and L

soli

ol 4 are the total

energies of the stable structures of elemental Mg and Li,zaandd (1 — z) refer to

the fractional concentrations of the constituent elements.

5.3.1 LiandMgin hcp, fcc and bcc phases

The heats of formation (eq. 5.3) depend on finding the energies of the constituent
elements in their ground state structure. As can be seen from Table 5.8salisr
predict hcp Mg structure to be energetically favoured over the fchandtructures,
consistent with experimental and other theoretical results [118, 218, For el-

emental Li, the situation is more complicated. The stable structure f lh¢c at
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temperatures abovis°K. Earlier work by Barrett [7] reported that @&°K the hcp
phase coexists with the bcc phase, and that cold working at low temperatures pro-
duces the fcc phase at the expense of hcp and bcc phases, Li having undergone a
martensitic transformation. However, a later study [8] showed tleagtound-state
structure of Li is neither hcp nor fcc, but a 9R-related complex close-plastkac-

ture suggested by Overhauser [9]. As shown in Table 5.5, our results found tha
hcp Li is more stable than both fcc and bcc at zero temperature, althougidwe

not compute 9R due to the large size of its unit cell. However, there is ondyya

small energy difference between the phases, hcp beinglarymel more stable

than fcc. Since it is well known that the phases of Li are extremely clogin

ergy [5, 121, 122, 123, 124, 125, 126], geometry optimizations had to be performed
with great caution. The smearing width is periodically halved during the plavew
pseudopotential calculation. We used1 and0.1 eV for minimum and maximum
smearing widths respectively, since values as low.as ¢V have been previously
used to calculate the converged energy [25, 26]. However, we must $ta¢$isese
energy differences are so small that even a change in choice of exchamglaton

functional can alter the predictions [121].

5.3.2 Fcc- and bee-based ordered Mg-Li alloys

The calculated values of the heats of formation of the Mg-Li systems coesdlide

this study are summarized in Table 5.6, with asterisks denoting the pikadncist
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Equilibrium total energy Energy relative to hcp
Element Phase ¢HeV/atom) (meV/atom)
Thiswork Experimenf127]

Mg hcp -977.892621 0.00 0.000

fcc -977.877264 15.36 27.04

bcc -977.858844 33.78 32.27
Li hcp -190.029049 0.00 0.00

fcc -190.028985 0.06 0.48

bcc -190.027526 1.52 1.61

[127] Experimental thermodynamically based estimates using CALPHgDaach.

Table 5.5: Calculated equilibrium energies as well as energies eetatinost stable
phase, hcp, for pure elements (Mg and Li) in various phases. Experimentasresul
are thermodynamic estimates within the CALPHAD approach.
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stable phases amongst competing structures for a given stoichiometrye Bigu
shows the plot of the heats of formation of the Mg-Li system versus composition.
We see that the curve takes a V-shape, with its minimum at the equéatration
MgLi compound. This is in agreement with the experimental heats of formation
of liquid Mg-Li alloys at 1000°C' [128] and the theoretical DFT results of Skriver
[110]. This excellent agreement between theory and experiment is fortuitoas, si
the ordered structures should have heats of formation that are ajgubwer in
energy than the corresponding enthalpies of formation of the disordered ligted s
[129].

At 50-50 concentration, the B2 structure is clearly seen as the most stable
phase, since it has the lowest formation energy amongst its competing quans
(Table 5.6). Our calculations predict that the B2 structure is lowethyeV/atom
than that of B32. These results agree quantitatively with the earliedppeten-
tial calculations by Hafner and Weber [112], and Hafner [31], who found B2 to be
lower in energy byl 16 meV /atom and88 meV /atom respectively. Our predicted
heat of formation for the B2 structure ef73.4 meV/atom is in excellent agreement
with Skriver's DFT result of—73.5 meV/atom [110]. Experimentally, a tendency
towards B2 (CsClI) type ordering has been observed at low temperftO&s107].
Interestingly, the difference in the calculated energy differevicthe L1, and B2
phases is small, which suggests that both phases might be present at véaynlow

peratures, if only the kinetics were fast enough for phase transitions. Wevebtiser
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Ordered structure Eform (meV/atom)
Thiswork  Skrive]110] Experimenta[128]
AsB
Mgi5Li (bec) 11.25
A-B
Mg-Li -3.33
AsB
MgsLi (L15) -23.96 -21.2
MgsLi (DO22) -18.82 -20.7
MgsLi (DO3) -38.32%  -48.7* -39.2
AB
MgLi (B2) -73.41*  -735* -56.7
MgLi (B32) -47.72
MgLi (L1¢) ¢/a = 0.72 -72.01
c/a=1 -44.16 -37.2
ABj;
MgLis (L1s) -36.61 -28.3
MgLis (DOs2) -37.43* -34.4
MgLis (DOs) -31.12 -37.4* -31.0
AB-
MgLi~ -20.00
AB15
MgLi5 (bcc) -5.28

[110] Calculated by exact muffin-tin orbitals (EMTO) method with GGA.
[128] Experiment for liquid alloys at 100C.

Table 5.6: Heats of formation of Mg-Li alloys predicted by this work and by $kriv
[109] for ordered structures compared to experimental values for liqugsadit 1000
degrees celsius [Mashovetz and Puchkov]. Asteriks denote the most stafdegbha
that composition predicted by this work and Skriver [109].

a huge energy difference between oug lkésult and Skriver's. This was caused by
the fact that Skriver did not relax the c/a ratio so that his underlyingedais truly
"fcc", hence MgLi (L%) becomes very unstable compared to B2, whilst ours was re-
laxed toc/a = 0.72. It became evident when we did a calculation with fixed ratio of
¢/a = 1 that our result and Skriver’s were in reasonable agreement.

The heat of formation for Mg.i in the three phases (Table 5.6) shows clearly

the preferred stability of the D{phase over the Lland DG, phases. The heat of
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formation of MgsLi in the L1, structure is higher by4.36 meV//atom compared to

the DO, phase, with the D) phase being even bigger. Our predicted phase stabil-
ity ordering is the same as that of Skriver [110]. In the Mgtompound, the D&
structure has the lowest formation energy with the afhd DQ phases lying only

0.82 and6.32 meV/atom higher, respectively. This slight difference between L1
and DQy; indicates a strong stability contest between these phases at this concen-
tration. We see that Skriver predicts the P@hase to be more stable than RO
However, this is probably because he did not relax the c/a axial ratio tomeaal

value o0f2.00. We found an equilibrium value @02 (Table 5.1).

In Figure 5.3, the solid common tangent lines are constructed for the stability
limits of the different phases. Among the structures considered, the mageéne
cally favourable intermetallic phases at absolute zero are theNDifLi, B2 MgLi,

DO,, MgLiz and MgLi, compounds. The Lsland DG, structures are metastable at
25% Li, while the B1, B32 and L{ structures are metastable5at% Li. Our equi-
librium calculations predict DOto be the most stable structure afBAcomposition,
while at AB; the DOy, structure shows more stability than its competitors.

The Mg-rich compounds, the bcc supercellivlg and the fcc supercell Md.i,
lie well above the tangent line connecting hcp Mgy {,,,= 0 eV') with DO3; MgsLi.

This clearly indicates the instability of the bcc and fcc Mg-Li compoundsiiada
this region. This instability supports Hafner’s earlier work [31] that NMgpLi com-

pounds are dominant in the region with less th&f Li concentration. The for-



79

mation energy of MgLi in both the DG, and L1, structures lie above tangent line,
which indicates the instability of the fcc lattice in this region. Thergagcally
favoured phase is DQ Most of Mg-Li compounds at the Li-rich side lie either ex-
actly or very close to the line connecting B2 MgLi with elemental hcpAs far as

the stability is concerned in this region, fcc-based compounds are havingpan u
hand over the bcc-based compounds. In both regions, our predicted stability pro-
file is in full agreement with Hafner’s earlier work [31] on disordereeMg solid

solutions using second order perturbation theory.

5.4 Electronic density of states

Mg and Li are very good nearly-free-electron metals. This implies ttheit elec-
tronic properties can be understood by first considering those of a free electron
gas, in which the eigenvaluds vary parabolically with the wave vectdrasF =
(h?/2m)k>. Filling up these states with 2 electrons each following Pauli’$teskon
principle, we arrive at the concept of the Fermi surface, which is sphéoica free
electron gas. As is well known, the corresponding density of stgte3 of a free
electron gas varies as the square root of the energy.

The electronic densities of states (DOS) for the hcp, fcc and bcc phases of Mg
and Li are presented in Figure 5.4, using the CASTEP plane-wave methodalogy a
discussed in section 3.6. We have taken the Fermi |[Byehs the zero energy. The

occupied part of the DOS for both Mg and Li in all three lattices show apprab@m
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free-electron behaviour. This confirms that Mg and Li are good neantyefiectron
(NFE) metals since their occupied DOS are only a relatively smalug®ation of
the free-electron density of states. However, we observe that Ll, its ¢hree con-
sidered phases, displays very strong deviations from free-electron behabimue
the Fermi energy. This is a direct consequence of this first-row element hawing
p core electrons. This leads to large energy gaps opening up at the Brillouin zone
boundary, and hence large deviations from free-electron behaviour in the unoccupied
region of the DOS above'.

The partial and total DOS for the Mg-Li ordered structures with resjoeftic-
and bcc-based lattices are shown in Figures 5.5-5.9. They agree wittDétheral-
culations in the literature [111, 114, 133]. We see that for all these difterrdered
phases the occupied region of the total DOS is approximately free-eldigeoihe
partial DOS rdéects the primarily s-type bonding on the Li sites, but the hybridized
s-p bonding at the Mg sites, as expected for these monovalent and divalafs, met
respectively. Table 5.7 gives the calculated DOS at the Fermi levély), for the
1:1 and 3:1 stoichiometries.

This relation between structural stability and the behaviour of the DORein t
vicinity of the Fermi energy can be formalized by a Jones-type analysis [13#igUs
a rigid-band model, the theory shows how structure in the density of statstaties
into an energy difference for competing phases as a function of thizalemunt.

Within the rigid-band approximation we assume that the bands of hcp, fcc, and bcc
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Compound  Structure n(Er)

(states/eV/atom)
MgsLi L1, 0.417
DOss 0.312
DO; 0.367
MgLi B2 0.399
B32 0.445
L1y 0.412
D02 0.669
DO; 0.564

Table 5.7: The total density of states at,l8(Ex) (in states/eV per atom), of My
and MgLg, in L1,, DO,, and DQ phases, and MgLi in B2, B32 and }.phases,
respectively. Asteriks denote the predicted stable phase.
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lithium remain unchanged (or rigid) on alloying. A Jones analysis then staiethe
structural energy difference between any two lattices at the samn@avolume is

given by

Ep
AU = AUband =A |:/ E?’L(E)dE:| 3 (54)
wheren(E) is the electronic density of states (DOS) per atom. The Fermi

energyE'r is determined by the number of valence electrons per aférs e/a,

according to

Erp
N = / n(E)dE. (5.5)
Jones showed that the energy difference equation (5.4) allows us to link the
relative stability of competing structures to the relative behavidtine correspond-
ing DOS. To help us understand the behaviour of the bandstructure engrgy,;,
we exploit the following expressions for the first and second derivativeslaf,,,

(equation 5.4) with respect to the electron numbBbéras follows:

diN(AUband) =A [%EFTL(EF)} = AEF’ (56)
d? 1
W(AUband) =A |:n(EF)1 ) (57)

wheren(Er) is the DOS at the Fermi energy for the electron numbet e/a.

Taking the difference of equation (5.6) for two different structures, we lsaetihe
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derivative of the energy difference is zero at certain special banugslifor which

the two Fermi energies are equal. At these valued/pthe bandstructure energy
differanceAU,,,.q iSs extremal or possibly (in rare cases) a saddlepoint. To identify
a maximum or a minimum, we take the difference of the inverses of their DOS a
Er, as given on the right-hand side of equation (5.7). If one of the structures has a
lower DOS at this Fermi level, an extremum is present and this structsre lower
energy.

We employed the ab initio TB-LMTO-ASA (tight-binding-linear muffimtor-
bitals within atomic sphere approximation) method [39, 135, 136] to calcuiate t
DOS for the hcp, fcc and bec Li structures using the equilibrium cell patensipre-
dicted by the CASTEP code (Section 4.4). To simulate the alloying wigh We
keep the Li band structures for hcp, fcc and bcc structures fixed and ataldbe
bandstructure energies for an electron number varying between 0 and 2.

The difference of the bandstructure energies as a function of electron number
is shown in Figure 5.10, together with the Fermi energy difference and DOS, al
plotted againstV = e/a rather than energy. The top panel is the output quantity we
are interested in, namely the bandstructure energy difference. The hcp-fgy ene
difference curve has a minimum aroudd = 1.0 where the hcp DOS is lowest
and a maximum around/ = 1.6 where the fcc DOS is lowest, whereas the hcp-
bcc curve has a minimum around = 1.1 where the hcp DOS is lowest and a

maximum aroundV = 1.75 where the bcc DOS is lowest. The middle panel shows
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the first derivative of the energy function, i.e. the Fermi energy diffexehé’r.

This quantity has a positive slope where the hcp DOS lies below both theddaca

DOS, and vice versa. The bottom panel presents the input, namely the DOS functions
for the different phases. The central point is that this gives essentielgecond
derivative ofAU,,,,s. Thus, where the bcc DOS lies above the fcc DOS, the curvature
of the energy difference function is such that the bcc structure wititenadly become

more stable. We see that with increasing electron concentration, thersexaf
stable phases is hcp-fcc-bee-hep, in agreement with previous theoregdattns

[31].

5.5 Elastic properties

From the perspective of materials physics, the elastic constantontain some of

the more important information that can be obtained from ground-statecio¢agy
calculations. A given crystal structure cannot exist in a stable or tablasphase
unless its elastic constants obey certain relationships. Cthalso determines the
response of the crystal to external forces, as characterized by thebdlkus, shear
modulus, Young’s modulus, and Poisson’s ratio, and so play an important role in
determining the strength of a material [81]. First-principles caltohs that use
periodic boundary conditions assume the existence of a single crystal, $asétt e
constants can be determined by direct computation. The calculatedn then be

used to check the experimental bulk and shear moduli, if available, aralibvate



91

007 t hep - foo .

005 i

4)

003 | hepfee / .
\/" \\

001

U poa (€V aom

A
o
o
=

T

-0.03

'08 T T T T T T T T T T T T T T T T T T T T

— Lihcp

*atom )
o
(o))

o
IN

©
(N

n(E ;) (stateseV

©
o

Figure 5.10: Energy difference, the Fermi energy difference and densitatess
plotted against electron concentration. The plot begin$ at 0 so Li occurs in the
middle of the diagram wher®& = 1 whilst Mg occurs whereV = 2.
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model calculations. In addition, the elastic constants can be used to ttieepghase
stability of proposed compounds [137, 138]. First-principles calculations can thus
be used to predict the existence and properties of new materials and.phases
theoretical search for new materials, an interesting and importeatadmresearch is

to study binary compounds that exhibit high melting temperatures and largee elast
constants (which roughly correlate with "strength”). These alloys mighgduel
candidates for new structural materials, were they are not brittle [Bdj.a cubic
crystal to be mechanically stable it has to satisfy the followitigon: B = (Cy; +
2C15)/3 > 0, C" = (C1; — C12)/2 > 0, Cyy > 0 at the equilibrium of the equation

of state, wherés andC" are the bulk and shear modulus, respectively.

We performed calculations of the elastic moduli of Mg-Li alloys using CASTEP
in Materials Studio version 3.0 [96]. Practical methods of determiningémgtic co-
efficients from first principles usually set either the stress (or tte@ngtto a small
finite value, optimize any free parameters of the structure, and eddctiie strain
(or stress). With a careful choice of the applied deformation, thstielmoduli can
then be determined. Applying a given homogeneous deformation (the strain) and
calculating the resulting stress requires far less computational effoce the unit
cell is fixed and only the ionic positions require optimization. This is thehoabt
implemented in the current work. The elastic properties were caézlitat comput-
ing the components of the stress tensor for small strains using the method ddvelope

by Nielsen and Martin [139]. For small strain, thg;andC', elastic constants are
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derived from the harmonic relatiofi;; = o;/¢; andCi2 = o3/, whereo; and

€; represent respectively, the stress and the applied strain. To®soapic stress
in the solid is computed for a small strain by the use of the stressdhe and the
forces on the atoms are derived from the Hellman-Feynman theorem B@2hn

€4 Strain (uniaxial strain in thé111) direction) there are internal displacements of
the sublattices, and the atomic positions in the unit cell are not determingdbynl
symmetry. Kleinmann [140] defines an internal strain parantetieat describes the
displacements of the atoms.

The application of strain on the lattice implies a lowering of symmétoyn
that of the crystal, therefore very accurate total-energy calculatrengquired since
the energy differences involved are of the ordei@to 1000 peV/atom. This cir-
cumstance requires the use of a fikpoint mesh. The calculations were considered
converged when the maximum force on atoms was bélow eV// A, the total en-
ergy change per atom was less tham0—* eV /atom and the displacement of atoms
was belowix10—4A. Both the energy and the stress were Pulay corrected to reduce
any remaining finite basis set errors. The calculations were done #iennetically
determined (equilibrium) lattice constants for each structure, wigtaae-wave ba-
sis set defined by an energy cut-off&f0 el for pure elements arkD0 eV for the
ordered superstructures, a very small smearing width Io£V" and sufficient sets
of k-points. These parameters are essential because the Fermi energyeathlee

total energy depend quite sensitively on them.
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For each of the structures, six different values of the sttair)008, +0.0024
and=+0.004 were used. The value of the stress is calculated for each strain. Afiinea
of the stress-strain relationship for each component of the stress is aargnd its
gradient provides the value of the elastic constant. With our choice of $ peg@nts
in the full Brillouin zone and cut-off energy, the energy per atom was converged
to 0.1 meV/atom and4 meV /atom or less for pure elements and superstructures,
respectively.

The calculated elastic constants for the Mg-Li systems are compageacile
able experimental data and the results of other calculations ie Ba®l We find that
the elastic constants of pure Mg in the hcp phase are in acceptable agtesthe
experimental results [130] as well as previous theoretical results [14i]tne ex-
ception ofCy, which is aboub0% too small. The elastic constants of the fcc lattice
Mg are also in good agreement with the available theoretical results Wia bcc
phase is found to be mechanically unstable, since the tetragonal shear m@dislus
negative. Our results for pure Li show mechanical stability in all tiple@ses with
the elastic constants being in good agreement with both experimental [143] and pre-
vious theoretical results [81, 141], except for the case(§f and Cy, of the bcc
lattice which are overestimated.

Our calculated elastic constants for tetragonal systems show a\ahad| of
Cy In comparison ta’ss which means that the tetragonal unit cell is more easily

deformed by a pure shear ab@uandb axes in comparison to theaxis, with the
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Composition Structure Chi Cha Cua Ci3 Cs3 Cse B VO%
GPa GPa GPa GPa GPa GPa GPa GPa
Mg This work hcp 59.84 2425 831 16.09 7056 17.80 33.67
Calculated141] hep 66.20 22.10 18.00 16.60 6250 22.05 33.94
Experimenfl30]  hcp 63.48 2594 18.42 21.70 66.45 18.77 35.40
Mg This work fcc 42.75 30.96 23.09 - - - 34.89 34.11
Calculatioj142]  fcc 46.00 27.40 30.00 - - - 3360
Mg This work bcc 25.65 3941 35.96 - - - 34.82 37.57
MgisLi This work bcc 55.77 24.70 50.93 - - - 35.06 32.94
Mg-Li This work fcc 2221 29.47 24.23 - - - 27.05 33.99
MgsLi This work L1, 2578 29.93 24.50 - - - 2854 27.15
Calculatedl 10 29.45
DOy, 2430 28.17 3044 2764 23.63 3113 26.60 28.03
Calculatedl 10 28.87
DOs 39.96 2559 41.03 - - - 30.38 32.76
Calculatedl 10 30.47
MgLi B2 3751 19.70 2591 - - - 25.64 2211
Calculatedl 10 20.25
Exp[128]55% Mg B2 32.20 19.80 26.60 - - - 23.90
Exp[128]45% Mg B2 28.50 20.50 19.40 - - - 2320
B32 30.99 2455 2855 - - - 26.70 25.25
L1, 53.66 1.37 33,57 19.95 31.18 10.98 2447 2525
Calculatedl 10 24.17
MgLis This work L1 25.76 1594 18.68 - - - 19.21 19.07
Calculatedl 10 18.76
DOss 28.86 13.86 21.66 14.49 27.37 2327 1897 17.49
Calculatedl 10 18.84
DO; 1942 17.79 15.42 - - - 18.33 18.04
Calculatedl 10 18.78
MgLi~ This work fcc 15.83 16.95 11.70 - 16.58 16.42
MgLi5 This work bcc 18.24 13.25 11.52 - - - 1492 23.12
Li This work hcp 2434 476 637 454 2486 979 11.25
Li This work fcc 1751 1142 931 - - - 13.45 13.92
Calculate81] fcc 1410 7.80 8.60 - - - 9.90
Li This work bcc 19.65 10.93 16.12 - - - 13.84 12.00
Calculatef141] bcc 13.00 11.00 1140 - - - 1160
Calculate¢81] bcc 15.60 14.80 11.20 - - - 10.60
Experimenfl43]  bcc 1450 12.10 11.60 - - - 13.00
Experimenfl44]  bcc 13.50 11.40 8.80 - - - 12.10

Table 5.8: Calculated elastic properties of Mg-Li alloys at equilibrilattice para-
meters. The bulk moduli determined from elastic constants is compatkdhe
ones calculated from equation of states.
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Composition Structure ¢’ B/C’ E v A
GPa GPa
Mg This work hcp 15.80 2.13 64.41 0.19 A; =1.00
Ay =0.34
Calculate141] hcp 20.92 1.62 56.26 0.19 -
Experimenfl130] hcp - - 4500 0.35 -
Mg This work fcc 589 592 16.75 0.42 3.92
Calculatiof142] fcc 930 361 2554 0.37 3.23
Mg This work bce -6.88 5.06 -22.09 0.61 -5.23
Mg 5Li This work bcc 15.54 2.26 40.60 0.31 3.28
Mg-Li This work fcc -3.63 7.45 -11.41 0.57 -6.28
MgsLi This work L1, -2.08 13.72 -6.38 054 -11.81
DOy2 17.65 1.51 -550 0.53 A; =-16.09
Ay = —16.57
DO; 719 423 1997 0.39 5.71
MgLi This work B2 891 288 2394 034 291
Experimenfl28]55% Mg B2 8.33 - 17.12 0.38 4.29
Experimenf128] 45% Mg B2 5.44 - 11.35 042 4.85
B32 3.22 8.29 9.30 0.44 8.87
L1, 2211 111 16.71 036 A; =042
Ay =299
MgLi3 This work Ll 491 391 13.58 0.38 3.80
DOy, 16.13 1.18 1754 034 A;=3.10
Ap =3.18
DOs 082 2235 242 0.48 18.92
MgLi; This work fcc -0.56 29.60 -1.70 0.52 -20.89
MgLi5 This work bcc 250 5.97 7.09 0.42 4.62
Li This work hcp 2.32 4.85 2344 016 A; =1.00
As =0.63
Li This work fcc 3.05 442 849 0.39 3.06
Calculated81] fcc 580 171 14.00 0.35 2.73
Li This work bcc 436 317 11.83 0.36 3.70
Calculate141] bcc 1.00 11.60 291  0.46 11.40
Calculate§81] bcc 340 312 930 040 16.70
Experimenfl144] bcc 390 310 1050 0.36 8.38

Table 5.9: Other derived elastic moduli of Mg-Li alloys, namely sheadutus (C’),
the ratio of bulk modulus to shear modulus (B/C’), Young’s modulus (E), Poisson’
ratio (v) and the shear anisotropy factor (A).
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exception of L} structure wherein the opposite is the case. The s@iglivalue
indicates that Mg-Li alloys are marginally stable with respect to(t1®) shear on
the (010) plane in this region.

In Table 5.9, we list the values db/C’ of Mg-Li alloys together with their
shear modulu$C”), Young’s modulug E), Poisson’s ratiox) and shear anisotropy
factor(A). The bulk moduli decrease monotonically with the addition of Li content.
The bulk moduli obtained from elastic constants agrees well with the empetal
and other previous theoretical results including the ones extracted frorticegah
states. The3/C’ values of 1.11, 1.18 and 1.51 for MgLi (b}1 MgLis (DOy;) and
MgsLi (DO»,) , respectively, suggest that these compounds to be brittle, while the
remaining ones appear to be ductile since their values are above thal ealize of
1.75. The values oB3/C" for all our Mg-Li systems, except for compounds listed
above, are generally larger than those of pure elements, Mg and Lialdasnter-
esting to note that cubic Mgi (DO3) structure is the only phase that is stable at this
concentration and has a positive value of Young’s modélusor most of our struc-
tures, the derived is slightly higher than the isotropic value é)f thus resulting to
E being less tharB. We also observed that an increase in Li content increases the
Poisson ratio as well as the anisotropy.

The elastic constants of our cubic Mg-Li systems listed in Table 5.8 obey the
stability conditions as outlined in Section 4.4, including the fact thatmust be

smaller thar('; 1, except for Mg bcc, Mgli, MgsLi (L1,) and MgLt, structures. The
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conditions also lead to a restriction on the magnitudé3ofSince B is a weighed
average of’; andC}, and stability requires that’, be smaller thar;;, we are
then left with the result thaB is required to be intermediate in value betwe&en

andCi,,

C2 < B < (1.

The elastic constants in Table 5.8 for tetragonal phasesaihd DG, strucutres,
satisfy all of the above conditions. In particulék, is smaller tharC;; andCi3 is
smaller than the average ©f; andCss. The only structure that does not satisfy these
stability restrictions is MgLi in DO,, phase, thus showing mechanical instability.

Figure 5.11 presents in (a) the tetragonal shear modufle$ our ordered bcc-
and fcc-based superstructures and (b) the predicted energy diffdsetween the
corresponding bcc and fcc ordered compounds relative to hcp Mg and Li lattices
both plotted against the electron per atom ratio ranging from 1 (Li) to @) (NVe
find an interesting correlation between these quantities, that, ireghierwhere bcc
is very stable compared to fcc, the shear modulus is positive for bcc butiveega
for fcc (i.e. the fcc lattice is the mechanically unstable) and viesaveThe similar
behaviour had been pointed out earlier for elemental transition metals Bvicraet
al [145] and B2 and L4 TiAl by Sob et al [146]. This rects the underlying change
in hcp to fcc to bee to hep structural stability as the electron per attim changes

from 1 (Li) to 2 (Mg).
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Figure 5.11: Plot of (a) tetragonal shear modultisf ordered bcc- and fcc-based
Mg-Li superstructures and (b) the relative formation energies of the gamegng
bcc and fcc Mg-Li compounds, against the electron per atom ratio.
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Chapter 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

The first principles pseudopotential calculations based on the generglaée@nt
approximation (GGA) within density functional theory (DFT) have been iilito
succesfully investigate the cohesive, electronic and elastigepties of cubic-based
Mg-Li alloys. In addition to calculating all of the equilibrium strucal parame-
ters (Sec. 5.1-5.4) we have also obtained values for all of the zero-predastie
constants (Sec. 5.5) for the Mg-Li compounds considered in this study.

We found that with increasing Li composition the volume shrinks and some
kind of a parabolic or V-shaped trend with minimum at the equiatomic comeosit
was observed in both fcc and bcc structures. This behaviour is cldaolynsin
Figure 5.1, wherein, Vegard’s law [108] or Zen’s law [115] , which assumeseali
dependence of the lattice constants or mean atomic volumes, respedfvatjid
solutions with composition (as shown in Fig. 5.1 by solid lines), is diyegdblated
in both fcc- and bcce-based superstructures as expected and this was &s@®dbs
in earlier experiments [106] as well as previous theoretical inveshiga{31]. The

trend of decrease in the Mg-rich region uriil atomic per cent solute, at which the
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behaviour is slowly reversed in the Li-rich region, of the lattice constatit the

addition of Li for bcc structures was also obtained from earlier expersi{@66].

Our results predict hcp Mg structure to be energetically favoured tnee
fcc and bcc structures, consistent with experimental and other thebnetstdts
[118, 119, 120]. Our results showed that hcp Li is more stable than both fcc and becc
at zero temperature, agreeing with the experiment [7], but with onlyyasreall en-
ergy difference (especially between fcc and hcp). Since it is known tesetbhases
(Li) are close in energy [5, 122, 121, 123, 124, 125, 126], geometry optimizations
had to be performed with great caution. As a function of concentration, the heat
of formation plot shows a V-shape curve, with a minimum at the equi-conciemtrat
MgLi compound, which is in agreement with the experimental work [128] and pre-
vious theoretical results [141]. The predicted heats of formation for altlifierent
ground state superstructures result in a representative stabilityeprgfilch shows
thatthe DQ, B2 and DQ, structures are the most stable amongst various phases hav-
ing MgsLi, MgLi and MgLi; compositions, respectively. In both regions (Mg-rich
and Li rich sides), our predicted stability profile is in full agreemerthwiafner’s
earlier work [31] on disordered Li-Mg solid solutions.

The general trend in the total DOS is that from the bottom of the valence band
the DOS increases smoothly as a function of energy as they would in al&eton

system up tdZr or just slightly above it. The Jones-analysis method compliments the
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heats of formation, DOS and elastic constants results in that the medittictural
stability profile is hcp-fcc-bece-fec, in agreement with previous ressoil Hafner [31].
The bulk moduli decrease monotonically with the addition of Li content. The

equation of state bulk moduli is in good agreement with both the experiméagl

and other previous theoretical [110] results. TBeéC’ values of 1.11, 1.18 and

1.51 for MgLi (L1,), MgLis (DOy,) and MgLi (DO,,) respectively, suggest that
these compounds to be brittle, while the remaining ones appear to be ductile since
their values are above the critical value of 1.75. These following strustivig

bcc, MgrLi, MgsLi (L15), MgsLi (DO43) and MgLi; were found to be mechanically
unstable. We also observed that an increase in Li content increases $herPeitio

as well as the anisotropy.

6.2 Futurework and recommendations

The predicted heats of formation with respect to different underlyinigéastisuch as
fcc or bece will be used as an essential input for calculating effectiveter interac-
tions, from which theoretical phase diagrams can be computed using Morite Car
[19] or the Cluster Variation Method (CVM) [20].

The elastic moduli calculated here, in particular, Young's modulus and&tois
ratio, will serve as an input to an object oriented finite (OOF) [147] eletrprogram.
This program (OOF) will be used on the micrographs (pixels) of Mg-Li saspb-

tained from the electron microscope (EM) to initiate microstructstadlies of these
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alloys. These includes simulations of stress distributions and predictionschan-
ical behaviour (evolution with temperature, pressure and composition)oysadind
fracture processes.

This work will form the basis for future study in collaboration with the 8SI

on the strengthening of Mg-Li alloys by the addition of ternary elements.
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