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Abstract

A useful way for studying the properties of a group G is to express the elements
of G in terms of matrices or permutations [27]. In 1878 Cayley showed that every
group G is isomorphic to a subgroup of the symmetric group Sg, where Sg is the
group of all permutations on G. A representation of a group G is a homomorphism
T:G — GL(n,F) from G into the group GL(n, F') of n x n invertible matrices over a
field F'. The character of G afforded by a representation T is the trace of the matrices
T(g) for each g € G. The table of characters of G is called the character table of
G [20]. Since the completion of the classification of finite simple groups in 1981 [4],
current research work in group theory involves the study of the structures of simple
groups. The structures and character tables of maximal subgroups of simple groups
give substantive information about these groups. Most of the maximal subgroups of
simple groups [8] and some of their constituent groups are of extension type (i.e. a
group G = N.G such that N < G and G/N = G).

In our research we are particularly interested in faithful permutation representa-
tions of sporadic simple groups and their automorphism groups [27]. The Mathieu
groups are examples of sporadic simple groups [32]. A permutation group G on X is
said to be k-transitive on X if for any two k-tuples (z1, z2, ..., z) and (y1,Y2, - .-, Yk)
of k distinct elements of X, there exists g € G such that z/ = y;,1 < i < k. Apart
from the symmetric groups S,, and Alternating groups A,, the Mathieu groups are
the only non-trivial faithful k-transitive permutation groups for k = 4,5 [32]. Now
as can be seen from the Atlas of Finite Groups [8], the Mathieu group My, has a
maximal subgroup of form 24 : S5. Likewise the Mathieu group M3 has a maximal
subgroup of form 2*:A;7. As part of this project we will study the groups of forms 24
: S5 and 2% : A;. We note that some groups of form p"~! : §,, where p is prime,
have been studied in [35], however the group 2% : S5 studied here is not one of those

groups. This will give some information about the structures of these groups.



ii

Let m,n € N, the set of positive integers and Z,, = {0,1,...,m — 1} be the set of
residues modulo m, also considered as a cyclic group C,, of order m. One of the
groups to be studied in this work is a subgroup of the symmetric group S, of degree
m X n. For example, we know from [28] that the simplectic group SP(6,2), which is a
maximal subgroup of the Fischer group Fj,,, has a subgroup of form 2° : Sg. Further
the group 2° : Sg has a subgroup isomorphic to the split extension (S3)2 : Cs or the
wreath product of the symmetric group Ss of degree 3 with the cyclic group Cs of
order 2. In this project, we will also study the groups (S,)™ : C,,, where m is prime
and n is a positive integer. The group (S,)™ : Cp, is a subgroup of the group Smn

of degree m X n.

Several methods for constructing the character tables of group extensions exist.
However, Fischer [12] has given an effective method for constructing the character
tables of some group extensions including the groups cited above. This method known
as the technique of the Fischer-Clifford matrices makes use of Clifford Theory [7,
20]. Given a group extension G = H.G such that every irreducible character of H can
be extended to its inertia group, for each conjugacy class of G we construct a matrix
called a Fischer-Clifford matrix of G. By using the Fischer-Clifford matrices of G
together with the fusion maps and the character tables of inertia factor groups of G, we
are able to construct the character table of G. We note that Fischer-Clifford matrices
satisfy certain properties which may be used to construct them. The method of the
Fischer-Clifford matrices has been used in many works both on split and non-split
extensions [1, 10, 12, 25, 28, 30, 34, 35].

Here we will use the method of Fischer-Clifford matrices to construct the character
tables of the groups 2% : S5, 24 : A7, (S3)% : Co, (S3)3 : Cs, (S4)? : Cy and (S4)? :
Cs.



iii

Declaration

The work described in this Dissertation has been carried out under the supervision
and direction of Dr Kenneth Zimba, School of Computational and Mathematical
Sciences, University of Limpopo (Turfloop), Polokwane, South Africa, from March
2006 to April 2008.

The Dissertation represents original work by the author and has not otherwise
been submitted in any form for any degree or diploma to any other University. Where

use has been made of the work of others it is duly acknowledged in the text.

Signed:

Dr Kenneth Zimba (supervisor)



v

Acknowledgements

I thank my supervisor, Dr Kenneth Zimba, for his advice, support, encouragement
and guidance during my studies. I will also thank my lecturer Mrs H.F. de Neijs for

believing in me and supporting me throughout my studies.

I am grateful for the facilities provided to me by the School of Computational and
Mathematical Sciences, University of Limpopo (Turfloop). I also wish to express my
sincere gratitude to my colleagues in the School of Computational and Mathematical

Sciences at the University of Limpopo for all the support during my studies.

I gratefully acknowledge financial assistance from the University of Limpopo. My
special thanks go to my family for the support they gave me throughout my studies,
especially my parents Leah and Johannes whose sacrifices, love and encouragements

in bringing me up has made me to achieve my goals.



Notation

Throughout this Dissertation all groups discussed are finite. We will use the following
notation from the ATLAS [8] unless stated otherwise.

N N Z

m=1{0,1,2,...,m—1}

2 0 =®B T

G,N,H,K,S,M,Q,I
lg

H<G

NG

N.G

N:G

N -G

o(g)

natural numbers

integers

cyclic group of order m

a field

real numbers

complex numbers

a set containing n elements
groups

identity element of G

H is a subgroup of G

N is a normal subgroup of G

a group extension

a split extension or semi-direct product
a non-split extension of N by G

order of an element g



action of g on d

a conjugacy class with representative g
an orbit of the action of G on d
centralizer of g in G

the right coset of H

normalizer of H in G

the set of irreducible characters of G
identity character of G

permutation character of G on H
the restriction of a character x to H
the induction of a character 6 to G
the symmetric group on 2

the direct product of n copies of Z,,

an elementary abelian group of order m"™ with prime m

general linear group or non-singular n X n matrices over F'.
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Chapter 1

Introduction

Let m,n € N, the set of positive integers and Z,, = {0,1,...,m — 1} be the set of
residues modulo m. We will also consider Z,, as a cyclic group C,, of order m. Let X
be a set and Sy be the set of all permutations on X. Then Sx is a group under the
composition of functions (symmetric group on X). If X is finite of order n, then
|Sx| = n! and we write S,, instead of Sx. All the groups studied here are permutation

groups.

Definition 1.0.1 Let G be a group. We say that G acts on X if there exists a
homomorphism ¢ : G — Sx. Let g € G and x € X. We denote ¢(g)(z) by 9 or
gx. The homomorphism ¢ is said to be a permutation representation of G. If ¢
is one-to-one, we say that G is a permutation group on X (in this case G can be

identified as a subgroup of Sx ) and ¢ is a faithful permutation representation of G.

Let 6 be a character of a subgroup H of a group G. Define the action of g € Ng(N)
on 0 by 09(h) = 0(ghg™1), h € H. Let Ng(H) be the normalizer of H in G. Then
I(0) ={g € Ng(H) | 09 = 0} is called the inertia group of 6 in G. If H is normal
in G, then Ig(0) = {g € G | 69 = 6} [20]. We observe that Ng(H) acts on the
characters of H by g : 0 — 69 for all g € Ng(H) and the inertia group of € is the
stabilizer of 6 in Ng(H). Thus Ig(0) < Ng(H) < G and it is clear that H is a normal
subgroup of Iz(#). The quotient group I;(0)/H, called the inertia factor group
of 0, is a subgroup of G/N = G.
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1.1 Background

In the following sub-sections we discuss the groups that will be studied in this work.

1.1.1 Some groups of forms 2%:S; and 2*:4;

In our research we are interested in faithful permutation representations of sporadic
simple groups and their automorphism groups. The Mathieu groups are examples
of sporadic simple groups. The group Mss has a maximal subgroup of form 24:Sj5
and the group Mbss has a maximal subgroup of form 2%:A47. Part of our work here
will involve constructions of the character tables of groups of forms 24:S5 and 2%: A7,

which are not necessarily the maximal subgroups of M and Mas.

Definition 1.1.1 Let G be a permutation group on X. We say G is k-transitive on
X if for any two k-tuples (x1,x2,...,2x) and (y1,Y2,.-.,yk) of k distinct elements of
X, there exists g € G such that xf = y;,1 <i <k. If k=1, we say G is transitive.

Apart from the symmetric groups S,, and Alternating groups A,,, the Mathieu groups
are the only non-trivial faithful k-transitive permutation groups for k = 4,5 [32]. Now
as seen from the Atlas of Finite Groups [8], the Mathieu group Mass has a maximal
subgroup of form 24 . S5 of index 231 in My,. Likewise the Mathieu group Mo3
has a maximal subgroup of form 2%:A47 of index 253 in Ma3. In this project we will
construct the Fischer-Clifford matrices and character tables of groups of forms 24:S5
and 2%:45.

1.1.2 A subgroup of the symmetric group 5,

One of the groups to be studied in this work is a subgroup of the symmetric group

Sn. We describe this group in this subsection.
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Definition 1.1.2 Let m,n € N,

(i) An m-composition of n is an m-tuple (ki,ka, ..., kn) such that
Z;”Zl kj = n, where kj; € NU{0}. The set of m-compositions of n is denoted
by A(n,m).

(ii) Let (k1,ka,...,km) € A(n,m). The expression

n B n!
ki ko ... k)  kilkal-- k!

1s called a multi-nomsial coefficient.

Let N be the direct product of n copies of Z,,. Let S, be the symmetric group of
degree n. The wreath product of Z,, with S, is a split extension of N by S,, called
the generalized symmetric group, denoted by B(m,n) [24, 25]. We note that N
is a Zpy-module. Thus we may write the elements of N additively as d = Y., lse,
where [; € N and e, are generators. Further S,, acts on N by permuting the [s in d
[29].

Definition 1.1.3 LetS={de N | Y i, 1, =0 (mod m)}. Then S is an S, -invariant

n=1_ Therefore we can define a split-extension S : S, of

subgroup of N of order m
S by Sy, where S, acts on S as it acts on N. This group extension is denoted by

Bs(m,n) [35].

It is shown in [35] that the symmetric group S,, acts on the set Irr(S) of irreducible

characters of S producing

i) L {("+m_l) } orbits of lengths ( b ), not all k;s equal, and one orbit

m—1 k
of length L (, )" ) if m|nand k= %
(i) ("] 1) orbits of lengths (,, . ) if mtn.

Remark 1.1.4 Following from the above, it can be shown easily that the inertia factor
group of the irreducible character 6 of S in Bs(m,n) is a subgroup (called a young
of Sy, for some (ki,ka, ..., kn) € A(n,m). However, if

m | n and (k,k,..., k), k= 1, is one of the m-compositions of n, the corresponding

subgroup) Sk, X Sk, X -
inertia factor group of the irreducible character @ of S in Bg(m,n) is given by the
split extension (Sn )™ : Cp, [35]. We note from above that (S )™ : Cp, is a subgroup
of Sp.
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As an example, we know from [28] that the simplectic group SP(6,2), which is a
maximal subgroup of the Fischer group Fj,,, has a subgroup of form 25 : Sg. Further
the group 2° : Sg has a subgroup isomorphic to the split extension (S3)2 : Cs or the
wreath product of the symmetric group Ss3 of degree 3 with the cyclic group Cs of
order 2. In this work, we will also construct the character tables of some examples
of the groups (S,)™ : Cy,, where m is prime. These groups will include (S3)? : Cs,
(S3)2 1 C3, (S4)? : Cy and (S4)® : Cs of orders 72, 648, 1152 and 41472 respectively.
The group (S,)™ : C,, is a subgroup of Smn of degree m x n.

1.2 Aims and Methodology

Several methods for constructing the character tables of group extensions exist. How-
ever, Fischer [12] has given an effective method for constructing the character tables
of some group extensions including the groups cited above. This method known as the
technique of the Fischer-Clifford matrices makes use of Clifford Theory [7, 20].
Given a group extension G = H.G such that every irreducible character of H can be
extended to its inertia group, for each conjugacy class of G we construct a matrix
called a Fischer-Clifford matrix of G. By using the Fischer-Clifford matrices of
G together with the fusion maps and the character tables of inertia factor groups of
G, we are able to construct the character table of G. We note that Fischer-Clifford

matrices satisfy certain properties which may be used to construct them.

The method of the Fischer-Clifford matrices has been used in many works both on
split and non-split extensions [1, 10, 12, 25, 28, 30, 34, 35]. Here we will use the
method of Fischer-Clifford matrices to construct the character tables of the groups of
form 2% : S5 and 24 : A;. We will also use the method of Fischer-Clifford matrices
to construct the character tables of the groups (S3)? : Ca, (S3)% : C3, (S4)? : Cy and
(S4)2 @ Cs.

The following is the arrangement of the chapters of this Dissertation. In chapterl
we describe the groups whose character tables we are going to construct in this project.
Chapter 2 is devoted to the general theory on the work being discussed here. We
discuss the theory of group extensions in Section 2.1 followed by Representations and
Characters of finite groups in Section 2.2. We discuss Clifford Theory and Fischer-

Clifford matrices in Sections 2.3 and 2.4 respectively. We give examples for the
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construction of the Fischer-Clifford matrices and character tables of the groups studied
here in Chapters 3 and 4. The results given here are numbered c.s.n meaning a result
number n in Section s of Chapter c. All the character-tables constructed in this work
have been tested in GAP [14].



Chapter 2

Preliminaries

In this chapter we discuss basic representation theory of finite groups, especially group
extensions, and Clifford theory. For further information on the following material,
readers may consult the following references [3], [4], [8], [9], [11], [12], [15], [16], [17],
[18], [20], [21], [22], [23], [24], [30], [31], [32], [33] and any other relevant sources.

2.1 Group Extensions

In this section we present some definitions and results on finite groups especially group

extensions.

Definition 2.1.1 Let N and G be groups. Then an extension of N by G is a group
G such that

(i) N < G.
(ii) G/N = G.
Let G = N.G denote an extension of N by G.

Definition 2.1.2 A group extension G of N by G is called a split extension if
there is a homomorphism ¢ of G into G such that ¢p =identity, where ¢ is the
homomorphism from G to G with kernel N.

Let G = N : G denote a split extension of N by G.
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Definition 2.1.3 A group G is a semi-direct product of N by K if
(i) N and K are subgroups of G
(ii) G = NK.
(ii)) N < G.

(i5i) NNK = {1}.

Proposition 2.1.4 If G is a semi-direct product of N by G then there is a homo-

morphism ¢ : G — Aut(N) defined by ¢(g) = ¢4 for each g € G, where ¢4 is an

automorphism of N given by ¢4(n) =n9 = gng~.

Proof. See [19] O

Theorem 2.1.5 FEwvery split extension of N by G is equivalent to a semi-direct product
of N by G.

Proof. See [30] or [33] OJ

Let G be a split extension of N by G, then every g € G can be written uniquely
as § = ng, where n € N and g € G with the composition of elements of G given by

(n191)(n2g2) = n1ng' g1go.

Definition 2.1.6 Let G = N -G and {1} — N — G 5 G — {1} be the
corresponding short exact sequence. Let g € G and § € G such that (g) = g. Then
G is called a lifting of g in G.

Theorem 2.1.7 Let G be an extension of N by G where N is abelian. Then there
is a homomorphism 0 : G — Aut(N) such that 0,(n) = gn(g)~*,n € N and 0 is
independent of the choice of liftings of {g | g € G}.

Proof. See [30] or [34]
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2.1.1 Conjugacy Classes of Group Extensions

The conjugacy classes of a finite group give some important information about the
structure of the group. Since the number of irreducible ordinary characters of a finite
group is equal to the number of conjugacy classes of the group, having information
about conjugacy classes of a finite group is the best point to start constructing the
character table of the group. Several works have been done on the properties of
conjugacy classes as well as comparisons between results on conjugacy classes and

characters of finite groups. For example we have the following result.

Proposition 2.1.8 Let G = N.G, § a lifting of g € G, C be the centralizer of Ng in
G and C be the complete preimage in G of C. Then

(i) the union of the cosets NT which are conjugate in G to Ng, is the union of the

conjugacy classes L1, Ls, ..., L, of G,
(ii) C acts on the coset Ng by conjugation,

(iii) C has r orbits in its action on Ng and the orbit representatives Gy, Gs, - - -, 0

are representatives of the conjugacy classes Ly, Lo, ..., L, of G,

() the centralizer C5(g;) for 1 <i < r is the stabilizer of g; in C in its action on
Ng.

Proof. See [5]. OJ

In recent times the determination of the conjugacy classes of a group using com-
putational methods has become very common. For example in [5] and [6], Butler gives
various algorithms which can be used for computing conjugacy classes in finite groups
and in permutation groups respectively. The technique of coset analysis, used for
the determination of the conjugacy classes of elements of both split and non-split
extensions G = N.G where N is an abelian normal subgroup of G, was developed by
Moori in [27]. For each conjugacy class [g] in G with representative g, we analyse the

coset Ng, where g is a lifting of g in G. For each class [g] of G, we define
Cg={re G | z(Ng) = (Ng)z},

the stabilizer of Ng in G under the action on Ng by conjugation of G. Since N is

normal in G, it is clear that N is a normal subgroup of Cy.
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Lemma 2.1.9 [3/] C5/N = Cg,\(Ng).
Proof. Let k € G. Then

Nk € Og/n(Ng) NE(NG)(Nk)™' = Ng
NkNgNk~! = Ng
NkNgk™ = Ng
NkNngk™' = Ng Yne N
Nkngk ' =Ng,VneN
kngk~' e Ng, Vne N
keCy

NkeCy/N. [

I R A R

Since N < Cg and by Lemma 2.1.9, it follows that Cg = N.Cg/y(Ng). For each
conjugacy class [g] of G, the conjugacy classes of G where N is abelian is determined

by the action by conjugation of 5 on the elements of Ng. To act Cj on the elements
of Ng, we act N and then act {h | h € Cg(g)}, where h is a lifting of h in G.

STEP 1: The action of N on Ng: Let Cn(g) be the stabilizer of g in N.

Then for any n € N we have
z(ng)z" ' =ng

mnx_lxgzc_l =ng

z € Cn(ng)

<~
<~
& n(zge ') =ng, since N is abelian
& 3:@:1:_1 =g

& zeCn(9).

Thus Cn(7) fixes every element of Ng. Now let |Cx(g)| = k. Then under the action
of N, Ng splits into k orbits Q1,Q2, ..., Qk, where

Q= on@) =

forie {1,2,...,k}.

STEP 2: The action of {h | h € C;(g)} on Ng: Since the elements of Ng are
now in the orbits Qy, Qo, ..., Qx from Step 1 above, we need only act {h | h € Cg(g)}
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on these k orbits. Suppose that under this action f; of these orbits Q1,Q2,..., Q%

fuse together to form one orbit A;, then we have

IR
Thus for = d;jg € Aj, we obtain that
[zlal = 1441 xlglcl
N G
b %_X o
G
LT Er]

and thus we obtain that

()] = . KlCa(9)l _ k|Ca(9)]
Cale) filG fi

Thus to calculate the conjugacy classes of G = N.G, we find the values of k and the

= |G|

fj’s for each class representative g € G.

However for the special case of a split extension G = N:G, we identify Cg with
Cy={z € G | (Ng)= (Ng)z}, where the lifting of g in G is g itself since G < G.

Corollary 2.1.10 [30] If G = N:G, then Cy; = N:Cg(g).

Proof. We have that N is a normal subgroup of Cy;. Now we show that Cg(g) < Cj
and that N N Cg(g) = {1}. Let x € Cg(g). Then we obtain (Ng)* = z(Ng)z~! =
zNgz~! = Nzgz~! = Ng. Thus z € C; and hence Ci(g) < Cy. Since N N Cg(g) <
N NG ={1lg}, then we have that N N Cq(g) = {1¢}. Hence the result. OJ

Thus in the case of a split extension G = N:G, we analyse the coset Ng instead
of Ng. Under the action of N on Ng, we always assume that g € Q1. Also instead
of acting {h | h € Cg(g)} on the k orbits Q1,Q2, ..., Q) we just act Cg(g) on these

orbits.

The technique of coset analysis for computing conjugacy classes of group exten-
sions G = N.G has since been used in several works (see [1], [2], [27], [28], [30], [34]).
The orders of the elements of conjugacy classes of G = N.G may be determined in
different ways. However the following results are useful in the determination of the

orders of the elements of a group G = N:G.
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Theorem 2.1.11 [30] Let G = N:G and dg € G where d € N and g € G such that
o(g) =m and o(dg) = k. Then m divides k.

Proof. We have that

3 k—1 k

15 = (dg)*F = dd9d?"d?" ...d%" g

Since G actson N and d € N, we have d, d?, dgz, e ,dgk_1 € N. Hence dd9d9” ...d9" ' ¢
k—1

N. Thus we must have that dd?d9" ...d9 = 1y and ¢* = 1¢. Hence m divides
k. [

Theorem 2.1.12 [30] Let G = N:G such that N is an elementary abelian p-group,
where p is prime. Let dg € G where d € N and g € G such that o(g) = m and
o(dg) = k. Then either k =m or k = pm.

Proof. See Theorem 2.3.10 in [30]. OJ

Remark 2.1.13 [30] Let G = N:G where N is an elementary abelian p-group. Let
dg € G whered € N and g € G such that o(g) = m and o(dg) = k. Then we have
that

(dg)™ = dd9d?’d?" ...d9" g™ .
Since g™ = 1¢, we obtain that (dg)™ = w, wherew € N. Now applying Theorem2.1.12
we have if w = 1y then k =m and if w # 1y then k = pm.

Remark 2.1.14 However if both N and G are permutation groups, the order of g
can easily be determined as the least common multiple of n and g with g = ng written

as a product of disjoint cycles.

In [30] Mpono has developed computer programmes in CAYLEY which are used
for computing the conjugacy classes and the orders of the conjugacy class representa-
tives of the group extension G = N:G where N is an elementary abelian p-group for
prime p on which a linear group G acts. These programmes can similarly be applied
to the group extension G = N:G where N is an elementary abelian p-group for prime
p on which a permutation group G acts, by considering a subgroup of a linear group

which is isomorphic to G.
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2.2 Representations and Characters of Finite Groups

Here, we present some results on group representations and characters which are
useful for the technique of the Fischer-Clifford matrices as will be discussed in Section
2.4. The work discussed here does not involve projective characters and therefore we
devote our discussion to ordinary complex characters. For example we discuss the
relationship between the ordinary characters of a group and its subgroups. For further
reading on representations and characters, readers are encouraged to consult [9], [13],
[17], [20], [21], [22], [23], [30] and other relevant sources. In the following, most of the
proofs have been omitted but reference is made to [13] for an extensive treatment of

character theory.

Definition 2.2.1 Let G be a group, F a field and GL(n, F) the general linear group
or the multiplicative group of all nonsingular nxn matrices over F' for some integer n.
Then a representation of G over F is a homomorphism p: G — GL(n, F). The
degree of the representation p is the integer n. Define the function x : G — F
by x(g) = trace(p(g)). Then x is called the character of G afforded by the

representation p. The character x has the same degree as p.

Definition 2.2.2 Let p; and ps be representations of G over F'. We say p1 and ps are
equivalent if there exists P € GL(n, F) such that pi(g) = Pp2(g)P~ ! for all g € G.

We say a representation p of G is reducible if it is equivalent to a representation «

_( Blg) ~(9)
a(g)—( 0 5(g)>

for all g € G, where B,v,d are representations of G. A representation p which is not

given by

reducible 1s said to be 1rreducible.

It is clear that equivalent representations afford the same character, since similar
matrices have the same trace. The character afforded by an irreducible representation
is called an irreducible character. Further it is elementary to prove the following

properties hold.
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(i) Representations of G have the same character if and only if they are equivalent.

(ii) The number of irreducible ordinary characters of G is equal to the number of

conjugacy classes of elements of G.
(iii) Any character of G can be written as a sum of irreducible characters.

(iv) Sums and products of characters of G are also characters.

Theorem 2.2.3 (Schur’s Lemma) Let p; : G — GL(n,F) and ps : G —
GL(m, F) be two irreducible representations of a group G over a field F. Assume
that there exists a matriz P such that Pp1(g) = p2(g)P for all g € G. Then either P

is the zero matriz or P is nonsingular so that p1(g) = P~ 1p2(g)P.
Proof. See Theorem 1.8 of [26]. J

Definition 2.2.4 Let G be a group, F a field and ¢ : G — F' be a function which

18 constant on conjugacy classes. Then ¢ is called a class function of G.

It is clear from the above definition that characters are class functions. Let Irr(G)

denote the set of irreducible characters of the group G.

Definition 2.2.5 Let G be a group, x be a character of G and Irr(G) = {x1,X2,- - Xr}
such that x =Y., niXi, where n; € N U{0}. Then those x; for which n; > 0 are

called the irreducible constituents of x.

Lemma 2.2.6 Let G be a group, p be a representation of G which affords the char-
acter x. Let g € G such that o(g) = n. Then the following conditions hold

(i) p(g) is similar to a diagonal matriz diag(eq,ea, ..., &)
(i) el =1
(i) x(g9) = X ;€
(w) [x(9)l < x(1a) = degree of x

() x(g71) = x(g), where x(g) is the complex conjugation of x(g).

Proof. See lemma 2.15 in [20]. O



CHAPTER 2. PRELIMINARIES 15

Definition 2.2.7 Let x and i be class functions of a group G. Then the inner
product of x and v is defined by

(6 ) = @ S x(9)2(g)

geG

The following theorems are called the first and second orthogonality relations

respectively.

Theorem 2.2.8 [20/(First Orthogonality Relation) Let G be a group and Irr(G) =
{x1,x2;---,Xr}. Then

5 () =5 = ()
geG

Proof. See [20] result 2.14. [
Theorem 2.2.9 [20/(Second Orthogonality Relation) Let G be a group and

Irr(G) = {x1,Xx2,-- s Xr} and {g1,92,-..,9-} be a set of representatives of the con-

jJugacy classes of elements of G. Then

> x(9:)x(g5) = 6:1Ca(gi)]

x€Irr(G)

Proof. See [20] result 2.18. O

2.2.1 Lifted Characters

Let G be a group and x be a character of G afforded by a representation p. Then

ker(x) ={9 € G| x(9) = x(1a)} ,

can be shown easily to be a normal subgroup of G (see [34]). Further every normal
subgroup of G is an intersection of some of the ker(y;), where x; € Irr(G). If N is
a normal subgroup of G and p is a representation of G such that N C ker(p), then
there exists a unique representation p of G/N defined by p(Ng) = p(g). Further p
is irreducible if and only if g is irreducible. If p affords a character x of G, then g
affords a character y of G/N.
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Theorem 2.2.10 There is a one to one correspondence between the set of characters
of G/N and the set of characters of G which contain N in their Kernel. Thus

Irr(G/N)={x € Irr(G) | N C ker(x)}.
Proof. See Theorem 17.3. of [22]. O
Following from above we have the following definition.

Definition 2.2.11 Let G be a group, N a normal subgroup of G and x be a character
of G/N. Then the character x of G defined by

x(g9) = x(Ng)
1s called a lifting of X to G.

Thus we can use the characters of G/N to obtain some of the characters of G by
the lifting process. It is clear from the definition that the degree of the lifted character
X is equal to the degree of the character y.

2.2.2 Restriction of Characters

Definition 2.2.12 Let H be a subgroup of a finite group G. If p is a representation
of G, then the restriction of p to H is a representation of H, which is denoted by
pu. If x is a character of G afforded by p, then the restriction of x to H is a
character of H afforded by the representation pg and is denoted by xg.

The characters xg and x take on the same values on the elements of H. The
character x g is generally not irreducible. But under certain conditions g is irre-
ducible, for example in [23], Karpilovsky proves a theorem (Theorem 23.1.4) due to
Gallagher(1966) that if H < G, x € Irr(G) such that x(g9) # 0V g € G\H, then xp

is irreducible. We also have
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Theorem 2.2.13 Suppose that H < G of index 2 in G and x € Irr(G). Let X be
a linear character of G taking value 1 on H and -1 otherwise. Then the following

conditions are equivalent
(i) xm is irreducible
(ii) x(g) # 0 for some g € G\H,
(iii) X # XA
Proof. See Proposition 20.9. of [22]. J

However we can easily show that if y g is irreducible, then y is irreducible in G.

2.2.3 Induced Characters

Let H be a subgroup of a group G with transversal set {z1,z2,...,2,} in G. Let ¢

be a representation of H of degree n. Then we define ¢* on G as follows:

p(z1gay "), ¢(z1gzy ), ..., pargw, )
#(g) = $(a2g927"), d(229235 "), ., P(w297, ")
¢(93n9931_1)a ¢($n9$2_1), ) d)(wngxr_l)
where gi)(:cigmj_l) are n X n sub-matrices of ¢*(g) satisfying the property that
B(ig77 ") = O ¥ aige; ¢ H

Then ¢* is a representation of G of degree n.

Definition 2.2.14 Let G, H, ¢ and ¢* be as above. Then the representation ¢*
is called the representation of G induced from the representation ¢ of H. The

induced representation of ¢ is denoted by ¢C .
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Definition 2.2.15 Let G be a group and H < G. Let 0 be a class function of H.
Then we define 6% as follows:

ZGO zgz 1),

xEG

where

9°(h):{ 0(h) ifhe H

0 otherwise.

Then 6% is a class function of G, called the induced class function of G or the
class function of G induced from 0. Further we have deg(0%) = [G : H]deg(6).

Let ¢ be a representation of H that affords a character §. Then 6 is a character
of G afforded by the induced representation ¢“ of G. The character # is called the
induced character of G. The induced character is not irreducible in general. There
is a relationship between restricted and induced characters of G given by the following

result.

Theorem 2.2.16 [20/(Frobenius Reciprocity Theorem) Let G be a group, H <
G and suppose that 0 is a class function of H and x is a class function of G. Then

<07 XH> = <0G’ X>

Proof. We obtain that
09, %) = 0°(zgz~ )x(g)
@ 2O = g L %

1

Putting y = xgx~" and since y is a class function, then we obtain that x(y) = x(g).

Hence we have

S e PP I ERIORE - [ DIP LY

gGG zeqG yeG ze€G

= |H|Ze = (0, xn).

yeH
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Theorem 2.2.17 Let G be a group and H < G. Let 0 be a character of H, g € G
and {x1,x2,...,2m} be a set of representatives of the conjugacy classes of elements
of H which fuse into [g] in G. Then we obtain that

= |Cq(g |Z |CH 2]

where we have that 0% (g) = 0 whenever H N [g] = (.

Proof. We have that
o 1
| | g 0°(zgx

zeG

If HN[g] = 0, then zgz~! ¢ H and thus 6°(zgz~') =0 V 2 € G and hence 0%(g) = 0.
Now if H N [g] # 0, then let h € H N [g]. Then as x runs over G, then zgz~! = h for

exactly |Cg(g)| values of z. Hence we obtain that

1 _ |CG
0G (g) = — 1 —
(9) = 777 2 Olwsz™) |H| Z Ol 'Zwm

heHN[g

2.2.4 Permutation Characters

Let 2 be a set. A group G is said to act on a set 2 if there is a homomorphism
¢ : G — Sq, where Sq is the symmetric group on 2. Therefore G can be identified

with a subgroup of S or G is isomorphic to a permutation group on (2.
Definition 2.2.18 A group G is said to be transitive if G has only one orbit on €.

If G acts on Q = {z1,x2,...,2,}, we define a representation 7 : G — GL(n,C),
where n = |Q2|. For each g € G we define m(g) = (a;;) by

1 if xf = x;
a;i =
“ 0 otherwise.

Then 7(g) is a permutation matrix of the action of g. The representation = defined
above is called the permutation representation of GG obtained from the action of

G on ). The character afforded by the permutation representation 7 denoted by
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X(G|€), is called the permutation character of G associated with the action of G
on (2. Further for g € G we have

X(GIQ)(g) ={z €N : 29 ==z} = the number of points of 2 fixed by g.

Suppose that G acts transitively on  and G, is the stabilizer of z € ). Then
it is known that the action of G on 2 is the same as the action of G on the cosets
of H = G;. Hence V g € G, x(G|2)(g) also gives the number of cosets of H = G,
which are fixed by g € G and in this case we denote this number by x(G|H)(g). Thus
x(GHH) = x(G|).

Theorem 2.2.19 Let G be a group acting transitively on a set Q. Leta € Q, H = G,
and x(G|H) be the permutation character of this action. Then

X(GIH) = (In)¢

Proof. We have that

(Im)%(9) = ﬁ > In(agah) = ﬁ oo

zeGxgr—leH zeGxgr—leH

Now if zgz~! € H, then g € Hz. Thus Hxg = Hx and hence Hz is fixed by g € G.
However the summation is taken over all € G such that zgz~! € H. Hence the
summation is taken over all x € G for which the coset Hz is fixed by g € G. But
Vy € Hx, Hx = Hy and thus we obtain that

S 1= |H|{He | Heg = Ha)]
x€G,xgr—1cH

and hence we obtain that

(Im)%(9) = ﬁIHII{Hﬂf | Hezg = He}| = [{Hz | Hrg = Ha}| = x(G|H)(g)

]
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Let G be a group, H < G and x = x(G|H). The following are some properties of

permutation characters.
(i) deg(x) divides |G].
(i) (x,v) < deg(v) for all ¢ € Irr(G).
(i) (o) = 1.
(iv) x(g9) € NU{0} for all g € G.
(v) x(g) < x(g™) for all g € G and m € N U {0}.

(vi) x(g) =0 if o(g) does not divide |G|/deg(x).

(vii) x(g) dl[g(}l() is an integer for all g € G.
Proof. See Theorem 2.5.6 in [34]. O

In the following section, we discuss the general theory of the technique of Fischer-
Clifford matrices. Later, we will use this technique to construct the character-tables
of the groups studied in this project. For the theory on Fischer-Clifford matrices, we
follow the works of Faryad [1], Mpono [30] and Whitely [34].

2.3 Clifford Theory

Definition 2.3.1 Let G be a group, H < G and 6 be a character of H. Then for
g € G, we define 09 : gHg™' — C by 09(t) = (g~ 'tg) for allt € gHg™*. Then 69
1s said to be a G-conjugate of 0. If H is a normal subgroup of G and 89 = 6 for all
g € G, then 0 is said to be G-tnvariant.

It is clear that 69 is a character of gHg™!.
Theorem 2.3.2 [20/(Clifford’s Theorem)

Let G be a group, H a normal subgroup of G and x € Irr(G). Let 0 be an
wrreductble constituent of xg and 61,04, ...,0, be distinct conjugates of 8 in G such
that 81 = 6. Then

XH:eZOi, where e = (xm,¥0)
=1
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Proof. Now for h € H

|H|Ze° (zha™1) |H|Zez

zeG zeG

Thus we obtain that

Ny = 6*

P>

Let ¢ € Irr(H) such that ¢ € {6; | 1 <i < n}. Then we obtain that

O "6mg)=0

zeG
and hence ((09) g, #) = 0. However by the Frobenius reciprocity theorem, we obtain
that (xz,0) = (x,0%). Hence Y is an irreducible constituent of <. Since (%), ¢) =
0, then (xm,#) = 0. Thus ¢ is not an irreducible constituent of xr. Hence all the

irreducible constituents of g are among the 6; and thus we obtain that

n

X = (xm: 00 = > (xm,0)0i = (xu,0)> 6bi=ed 0; ,
=1 =1 =1

=1

where e = (x g, 0). O

Definition 2.3.3 Let ¢ be a representation of G and o an automorphism of G. Then

¢% is a representation of G given by
¢%(z) = ¢(z%) and ¢%(zy) = ¢°(z)¢"(y)

forxz,y € G. If the representation ¢ affords a character x of G, then the representation
¢ affords a character x* of G which is given by x*(z) = x(z) for x € G. Then
the representation ¢* and the character x® are called the algebraic conjugates of

¢ and x respectively induced by the automorphism a.

Let X = (xi(z;)) be the character table of G, where x; € Irr(G), 1 < i < n
and z;, 1 < j < n are representatives of the conjugacy classes of elements of G.
Then the automorphism « of G induces a permutation on the conjugacy classes of
G and therefore also on the columns of X. For each x; € Irr(G), we deduce that
X € Irr(G). Hence o induces a permutation on the irreducible characters x; of G and
therefore also on the rows of X. Moreover since x{(z;) = xi(z}), then the matrices
obtained from X by these two operations are identical. We have the following result

known as Brauer’s Theorem.
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Theorem 2.3.4 [15/(Brauer’s Theorem) Let G be a group and K be a group of
automorphisms of G. Then the number of orbits of K as a group of permutations on
the irreducible characters of G is the same as the number of orbits of K as a group

of permutations on the conjugacy classes of G.

Proof. Let X be the character table of G. Then as a matrix, X is square and
nonsingular. Let a be an automorphism of G such that @ € K. Then « induces a
permutation on the conjugacy classes of G and thus induces a permutation on the
columns of X. Hence K acts on the conjugacy classes of G. Since a € K, then to
each character x of G, we obtain a character x* of G such that x* € Irr(G) whenever
X € Irr(G). For y € G, we obtain that x*(y) = x(y*). Thus « induces a permutation
on the rows of X. Hence K acts on the irreducible characters of G. Let X denote

the image of X under a. Then we obtain that
P(a)X = X* = XQ(a)

where P(a),Q(a) are appropriate permutation matrices which are uniquely deter-
mined by a € K. Suppose that a, 3 € K. Then we obtain that X% = (X®)#. Also

we have that
P(aB)X = X* = (X*)’ = (P(a)X)’ = P(8)P(a)X

and hence P(afB) = P(B)P(a). We also have that X = XQ(af) and (X)? =
(XQ(a))? = XQ(a)Q(B)- Since X*# = (X*)8 we obtain that XQ(a3) = XQ(a)Q(B)-
The non-singularity of X implies that Q(af) = Q(a)Q(S). Define mappings
and m on K by mi(a) = (P(a))! and m(a) = Q(a), where t denotes the trans-
pose operation on matrices. Then m; and 7y are permutation representations of K.
Let 61 and 62 be the permutation characters afforded by 7wy and ms respectively.
Since X 1P(a)X = Q(a), P(a) and Q(«) are similar and thus have the same trace.
Since trace(P(a))! = trace(P(a)), we have that trace(P(a))! = trace(Q(a)). Hence
01 = 65 and m; and 79 are equivalent. Let dq,ds be the number of orbits of K on the
irreducible characters and on the conjugacy classes of G respectively. Thus we observe
that d; is the number of orbits of 71 (K) in its action as a group of permutations. Also
dy is the number of orbits of 72(K) in its action as a group of permutations. Since
0, is the permutation character of K acting on the irreducible characters of G, we
obtain that (01, Ix) = dy. Also for 63, we obtain that (02, Ix) = d2. However 6, = 0
and thus (61, Ix) = (02, [x) and hence d; = ds. O
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Definition 2.3.5 Let 0 be a character of a subgroup H of a group G. Let
Ic(0) = {g € Ng(H) | 67 = 6}.
Then we call I(0) the inertia group of 0 in G. If H is normal in G, then
Io(0) ={geG |07 =0} .

We observe that Ng(H) acts on the characters of H by g : 6 —— 69 for all
g € Ng(H). Then the inertia group of 0 is the stabilizer of 6 in Ng(H). Hence
I(0) < Ng(H) < G and it is clear that H is a normal subgroup of I ().

Theorem 2.3.6 [20] Let G be a group, H a normal subgroup of G, 6 € Irr(H) and
T =15(0). Let

A={¢ elIrr(T) | (¢Yu,0) # 0}

B ={x € Irr(G) | {(xu,0) # 0}
Then

(a) If ¢ € A, then & € Irr(G).
(b) If Y% = x and ¢ € A, then (Yi,0) = (xu,0).

(c) If Y% = x and ¢ € A, then v is the unique irreducible constituent of x1 which

sits in A.
(d) The map ¢ — % is a bijection of A to B.

Proof.

(a) Let 1 € A and x be an irreducible constituent of ¢/“. Then ¢ is an irreducible
constituent of y7. Since 6 is an irreducible constituent of ¥y, 6 is an irreducible
constituent of xyy and thus x € B. Now suppose that 61,60s,...,60, are the
distinct conjugates of 6 in G, where 6; = 6. Then we obtain that [G : T] = n
and by Clifford’s theorem, we obtain that xg = ey ., 0; for some e € N,
where e = (xp,0). Since € is invariant in 7', 0 is self-conjugate in 7. Hence
by Clifford’s theorem (applied to 7', H and 1)) we get that ¥y = k6 for some
k € N where k = (¢p,0). Since 9 is an irreducible constituent of xr, then we

obtain that k£ < e. Hence we have

enf(1y) = x(1g) < v%(1g) = nY(17) = knb(1x) < enb(1z)
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and thus equality holds throughout. In particular, from this equality we obtain
that ¥%(1g) = x(1g) and hence we obtain that ¢ = x. Therefore ¢ €
Irr(G).

We have that (xm,0) = e and (¢p,0) = k and from the equality in part(a), we
obtain that k = e and thus (xg,0) = (Y, 0).

Let ¢ € A,¢ # ¢ and ¢ is an irreducible constituent of y7. Then we obtain
that

(xm,0) > (¢ + V), 0) = (bu,0) + (Yu,0) > (Yu,0)

which is a contradiction by part(b). Hence the result.

The map o — ¢ is well-defined by part(a). Also we obtain that for any
Y € A, % € B by part(b). By the uniqueness assertion given by part(c), the
map 1) —> % is one-to-one. Then it suffices to show that the map is onto B.
Let x € B. Then 6 is an irreducible constituent of xy and hence there exists
an irreducible constituent ¢ of xp such that (¢g,0) # 0. Thus ¢ € A and we
have that y is an irreducible constituent of /¢. Hence we obtain that y = ¢
since ¥ € Irr(G) by part(a).

]

Remark 2.3.7 By Theorem 2.3.6, we deduce that induction to G maps the irre-

ducible characters of T' that contain 6 in their restriction to H faithfully onto the

irreducible characters of G that contain 6 in their restriction to H.

Definition 2.3.8 Let G be a group, H a normal subgroup of G, 0 € Irr(H) and
T = Ig(0). Since H is normal in T, we obtain the factor group T/H called the

inertia factor of T.

Let G = N:G. Then for all € Irr(N), define

H={zecG|0"=0}=I(0)

H={yeG|oW=0=1s(6)

Then it can be shown that H = N:H.
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Definition 2.3.9 Let G be a group, H a subgroup of G, 0 € Irr(H) and x € Irr(QG)
such that xg = 0. Then 0 is said to be extendible to an irreducible character of G

or 0 can be extended to G.

If 0 is extendible to an irreducible character of G, we will say that 6 is extendible

to G.

Definition 2.3.10 Let G be a group and F be a field. Then the map
p: G — GL(n,F) such that

(i) p(lg) = I, where I is the identity n x n matriz.

(ii) for all x,y € G, there exists a map o : G X G — F™* such that
p(x)p(y) = a(z,y)p(xy) where o(z,y) € F*

Then p is called a projective representation of G over F of degree n. The map «

is called the factor set associated with p.
Now if a(z,y) = 1 for all z,y € G, we obtain that

p(zy) = p(z)p(y),

that is p is an ordinary representation of G. Thus projective representations are

generalizations of ordinary representations.

Theorem 2.3.11 (/9])(Mackey’s Theorem) Let N be a normal subgroup of G and
6 be a G-invariant irreducible character of N. If N is abelian and G splits over N,
then 6 can be extended to G.

Proof. Let G = N:G. Since G is a semidirect product of N by G, then any = € G can
be expressed uniquely as x = ng, where n € N, g € G. Define x on G by x(ng) = 0(n).
Since N is abelian, # has degree 1 and thus is linear. The invariance of 8 in G implies
that 0(n) = 6(znz1) for all z € G.
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Now let 1 = n1g1, 2 = n2gs be elements of G. Then we obtain that
x(z1z2) = x(n1gin2gs) = x(ning' gi1g2) = 0(nin3')
= 0(n1)0(n3') = 0(n1)0(n2) = x(x1)x(2)-

Therefore x is a linear character of G such that xyn = 6. ]

The above result is only applicable in the case where IV is abelian. However we

have the following results.

Lemma 2.3.12 Let N C G. Let x be a character of G. Then
<Xy XN > G N <x, x>,

with equality if and only if x(9) =0 for allg € G\ N.

Proof. See Lemma 2.29 in [20]. ]

Theorem 2.3.13 Let K/N be an abelian chief factor of G. (That is, K, N <G and
no M QG ezists with N < M < K.) Suppose 6 € Irr(K) is invariant in G. Then
one of the following holds:

(a) Oy € Irr(N);
(b) On = ep for some ¢ € Irr(N) and e? = [K : N|;
(c) On = S t_, i where the ¢ € Irr(N) are distinct and t = [K : N).

Proof. Let ¢ be an irreducible constituent of 6y and let T' = I(¢). Since € is invariant
in G, every G-conjugate of ¢ is a constituent of 6y and hence is K-conjugate to .
It follows that [G : T] = [K : K NT] and hence KT = G. Since K/N is abelian,
KNT < KT = G and thus either KNT =K or KNT =N

If KNT = N, then Oy = 62;21(,01', where t = [K : N],¢o1 = ¢, and the ¢;
are distinct. Thus (1) = e[K : N]y(1). Since @ is a constituent of ¢, we have
0(1) < [K : N]p(1) and therefore e = 1. This is situation (c).

Now assume K NT = K so that ¢ is invariant in K and 0y = ey for some e. Let
X € Irr(K/N). Since A is linear, A0 € Irr(K). Also (A0 )y = 6 = ep. Suppose
that all of the characters A\ are distinct as A runs over Irr(K/N). Each of these

[K : N] characters is an irreducible constituent of ¢ with multiplicity e and we have
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e[K : NJ6(1) < ¥ (1) = [K : N)ip(1).

Therefore

e?p(1) = ef(1) < (1)
and e = 1. This is situation (a).

In the remaining case, A0 = pb for some A\, u € Irr(K/N) with A # p. Let
U = ker(Ai). Then N C U < K and 6 vanishes on K \ U. Since 0 is invariant in G,
it follows that @ vanishes on K \ UY for all g € G. Since ngG U9 = N, we conclude
that 6 vanishes on K \ N. By Lemma 2.3.12, we have

[K:N]=[K:N|<0,0 >=<0y,0y >=é?
and the proof is complete. ]

Corollary 2.3.14 Let N < G with [G : N] = p, a prime. Suppose x € Irr(G). Then

either
(a) x|n is irreducible or

(b) xIn =Y_%_, 0;, where the 0; are distinct and irreducible.

Proof. Follows from Theorem 2.3.13

Theorem 2.3.15 Let N < G and suppose [G : N| = p, a prime. Let 6 € Irr(N) be

invariant in G. Then 0 is extendible to G.

Proof. Follows from Corollary 2.3.14 ]

Theorem 2.3.16 (/20/,/34])(Gallagher’s Theorem) Let N be a normal subgroup
of G, 6 € Irr(N) and H = Iz(0). If 0 can be extended to vy € Irr(H) then as f3
ranges over all the irreducible characters of H which contain N in their kernels, S

ranges over all the irreducible characters of H which contain 6 in their restriction to

N.
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Proof. Since H = I5(0), then 6 is self-conjugate in H and thus by Clifford’s theorem
we obtain that (OF) ~N = f0 for some positive integer f. Comparing degrees we have
(0H)y = [H : N]6 and so (07 6H) = (9, (67)y) = [H : N]. Now we claim that
H — Eﬁ B(15)By, where 3 ranges over all the irreducible characters of H that
contain N in their kernels. Both 67 and 25 B(15)BY are zero off N since for g ¢
N,zgz—' ¢ N for all € G and thus 67 (g) = 0. Also for g & N, by the orthogonality
of the columns of the character table of H/N we have that > 5 B(15)(BY)(9) =
(25 B(15)8(a)]1(g) = 0. We also have that (67)y = [T : NJo = (5, 8(1g)8%)x
since for g € N, Y5 8(15)B(9)¥(9) = X5(8(15))*¢(9) = [H : N]i(g) = [H : N]0(9).
Hence we obtain that 67 = >3 B(17)B%. So we have

[H : N] = (67,07 = Zﬁ /w,z Zﬁ ) (BY, TY)

The diagonal terms contribute at least > (8(15))? = [H : N, so the 8¢ are irreducible
and distinct, and are all the irreducible constituents of 0 and so are all the irreducible
characters of H that contain 6 in their restriction to N, since for ¢ € Irr(H) such that
(¢n,0) # 0, we obtain that (¢y,0) = (¢, 6H) which implies that ¢ is an irreducible
constituent of 07 and hence is of the form 8. ]

2.4 Fischer-Clifford Matrices

Let G = N-G such that every irreducible character of N is extendible to its inertia
group. We have that G permutes Irr(N) by = : x — X%, where 2 € G and
x € Irr(N). Now let x1, X2, ..., Xt be representatives of the orbits of G on Irr(N),
H; = Iz(x;),1 < i < t,¢; € Irr(H;) be an extension of x; to H; and ¢ € Irr(H;)
such that N C ker(¢)). Then by Theorem 2.3.6 (Gallagher’s theorem) and Remark
2.3.7 all irreducible characters of G will be of the form (1/)i¢)a, 1<i<t So

t

Irr(G) = | J{(wiw)® | v € Irr(H;), N C ker()}

i=1

Therefore the irreducible characters of G fall into blocks, each block corresponding to

an inertia group H;.
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2.4.1 Theory of Fischer-Clifford matrices

Let G = N-G with the property that every irreducible character of N can be extended
to its inertia group. Let g € G be a lifting of g € G under the natural homomorphism
G — G and [g] be a conjugacy class of elements of G with representative g. Let
X(g9) = {z1,72,...,2,4)} be a set of representatives of the conjugacy classes of G
from the coset Ng whose images under the natural homomorphism G — G are in
[g] and we take z1 = g. Let {x1,X2,.--, Xt} be a set of representatives of the orbits
of G on Irr(N) such that for 1 < i < t, we have H; = Iz(x;) with H; = H;/N <G
and that +; € Irr(H;) is an extension of x; to H;. Then without loss of generality
suppose that x; = I is the identity character of N. Then H; = G and H; = G. Now
choose y1,y2,...,y, to be the representatives of the conjugacy classes of elements of
H; which fuse into [g] in G. Since y, € H; for 1 < k < r, then we define y,, € H;
such that y,, ranges over all the representatives of the conjugacy classes of elements
of H; which map to y;, under the homomorphism H; — H; whose kernel is N. Let
¢ € Irr(H;) such that N C ker(s). Then 1 is a lifting of ¢ € Irr(H;) such that
Y(ye,) = 12)(yk) for any lifting ys, € H; of yx € H;. Then we obtain that

@) () = Y Z ||C (% i (Yey,)

1<k<r ¢

- Z| EZ iy (un,)
1<k<r £ k

= 3 Z ””f iy, ) (wi)
1<k<r |, (e, )|

where Zel is the summation over all £ for which ys, ~ z; in G. Now we define a
matrix M;(g) by M;(g9) = (ayw), where 1 <u <r and 1 <v < ¢(g), and

_ N~ %)l
uv — ; |Cﬁz(yek)|¢z(y€k)

Then we obtain that

@)% (@) = > autb(yr)
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By doing this for all 1 <7 < ¢ such that H; contains an element in [g] we obtain the
matrix M(g) given by

Mi(g)

Ma(g)

M(g) = : ;
M:(g)
where M;(g) is the submatrix corresponding to the inertia group H; and its inertia
factor H;. If H;N[g] = 0, then M;(g) will not exist and M (g) does not contain M;(g).
The size of the matrix M (g) is p X ¢(g) where p is the number of conjugacy classes of
elements of the inertia factors H;’s for 1 <4 < ¢ which fuse into [g] in G and ¢(g) is
the number of conjugacy classes of elements of G which correspond to the coset Ng.
Then M(g) is the Fischer-Clifford matrix of G corresponding to the coset Ng. We
will see later that M(g) is a ¢(g) X ¢(g) nonsingular matrix. Let

R(g) ={(G,m) [ 1<i<t, HiN[g]#0,1<k<r}

and we note that y; runs over representatives of the conjugacy classes of elements of
H, which fuse into [g] in G. Following the notation used in [12] and [34] we denote
M (g) by writing M(g) = (a;z’yk)), where

) _ o 1Ca(ay)
a; """ = iy ;
= 2 G G V)

with columns indexed by X (g) and rows indexed by R(g). Then the partial character
table of G’ on the classes {x1,x2,..., 2.4} is given by

Ci(g9) M (g)
Ca(g)M2(g)

Ci(9)M:(g)
where the Fischer-Clifford matrix M (g) is divided into blocks with each block cor-
responding to an inertia group H; and Cj;(g) is the partial character table of H;
consisting of the columns corresponding to the classes that fuse into [g] in G. We can
also observe that the number of irreducible characters of G is the sum of the numbers

of irreducible characters of the inertia factors H;’s.

2.4.2 Properties of Fischer-Clifford Matrices

We shall discuss the properties which may be used in the computation of the Fischer-
Clifford matrices. These properties have been discussed in [25], [30], [34]. Let K be a
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group and A < Aut(K). Then by Brauer’s theorem A acts on the conjugacy classes
of elements of K and on the irreducible characters of K resulting in the same number

of orbits.

Lemma 2.4.1 Suppose we have the following matriz describing the above actions:

S1 1 1 1 1

S2 a1 a2 azj a2t
Si ai1 a;2 A5 At
St ati at2 - Qty o ot Qi

where ay; = 1 for j € {1,2,...,t}, l;’s are lengths of orbits of A on the conjugacy
classes of K, s;’s are lengths of orbits of A on Irr(K) and a;j is the sum of s;
irreducible characters of K on the element x;, where x; is an element of the orbit of
length ;. Then the following relation holds for i, € {1,2,...,t}:

Sy agtagly = |K|sidi.

Proof. See Lemma 4.2.2 in [34].
]

Let z; € X(g) and define m; = [Cy : Cg(x;)]. The Fischer-Clifford matrix M(g)
is partitioned row-wise into blocks, where each block corresponds to an inertia group.
The columns of M(g) are indexed by X(g) and to each z; € X(g), corresponds
|C5(z;)| of a conjugacy class of G. The rows of M(g) are indexed by R(g) and to
each row corresponds |Cp,(y)|, where yi fuses into [g] in G. The following result

gives the orthogonality relation for M(g).

Proposition 2.4.2 [34](Column orthogonality) Let G = N-G, then

> ICHi(yk)Iay’y’“)a;f’yk) = 6;;|Cq(z;)|
(i,yk)ER(g)

Proof. See [34], Proposition 4.2.3. ]
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Theorem 2.4.3 ag-l’g) =1 forallje{1,2,...,¢(9)}

Proof. For yg, ~ x;j in G, we have |Cg(z;)| = |C, (yg,)|- Thus we obtain that

(1, ”C i
’ Z|cH >| 1) = 31 =1

L

]

Proposition 2.4.4 (/34]) The matriz M(1g) is the matriz with rows equal to the
orbit sums of the action of G on Irr(N) with duplicate columns discarded. For this

(7G)

matrixz we have a; =[G : H;], and an orthogonality relation for rows:

1 (ile) (i'1c) 1 1
—a,;’ a;’ = —51'1" = —5”1
Z |Cq(z5)] 7 J |CH; (1) | H|

Proof. The (i,1¢),j jth entry of M(1g) is given by

(l o Z | @k)

where we sum over representatives of conjugacy classes of H; which fuse into [x;] in G.
Therefori ag-z’lG) = % (x;). By Theorem 2.3.6 we have ¢¢ € Irr(G) ind we obtain
that ()N, 0:) = ((¥i)n,0;) = 1. Therefore by Clifford’s theorem (¢¥)y =3, Oa,
where the summation is taken over all , € Irr(N) such that 6, is conjugate to 6;.
So for x; € N we obtain that a(z le) = >, 0a(z;). The orthogonality relation follows

by Lemma 2.4.1. |

Following from Lemma 2.4.1, Proposition 2.4.2 and the results proved by Fischer
n [12], the Fischer-Clifford matrix M (g) satisfies the following properties:

(a) |X(9)| = |R(9)]

c i (i,7 ) C
(b) Y59 mjal y’“)aj = 60,0 ) Ty NV

(©) igmrena) a5 al ™ |Cu, ()] = 8;11Cq ()]

(d) M(g) is square and nonsingular.
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For N is elementary abelian, M(g) also satisfies the following

) _ |C
() "™ = Gy

(£) lai"™] = aj"™)

Further in [25], Mahmoud and List have shown that the Fischer-Clifford matrices
for wreath products G,,S,, can be computed from the character table of G. Con-
sider a wreath product G,,S, and let ¢ be an element of cycle type 1%'...n%" of S,,.
Here the Fischer-Clifford matrix at the class containing ¢ is denoted by F(G, o) or
F(G,1%1...n%"). The Fischer-Clifford matrix F(G, o) is constructed from F(G,1) as
follows [25].

Theorem 2.4.5 For any wreath product G,,Sy, the following statements are true.

(1) F(G,1) is a character table of G.
(2) F(G,k*) = F(G,1*), k=1,2,...,a=1,2,...

(3) F(G,1") is obtained from the matriz of orbit sums of Sy, acting on the rows of
the Kronecker product matriz F(G,1)®" = F(G,1) ® ... ® F(G, 1) (n-times) in

the natural way, by deleting repeated columns.

(4) F(G,1%2% k%) = F(G,1%) ® F(G,12?) ® ... ® F(G,1%), where F(G,1°) is
defined to be the matriz with single entry 1.

Proof. See (3.1,3.2,3.3) in [25]. O



Chapter 3

Some Groups of forms 2% : S; and
24 . A7

The Mathieu groups M and Mas are examples of sporadic simple groups [32]; they
were discovered by the French mathematician Emile Leonard Mathieu [4]. The group
M5 contains a maximal subgroup of form 24 : S5 while Ms3 contains a maximal sub-
group of form 24 : A7. In this chapter we will construct the Fischer-Clifford matrices
of the groups of forms 2% : S5 and 2% : A;. We use the Fischer-Clifford matrices of
these groups to construct their character tables. This gives some information about

the structures of these groups.

3.1 A group of form 2% : S;

Let N = 2% be an elementary abelian group of order 16 generated by e, es, €3, 4
with €2 = 1 for 1 < i < 4 and G = S5, the symmetric group of degree 5. From the
ATLAS [8] we note that S5 is a maximal subgroup of A7 the alternating group of
degree 7. Further from the ATLAS [8], we have that S5 is isomorphic to a matrix

group generated by the matrices

S = O =
= o O O
o O O =
_ O = O
_= = O
—_ = = O
_ O =
O = =
o O O =
S O = O
S = O =
_ O = O

35
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Let S5 act on N naturally. In this section we construct the character table of the
group extension 2% : S5. In subsection 3.1.1 we compute the Conjugacy Classes of
24 : S5 using coset analysis, then in subsection 3.1.2 we construct a Fischer-Clifford
matrix for each class of the group Ss. In section 3.1.4 we use these Fischer-Clifford

matrices to put together the character table of 24 : Ss.

3.1.1 Conjugacy classes of 2% : S

In this subsection we calculate the conjugacy classes of G = 2% : S5 using the coset
analysis method as described in section 2.1.1. To determine the conjugacy classes
of G = N : G, we need to find the values of the k's and the fJ’s for each class
representative g € G. Now since G = N : G is a split extension, we analyze the cosets
Ng. Under the action of N on Ng, we have that g € Q1. Since Cg(g) fixes g, Q1
does not fuse with any other Q; for ¢ € {2,3,...,k}. Hence we have f; = 1. We now
find the values of |C(z)| by using the formula |Cx(z)| = MCij(g)‘, where f; of the k
blocks of the coset Ng have fused to give a class of G containing x.

(i) g € 1A: Then

1000
o100
1001 0

000 1

The identity element fixes all the elements of N, so that £ = 16. Thus we obtain
16 orbits containing one element each. Now we act C(g) on these orbits. For

ng € Ng, h € Ca(g),
(ng)" =nlg" =n'qg.

We get

{Q}CG(Q) = {9}, {elg}CG(g) = {elga €29,€349,€44,€1€2g,€1€34g, €1€43, €2€37, €2€49

€3€49,€1€2€349, €1€3€43, €1€2€439, €2€3€47, 616263649}-

Thus we obtain two orbits with f = 1 and f = 15. So the coset Ng gives two
classes of G with representatives g and e;g. The k' power of each element ng
is given by the following formula

2 3 k—1
(ng)¥ = nnIn9™ n9 ..n9 gk,
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from which we can determine the order of g = ng. So we have that the order of

g is 1 and the order of e1g is 2. Therefore this coset gives two classes of G.
class(la), z = g, |Cg(z)| = 122120 = 1920

class (2a), z = e1g, |Cg(z)| = 182120 = 128

g € 2A: Then
0 010
o100
11000
01 01
with |Cg(g)| = 12 and
1 0 0 1 01 01
01 00 1 01 0
Celg) = : .
G(g)<0111 0001>
0 0 01 0 010

The action of g on N is represented by the cycle structure

(1)(61 63)(62)(64 6264)(6162 6263) (6163)(6164 626364) (616263)(6364 616264)

(616364 61626364).

Since there are four fixed points i.e 1, ey, ejes and ejeses we have k = 4.
Now under conjugation by N each element of Ng is conjugate to % elements
of Ng. So that Ng splits into four orbits with four elements each. For example

considering g € Ng and conjugating it by N, we get

(9)' =g, (9)* = eresg, (9) = g,(9)® = eresg, (9)* = e2g, (9)®* = eiesy,
(9) = g, (9)* = erezesg, (9)?° = eiesg, (9)? = eag, (9)®* =
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(iii)

erezeszg, ()42 = g,(9) = eag, (9)1*** = ejeze3g,(g)2@* = erezesg,
(9)61626364 — 629-

Thus the orbit of N on Ng containing g is {g, e1e3g, e2g, e1e2e3g}. Similarly the

remaining three orbits of N on Ng are

{619, €3g,€e1€29, 62639}, {649, €2€449,€1€3€449, 616263649}, {61649, €3€49, €1€2€44, 6263649}-

Now acting C(g) on these orbits, we obtain that

{9, €29, e1e39, e1e2e39}°c\9) = {g, €29, e1e39, erezesg},
{619, €3g,€e1€29, ezesg}cc(g) = {619, €39, €1€29, €2€37, €43, €2€43, €1€3€47, €1€2€3€47,

€1€44,€3€44g, €1€2€44, 6263649}-

Thus three of the @Q; fuse together to give one orbit. Hence we get two classes

of G with f = 1 and f = 3 and representatives g and e;g where o(g) = 2 and
o(erg) = 4.

class (2b), = = g, |Cq(z)| = 512 = 48.

class (4a), z = eyg, |Cx(z)| = 512 = 16.

g € 2B: Then
000 1
1010
7101 0 1
1000
with |Cg(g)] = 8 and
0101 0010 111 1
1010 0100 110 1
Celg) = , , .
G(g)<0001 1000 1100>
0010 010 1 0110
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The action of g on NV is represented by the cycle structure

(1)(61 64)(62 6163)(63 6264)(6162 616364)(6263 61626364)(6164)(626364)(6364 616264)

(616263).

Now g fixes 4 elements of N so k = 4 and the four orbits of N on Ng are

{9, €1€44, €1€2€34, 6263649}»{6197 €44, €e2€3g, 616263649}»{6297 €1€39, €3€44, 6162649},

{639, €1€29,€2€49, 6163649}-

Now we act Ci(g) on the above orbits and obtain

C _
{9, e1e49, e1e2e39, e2e3e49}°¢9) = {g, e1e49, e1e2e39, ezeseag},
C _
{619, €49, 62639’616263649} a(9) = {619,649’62639, €1€2€3€449, €39, €1€24, €2€49, 6163649}-

{629, €1€39, €3€49, 6162649}Cc(g) = {629, €1€39,€3€49, 6162649},

Hence we get three classes of G from this coset with f =1, f =2 and f =1
and representatives g, e1g, eag with orders o(g) = 2, o(e1g) = 4 and o(eag) = 4,

respectively.
class (2¢), z = g, |Cx(z)| = L8 = 32,

class (4b), z = e1g, |Cg(z)| = 12 = 16,

class (4c), z = eag, |Cg(z)| = 1228 = 32.

Similarly, acting Cg(g) on Ng for all the remaining classes [g] of G, we get that

the conjugacy classes of G are as follows:

] | 14 24 2B 34 | 44 54| 64
[9] la  2a | 2b 4a | 2¢ 4b 4c | 3a | 4d 8a | 5a | 6a
IC(3)] | 1920 128 |48 16|32 16 32| 6 | 8 8| 5 | 6
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3.1.2 Fischer-Clifford matrices of 2% : S;

In this subsection we calculate the Fisher-Clifford matrices of G using the properties

of Fisher-Clifford matrices as discussed in Chapter 2. Corresponding to the identity

of GG, we have

1920 128

120 a b
wag-2( 0 1)

Now by relation ag-l’g) =1,7€{1,2,...,¢(g9)} of Theorem 2.4.3, we have a = b = 1.

And by relation
(i) _ |Ca(9)l

a - - T
! |Cbﬂ(ykﬂ

we have ¢ = % = 15. Now by relation

S € Rg)al ™ |0 ()] = 850|Ci(ay)]
(Z’yk:)

we have (120 x 1 x 1)+ (8 x 15 x d) = 0, from which it follows that d = —1. Therefore

1920 128
120/ 1 1
M) = o < 15 —1)'

Corresponding to g € 2B, M(2B) is a 3 x 3 matrix since Ng has three G-conjugacy

classes. Just as was done for M (1A) we have that

32 16 32

811 1 1
M2B)= 42 a ¢ |,

8\1 b d
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Table 3.1: Fischer-Clifford matrices of 2% : Ss

[g] M(g) |15l | M)

s (e 5) G
(

VL) e ()

2A

B2 o —2]|]|6a (1)

3A (1)

where the entries of the first row and first column follow by relations ag.l’g) =1 for all
je{1,2,...,¢(g9)} and
o) _ 1Cao)l
1 - ’

respectively. To calculate a, b, c and d we use the relation

(6y) (1y
> € R(g)a,” """ |Cr, (k)| = 85| C()-
For the second column, 8 + 4|a|? + 8[b|> = 16 = |a|?* + 26| =2 =a =0 and |b| = 1.
But by columns 1 and 2, we have 8 +8a+8b =0 = a+b = —1. Therefore a = 0 and
b= —1. Similarly, c= -2 and d = 1.

The other matrices are determined in the same way, and all the Fischer-Clifford

matrices of G are given in Table 3.1.
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Table 3.2: Character Table of Ss

[g] | 1A [ 2A | 2B | 3A [ 4A | 5A | 6A
ICa(g)| [120 | 12| 8| 6| 4| 5| 6
yi| 1] 1| 1| 1 1
xa| 1] 1| 1| 1] 1| 1| -1
xs| 4| 2| o 1] o] -1| -1
xa| 4] 2| ol 1 1] 1
xs| 6| 0| -2| o 1| o
xe | 5 1| -1 -1 1
xr| 5| -1 1] 1] 1 1

Table 3.3: Character Table of Hy = Dg

[g] | 1A | 2A | 2B | 2C | 4A
Celg)l | 8| 4| 4] 8| 4

yi| 1] 1| 1 1

ya| 1] 1| 1| 1| -1

xs| 1] 1| 1| 1| -1

xa| 1] -1 1] -1

xs| 2| ol -2 o] o

3.1.3 Inertia Factor Groups of 2% : S

The action by conjugation of G = S5 on N = 2% gives two orbits and so does the
action of G on Irr(N). These orbits are both of length 1 and 15. The inertia groups
are Hy = G and Hs, where [G : Hy] = 15. Let Hy = Hy/N, then H, is a subgroup
of G with [G : H3] = 15. And from the maximal subgroups of S5 of order 8, we have
that Hy = Dg. The character Table of Hy can be constructed easily [21] while the
character table of H; = G can be constructed in GAP [14]. The character Tables of
Hjy and S5 appear in Tables 3.3 and 3.2 respectively. The class fusions of Hy into Ss
appear in Table 3.4.
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Table 3.4: Fusion of Hy in Sy

Class of Hy | Class of Ss
1A 1A
2A 2A
2B 2B
2C 2B
4A 4A

3.1.4 Character Table of 2*: S;

Now we calculate the characters of G, which fall into two blocks with inertia groups
G and H, by multiplying rows of the Fischer-Clifford matrices M(g) of 2% : S5 with
sections of the character tables of S5 corresponding to g according to the fusions of
H, into S5. At the identity of S5 we have

o= (5 L)

Now we multiply each row of M(1A) by columns of Tables 3.2 and 3.3 according
to the fusions in Table 3.4 respectively to get the values of the characters of G on

G-classes of (1a) and (2a) as follows;

><<1 1>:

(SIS T~ NN NG
[SLEES S~ NG NG
(LIS S~ N NG

and
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1 15 —1
1 15 —1
1 ><<15 —1>: 15 —1
1 15 —1
2 30 —2

Similarly, we can obtain the character values corresponding to class (2B) of S;.
These give the values of the characters of G on G-classes (2c), (4b) and (4c). This is
done for all the other classes of S5 to give the character table of G given in Table 3.5.

It is divided into blocks each corresponding to the two inertia groups.
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Table 3.5: Character Table of G = 2% : S5

[9] 1 2a|2b 4a|2c 4b 4c|3a|4d 8a | 5a | 6a
IC=(@)| | 1920 128 [48 16|32 16 32| 6| 8 8| 5| 6
X1 1 1 1 1 1 1 1 1 1
X2 1 11-1 -1 1 1]-1 -1 1] -1
X3 4 4| 2 210 1 0] -1] -1
Y4 4 4|2 2] 0 1 a1
X5 6 6/ 0 O0(-2 -2 -2 0] 0 0 1] 0
X6 5 5 1 1 11-1-1 -1 0 1
X7 5 51 -1 -1 1 1] -1 1 1 0] -1
X8 15 -1y3 -1(3 -1 -1 0] 1 -1 0] O
X9 15 -1 -3 173 -1 -1 0] -1 1 0] O
xio| 15 1] 3 -1]|-1 -1 ol -1 1| 0l 0
X11 15 -1 -3 1] -1 -1 0 -1 0 0
X12 30 20 02 2 -2 0] 0 0| 0] O

The above character Table of 2% : S5 has been tested using GAP and found to be

correct.

3.2 A group of form 2* : A;

Let N be an elementary abelian group of order 16, so N = V(2), the vector space
of dimension four over a field of two elements. Let G = A7, the alternating group
of degree 7. In this section we construct the character table of the group extension
G = N : G where N = 2% and G = A; and Ay acts naturally on 2%. The group Ay is
a subgroup of the symmetric group S7 and from the ATLAS [8], we have that A7 is

isomorphic to a group generated by the matrices
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0100 0010
1100 0110
0001|1011
001 1 0111

Let N = 2% be generated by eq, es, €3, e4 with e? =1for1<i<4. Let A; act
on N naturally, that is e = ey;) for all g € A7 and e; € 24, In subsection 3.2.1 we
compute the Conjugacy Classes of 2% : A7 using the method of coset analysis, then in
subsection 3.2.2 we construct the Fischer-Clifford matrix for each class of the group

A7. We use these matrices in section 3.2.4 to put together the character table of
24 As .

3.2.1 Conjugacy Classes of 2% : A;

In this subsection we determine the conjugacy classes of 2% : A7 using coset analysis
as described in section 2.1.1. To determine the conjugacy classes of G we analyze the
cosets Ng where g is a representative of a class of G = A7. We then find the values
of |Cz(x)| by using |Cx(x)| = M, where f of the k blocks of the action of N on

f _
the coset Vg have fused to give a class of G containing .

(i) g € 1A: Then

0
0
1

o o O =
o O = O
o O O

0 1

The identity of G fixes all elements of N, so £ = 16, where k is the number of
elements of IV fixed by g. Thus we have 16 orbits with one element in each.
Now acting Cg(g) = G by conjugation on these orbits, i.e for ng € Ng and
h € Cg(g) = G, (ng)" = nhgh = ntg, we get

{Q}CG(Q) = {9}, {elg}CG(g) = {elga €29,€349,€49,€1€2g,€1€34g, €1€43, €2€37, €2€49

€3€49,€1€2€349, €1€3€43, €1€2€439, €2€3€47, 616263649}-

Therefore under the action of C(g) = G we have two orbits with f; = 1 and

fo = 15. So the coset Ng gives two classes of G with representatives ¢ and e;g.



CHAPTER 3. SOME GROUPS OF FORMS 2* : S5 AND 2% : A; 47

We have that the order of g is 1 and the order of e;g is 2. Therefore this coset

gives two classes of G.
class(la), z = g, |Cq(z)| = 1922520 = 40320,

class(2a), z = e1g, |Cg(z)| = 1022520 — 2688,

g € 2A: Then
01 10
o1
=111 11
1 1 00
with
1 0 0 1 01 01 01 10
01 01 1 010 0 001
CG(g): 3 )
1 1 1 1 0 0 01 1 0 0 1
0 0 0 1 0 01 0 01 0 O

and |Cg(g)| = 24. The action of g on N is represented by the cycle structure

(1)(61 6263)(62 626364)(63 61626364)(64 6162)(6163 6164)(6264 616364)(616263)

(e1ezeq)(esey).

Since there are four fixed points i.e 1, ejeses, eijeseqs and ezeq we have k = 4.

V]

Now under conjugation by N each element of Ng is conjugate to ‘& elements
of Ng. So that Ng splits into four orbits with four elements each. For example
considering g € Ng and conjugating it by N, we get that the orbit of N on Ng
containing g is {g, e1eze3g, e1e2e4g, ese4g}. Similarly the remaining three orbits

of N on Ng are

{elga €2€39, €1€3€44, 62649} {nga €1€39, €e2€3€49, 61649}, {egg, €1€29, €49, 616263649}'
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(iii)

Now we act Cg(g) on these orbits. For ng € Ng, h € Cg(g), (ng)" = nlgh =

ng. We obtain the following orbits;

C _
{9, e1ese3g, ere2eag, e3e4g} ) = {g, e1eze3g, e1e2e49, ezeag},
C
{619, 62639,6163649,62649} a(9) = {619,62639,6163649,62649,629,61639,6263649,

€1€449, €39, €1€249, €49, 616263649}~

Therefore we get two classes of G with f; = 1 and fo = 3 and representatives g

and e;g where o(g) =2 and o(e19) =4 .

class (2b), z = g, |Cx(z)| = 152 = 96,

class (4a), = = e1g, |Cx(z)| = 52 = 32.

g € 3A: Then
1 1 11
HERNE
11110
1 01 1
with
01 10 01 00 1 011
1 0 00 1 0 0O 01 1 1
Calg) = ) :
1 1 00 0 010 0 010
0 0 0 1 0 011 01 0O
and |Cz(g)| = 36. The action of g on N is represented by the cycle structure

(1)(61 €9€e3ey 61626364)(62 €164 616264)(63 €1€9 616263)(64 €1€3 616364)(6263 €92€4

6364).

Thus k£ = 1 and we obtain one orbit with 16 elements. Hence we get one class

with representative g of order 3.

class (3a), z = g, |Cq(x)| = 36.
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(iv) g € 3B: Then

oS O = O
_ O = O
S = O O
— O =

with

[ R

co{ >

and |Cg(g)| = 9. The action of g on N is represented by the cycle structure

S = O =
S = = O
_ o O
= o O O
o O = O
_ O = O
o = O O

1

(1)(e1 e2eq eq)(e2 e1e4 e1egeq)(e1e2e3e4 ee3 e1eseq)(e3)(e1e2)(eres eseseq eseq)(e1ezes).

Thus k£ = 4 and the four orbits of N on Ng are

{g, €29, €e1€4g, 6162649}7{619, €449, €1€29, 62649}, {639, €2€39, €1€3€49, 616263649}, {61639,

ese3€49, €3€49, €1€2€39}.

Now we act Ci(g) on these orbits and obtain that

{9, €29, e1e49, e1e2e49}°¢\9) = {g, €29, e1e49, e1e2€4g},
{619, €449, €e1€29, 62649}CG(9) = {6’19, €49, €1€29, €2€449, €339, €2€33, €1€3€439, €1€2€3€49,

€1e39, €2€e3€44g, €3€49, 6162639}-

We get two classes of G with f; = 1 and f» = 3 and representatives g of order

3 and ey g of order 6.

class (3b), z = g,|Cx(z)| = 22 = 36,

class (6a), = = e1g,|Cx(z)| = &2 = 12.
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(v) g € 4A: Then

1011
o010

=101 11

1010

with

010 1

1111
CG(g):< 0100>

100 1

and |Cg(g)| = 4. The action of g on N is represented by the cycle structure

(1)(e1 ezeq eze3 ereseq)(ea ereseseq eseseq e3) (eq e1eq4 e1e2 ere3)(erezeq eseq)(e1ezes).

Thus k£ = 2 and the two orbits of N on Ng are

{9, €1€2€49, €2€e39g, €13, €1€3€43, €2€43, €3€49, 6162649},

{629, €1€49,€1€2€3€449, €39, €1€29, €43, €2€3€4(, 61639}-

These cannot fuse together under Cg(g), since @1 is fixed. Therefore we have
two classes of G with f; = 1 and f» = 1 and representatives g of order 4 and

eag of order 8.

class (4b), x = g, |Cx(z)| =2 x 4 =8,

class (8a),x = ezg, |Cg(z)| =2 x4 =28.
(vi) g € TA: We get two classes of G:

class (7a) , z = g, |Cg(z)|=2 x 7 = 14,

class (14a), = eag, |Cq(x)| =2 x 7 = 14.
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(vii) g € 7B : We get two classes of G-
class (7b), z = g, |Cg(x)| = 2 x 7 = 14,
class (14b), x = e1g, |Cg(z)| =2 x 7 = 14.
For classes (5A) and (6A) of A7 we have k = 1, so each coset gives one class

of G. These are classes (5a) and (6b) of G, with centralizers of order 5 and 12

respectively. This completes the conjugacy classes of G which are as follows:

1A 2A 3A | 3B 4A 5A | 6A
7l la 2a | 2b 4a | 3a | 3 6a| 4b 8a | 5a | 6b
|C=(9)| | 40320 2688 | 96 32 | 36 | 36 12 | 8 8 5 | 12

L,

— [

[q] TA 7B
[q] Ta 14a | 7b 14b
Cz@)] | 14 14 [14 14

3.2.2 Fischer-Clifford Matrices of 2% : A,

In this subsection we construct the Fischer-Clifford matrices of 2% : A7. We
will use the properties of Fischer-Clifford matrices as discussed in Chapter 2.

Corresponding to the identity of G, we have the matrix

40320 2688

2520 [ a b
MQ14) = s ( c d >'
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Now by the relation ag-l’g) = 1forall j € {1,2,...,¢(g9)} we have that a=b=1.

And by relation
Qlbuk) _ 1Cs(9)l
i =
C; (i)
we have c=15. Now by relation

(i.yk) (i,9x)
Y € R(9)ay " Cr(y)| = 6550 C(xj)]
(i’yk)

we have (2520 x 1 x 1) + (168 x 15 x d) = 0, from which we obtain d = —1.
Therefore the matrix M (1A) is as follows.

M(14) = < 1; _1 >

Now suppose g € (2A4). Then M(2A4) is a 2 x 2 matrix. Let

96 32

Now we have that @ = b = 1 and ¢ = 3 by relations a§1’g) =1 for all j €

{1,2,...,¢(g)} and
Lo _ 1Ceo)]
i =
respectively. By relation

S € R(g)al ™ O ()| = 850|C(a;),
(iryk)

(24 x 1 x 1)+ (8 x 3 xd) =0 from which we obtain d = —1. Therefore the
matrix M (2A) is as follows.

96 32

men - 231



CHAPTER 3. SOME GROUPS OF FORMS 2* : S5 AND 2% : A; 53

Table 3.6: Fischer-Clifford matrices of 2% : A7

] M(g) ] M(g)

wl (g o)) ()
a5 )] ()
wl () [ (00
o (3 a) [0
1A ()

The other matrices are determined similarly, and all the Fischer-Clifford matri-

ces of G are given in Table 3.6.

3.2.3 Inertia Factor Groups of 2*: A

The action by conjugation of G = A7 on N = 2% gives two orbits and so does the
action of G on Irr(N). These orbits are both of length 1 and 15. The inertia
groups are H;=G and Ha, where [G : Hy| = 15. Let Hy = Hy/N, then Hs is a
subgroup of G with [G : Ha] = 15. Therefore Hy = PSL(2,7), by considering
the maximal subgroups of A7 given in the ATLAS [8]. The character table
of Hi = G and Hy = PSL(2,7) can easily be constructed in GAP [14]. The
character tables of H; = A7 and Hy = PSL(2,7) are given in Tables 3.7 and
3.8 respectively. The class fusions of Hy into A7 are given in Table 3.9.
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Table 3.7: Character Table of A7

9] | 1A [2A [3A [3B[4A [5A [6A | 7a | 7B
|Ca(g)] | 2520 | 24 | 36 9 4 5| 12 7 7
X1 1 1 1 1 1 1 1 1 1
X2 6| 2| 3| o o] 1| 1] 1] -1
s| 10| 2| 1] 1] o] ol 1| a| @
X4 10 | -2 1 1 0 0 1 a a
s | 14| 2| 1| 2| ol 1| c1| o] o
X6 14 2 2| -1 0| -1 2 0 0
X7 15| -1 3 0| -1 0| -1 1 1
X8 21 1] -3 0] -1 1 1 0 0
Yo | 35| -1 -1 -1| 1| o] -1 o o
a:%(—l—ﬁi)

Table 3.8: Character Table of Hy = PSL(2,7)

[g] | 1A |2A |3A |4A |7TA | 7B

|Ca(g)| | 168 8 3 4 7 7
X1 1 1 1 1 1 1
X2 3| -1 0 1 a a
X3 31 -1 0 1 a a
X4 6 2 0 0| -1 -1
X5 7| -1 1] -1 0 0
X6 8 0| -1 0 1

0= 41— VA

54



CHAPTER 3. SOME GROUPS OF FORMS 2* : S5 AND 2% : A; 55

Table 3.9: Fusion of Hy in A7

Class of Hy | Class of G
1A 1A
2A 2A
3A 3B
4A 4A
TA TA
7B 7B

3.2.4 Character Table of 2*: A,

In this subsection we use the Fischer-Clifford matrices and the character tables
of the inertia factor groups H1 = G and Hs, together with the fusions of Hy =
—PSL(2,7) into G to construct the character table of 2* : A7. Thus we can
calculate the characters of G, which fall into two blocks according to inertia
groups G and Hs, by multiplying rows of the Fischer-Clifford matrices M (g) of
24 . A7 with sections of the character tables H; = G and Hs according to the
fusions. At the identity of G we have

M(14) = < 1; _1 )

Since the first columns of the Tables 3.7 and 3.8 correspond to the identity of
G we multiply each row of M(1A) by the first columns of Tables 3.7 and 3.8
respectively to get the values of the characters of G on G-classes la and 2a as

follows;
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1
6 6 6
10 10 10
10 10 10
14 | x ( 11 )= 14 14
14 14 14
15 15 15
21 21 21
35 35 35
1 15 —1
3 45 —3
3 45 -3
e ( 15 —1 ): o0 o
7 105 —7
8 120 —8

Similarly we can obtain the character values corresponding to class (2A) of G.
These give the values of the characters of G on G-classes (2b) and (4a). We
proceed in the same way for all classes of G, to get all the characters of G.
This gives the character table of G given in Table 3.10. The character table is
divided into two blocks each corresponding to an inertia factor group A7 and
Ho.
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AT

Table 3.10: Character Table of G = 2%

14b

14

b

14

1l4a

14

14

6b | 7Ta

12

5a

4b | 8a

8

12

3b | 6a

3a

2b | 4a

-3

2a

10

14
14

21

35

7

1

40320 | 2688 | 96 | 32 | 36 | 36

10
10
14
14
15
21

35

15
45

45

90
105
120

Ca(@)|

X1

X2

X3

X4

X5

X6

X7

X8

X9
X10

X11

X12

X13

X14

X15

: A7 has been tested using GAP and found to be correct.

The character Table of 2%



Chapter 4

A subgroup (S,)™ : Cy, of Sy,

prime m

4.1 Introduction

Let m,n € N, the set of positive integers and C,,, be a cyclic group of order m. In this
chapter we construct the character tables of examples of groups of the form S : C,,,
prime m, where the group S : Cp,, is a subgroup of the symmetric group Smn, of
degree m X n. In the first two sections of this chapter, we define the group S)* : Cp,
and discuss in detail the method of calculating the conjugacy classes of this group.
In the third section we briefly outline the steps of constructing the character tables
of the groups, including giving a method of finding the Fischer-Clifford matrices and
the inertia factor groups. Lastly we determine the Fischer-Clifford matrices and use

these to construct the character tables of the groups S)* : Cy,, prime m.

4.2 The Group S" : C,,, prime m

Let N = S™ be the direct product of m copies of S,,, where the j** copy of S, given
by

I8 = Growp(((j— Dn+1 (G—Dn+2 ...jn),((G—Dn+1 (= Dn+2),
i=1,2,...,m.
Let C),, =< g >, and we may take

58
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g=1 n+1 2n+1 ...(m—1n+1)(2 n+2 2n+2 ...(m—1)n+2)
B3 n+3 2n+3 ...(m—1)n+3)...(n 2n 3n ...mn).

Then g is an element of S,,,, of type [m"], it permutes the elements of the copies S,
of N. We note that g° permutes cycles from distinct copies of S, that is g° permutes
copies of cycles of N. It follows that N is invariant under conjugation by elements of
Cy, and N () Cp, = 1. Thus we can define the split extension G =N:C,, of N by
C,, with action conjugation. Since G is a split extension of N by C,,, every element

g of G is of form § = ug”, where u € N and ¢" € Cy,, 7 = 1,2,...,m. We have

u€e N if g" =1¢,,
g = QTGCm ifule
ug” € G\ {N,Cn} ifu#1n,g" # o,

As indicated earlier, the group G = S™ : C,, is a subgroup of the symmetric group
Smn of degree m x n. In the next section, we give a method for constructing the

conjugacy classes of the group G = S™ : C,,, where m is prime.

4.3 Conjugacy Classes of G = S™ : C,,, prime m

It is well known [24] that the conjugacy classes of the symmetric group S,, are in one-
to-one correspondence with partitions of n, called types of the conjugacy classes of
Sp. The conjugacy classes of the symmetric group S, are easily constructed (even in
GAP [14]). Since conjugation in S,, is equivalent to applying the conjugating element
to the symbols in the elements of S,, [24], any conjugate elements of a subgroup of
Sy have the same type as elements of S,,. However two elements may have the same
type in S, but may not be conjugate in the subgroup. Therefore here, our reference
to the type of elements of a subgroup of 5,, will not mean the elements are conjugate
in the subgroup. Consequently the fusion of the conjugacy classes of a subgroup of S,
to the conjugacy classes of S, is useful in the determination of the conjugacy classes
of the subgroup. It is clear that the conjugacy classes of N = S consist of direct
products of the elements in the conjugacy classes of the copies of S,,. Since N = S]" is
not abelian, we cannot apply coset analysis as in [27, 28] to construct the conjugacy

classes of G. Here we give a method similar to coset analysis for constructing the
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conjugacy classes of a subgroup S, : C,, of the symmetric group Sy, of degree
m X n, where m is prime. Thus, in the following we consider prime m as this case

provides interesting examples [35].

Let h,g € G. In the following we will write conjugation of h by g as (h) =

(9)"'hg. It is clear that for h = zg® and § = ug", we have (k)9 = 29(¢g*)7 and
(R)? = (R)*" = ((R)")".
Lemma 4.3.1 Let z(#1) € N and ¢*(#1) € Cp, s=1,2,...,m — 1. Then
(i) ©9° € N.
(ii) (g°)® € G\N. Further if 9° # x we have (¢°)* € G\(N U Cp,).
Proof.
(i) Clear since by definition of G, the group N is Cp,-invariant.

(ii) We have (¢°)® = g%z = 27129 "¢g* € G\N since g° # 1. Further if 29° #
x then 9" # z so that 27 '29 " # 1. Now from above we have (¢°)® =
x7 129" g%(# g°) ¢ Cm. Hence (g°)* € G\(N U Cy,).

]

Definition 4.3.2 For each g° € Cy,, we call the set {x™ 29" | x € N} the g*-basic

set in G.

Since 29" # x for some = € N, it is clear that each g®-basic set in G is distinct, for

s=1,2,...,m— 1.
Lemma 4.3.3 Let 2(# 1) € N and g° € Cy,. Let g=ug" € G. Then
(i) 29 =y9", where y = z* € zN.

(ii) (9°)9 = v 19 "¢*, where v =u9 .
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Proof. With g = ug” where v € N and ¢g" € C,,, we have

r

(i) 29 = 29" = (2*)9 =49, where y = z* € z.
(i)
(67 = ((g")")*
(

L]
Remark 4.3.4 Let x,u € N and ¢°,g" € Cy,. We see from Lemma 4.3.3 that

(i) since z* € N, conjugating x € N by g = ug" is equivalent to conjugating a

conjugacy class representative of ¥ by g".

(ii) since (g°)9 = g°®, conjugating g° by § = ug” is equivalent to computing the

element (g°)".

(i) (g)" = uu9 ™" g,

We note that to construct the conjugacy classes of G, we need to consider the
actions by conjugation of each group N and C,,, on the conjugacy classes of the other.
Therefore from now onwards we shall assume that the conjugacy classes of N and Cp,

are known and write 29 in place of 29 = (2%)9" = y9" where y € z.

Let Cn(g®) be the centralizer of g° in N and = € Cn(g®). Since Cn(g®) is a group,
it follows that 271 € Cn(g*). The following result describes Cn(g), the elements in
N that fix g.

Proposition 4.3.5 Let g(# 1) € Cp,. Then Cn(g) = {z € N | ¢° = g} consists of
elements of N of type [\|™ = [1™M2mA2...nmAn] in S, . where [\] ranges over the

types of conjugacy classes of Sy,.
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Proof. Let ¢* = g. Then 2~ 'gx = g which implies that 9 = z, that is g fixes . Thus
g permutes the cycles of z amongst themselves. Now since g permutes cycles from
distinct copies of S, it follows that = is a product of elements of the same lengths,

one element from each distinct copy of S,,. Without loss of generality let
T =---UV -

where u and v are any two elements, of the same length, from distinct copies of S,
such that w9 = v. Then for each cycle u; of u there is a cycle v; of v of the same
length as u; such that u! = vj. Thus u and v have the same type [A]. Since z must
contain one element of type [A] from each copy of S,, and N contains m copies of Sy,
it follows that z has type [A\|™ = [1M127A2 ... pmAn], O

Lemma 4.3.6 Let g°(# 1) € Cy, where m is prime. Then Cn(g°) = Cn(g) for all

S.

Proof. Let z € Cn(g). Then xg = gz which implies that

wgs :a:ggsfl :gwgsfl :‘92-’[39872 2931‘9873 — :gsfl$g:gsa?.

Thus z € Cn(g®). Hence Cn(g9) < Cn(g®). Now m is prime implies that o(g) =
o(g®) = m. Since o(g®) is the least common multiple of the orders of the cycles of g°,
we have that ¢® and g only have cycles of the same length m. It follows that ¢g® and
g move the same symbols, and by Proposition 4.3.5 they fix the same elements of N.
Hence Cn(g®) = Cn(g). O

Corollary 4.3.7 Let g°(# 1) € Cp,, where m is prime. Then |Cn(g°)| = n! for all

S.

Proof. By Proposition 4.3.5, |Cn(g)| is the number of elements of N of type [A]"* for
all types [A] of conjugacy classes of S,,. However the number of elements of type [A]™

in Cn(g) is equal to the number of elements of type [\] in S,. Since each conjugacy

n!

121 (A1)1222(A2)!--nAn (Ap)!

class of type [A] in S,, contains elements [24], we have

n!
ICn(9)] = %}: 121 (A)!12%2 (Ag)! - - - mAn (A,)!
= |Sn|

= nl.
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Now since m is prime, by Lemma 4.3.6 we have |Cn(g°)| = |Cn(g)| = nl. J

Proposition 4.3.8 Let g°(# 1) € Cy,, where m is prime. Define [¢°]ny = {(¢°)" | z €
N}. Then

lg*Iv] = (n)™ .

Proof. By the orbit-centralizer relation and Corollary 4.3.7 we have

lg°In] = [N :Cn(g%)]
(nt)™
n!
= (n)™ L.

]

Let + € N and ¢g°* € C,,. Since z9° € N, conjugating the elements of N by
elements of C,,, does not produce any further conjugacy classes of G besides those of
N. However some conjugacy classes of N fuse on conjugation by C,, as we show in

the following result.

Theorem 4.3.9 Let z,z € N such that z ¢ V. Let g* € C,,. If

(i) = and z have the same type as elements of Spyn and

(ii) for each disjoint cycle z; of z there is a disjoint cycle x; in x of the same length

such that z; = mfs,
then z is conjugate to x in G.

Proof. Let z* # z for any u € N. By condition (i) let z and z have the same type in
Smn. By condition (ii) let each disjoint cycle z; of z be such that there is a disjoint
cycle x; of x of the same length as z; and z; = wfs. Since the cycles are disjoint we

can, if necessary, re-arrange the disjoint cycles z; of x in the order of the cycles z; in
g

,l:/

s

z such that z; = =7, . Then

s s
z:HZj:Ha:f, =z9.
i i

Thus z is conjugate to = in G. ]
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Remark 4.3.10 Since g° permutes cycles from distinct copies of Sy, Theorem 4.3.9

implies that the cycles z; and z; = :L“f,s belong to distinct copies of S,,.
Corollary 4.3.11 Let z,z € N and g°(# 1) € Cp,.

(i) If x € Cn(g), then the class ¥ of N is also a conjugacy class equal to 2@ of
G of size |z|.

(ii) If z ¢ ¥ and 29" = z, then the conjugacy classes ¥ and 2V of N fuse in G.
Proof. Follows from Theorem 4.3.9. ]

Lemma 4.3.12 (Action of C,, on N) Let m be prime. Then the number of orbits
of the action of C,, on N is given by

n! [(n)™ 1 +m — 1]

)

m

that is f—n' [(n!)m_1 — 1]) orbits of length m and n! orbits of length 1.

Proof. There are (n!)™ elements in N and by Corollary 4.3.7 only n! = |Cn(g°)| of
these are fixed by C),, and thus each of these forms its own orbit under conjugation by
Cyn. This leaves (n!)™ —n! elements of N, some of which must fuse under conjugation
by C,,. However since elements of C,,, permute cycles from distinct copies of S,, and
there are m copies of S, it follows that each orbit of the action of C,, on N \ Cn(g)
contains m elements. It follows that the (n!)™ —n! elements of N form w orbits

on conjugation by C,,. Thus the total number of orbits of the action of C}, on N is

nm _nl
(n!) n
m
which gives the result. The orbit sizes are clear from the number |Cy(g)| = n! of

elements in N fixed by C), and the m elements in N \ Cn(g) that are permuted by
Crm. O

Proposition 4.3.13 Let m be prime. Let P(n) be the number of partitions of n. Let
[A] = [M][A2] - - - [Am] be the type of x in N, where [N;] = [Nt iz -+ - \in] 1s a type of
an element of the it" copy of S,, in N. Then the number of orbits of the action of Cy,

on the conjugacy classes of N is given by
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P(n) [(P(n))"“1 +m— 1]

I

m
where an orbit containing a class of N with representative x contains the following

numbers of elements of N:

(Z) Hzil 121 ()\“)!ZA,Q (;\l:z)!...n)‘in()\m)!’ lf S CN(g)

.. m m(n! .
(i) TI7 e o @ ¢ On(g)-

Proof. Since there are P(n) conjugacy classes of Sy, it follows from the direct products

of the classes of S,, that N has (P(n))™ conjugacy classes each of size

i n!

_1_[1 1At ()\il)!2)\i2 ()\12)‘ -+ pAin (/\m)',

1=

where ) (;:2)!-~-n'\m(>\m)! is the size of the class of S;, of type [A;] = [Ai1Aiz - - - Ain]-

Since there are P(n) types in Cn(g), the P(n) classes of N are fixed by C,, by Corol-

lary 4.3.11 (i), and thus each of these forms its own orbit under conjugation by Ci,.

This leaves (P(n))™ — P(n) conjugacy classes of N, some of which must fuse under
conjugation by C,,. However we know from Lemma 4.3.12 that each orbit of the ac-
tion of Cy;, on N\ Cn(g) contains m elements each of which belongs to a distinct class
of N. It follows that the (P(n))™ — P(n) conjugacy classes of N form W
orbits on conjugation by C,,. Thus the total number of orbits of the action of C), on
the conjugacy classes of N is

(P(n)™ — P(n)

+ P(n)

which gives the result. The orbit sizes follow from the products of the sizes
n!
121 (/\il)!Q)‘i2 (/\Zg)' - .pAin ()\m)‘
for each class of S,, of type [A;]. Further the classes are of sizes those of type [A] in

N if z € Cn(g) or we multiply the above sizes by m where m conjugacy classes of N
fuse that is if z ¢ Cn(g). O

We remark that if NV is abelian, then Proposition 4.3.13 would be equivalent to Lemma,
4.3.12.

Proposition 4.3.14 Let z ¢ 2V and 29" = z. Then xg® is conjugate to zg* in G.

Proof. On conjugating xg® with g = g* we get (zg®)9 = 29 ¢° = zg°. ]
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Examples 4.3.15 In G = S5 : Cs, let g = (1,4,7)(2,5,8)(3,6,9) with
9> = (1,7,4)(2,8,5)(3,9,6) € C3. Then

(i) take x = (1,2) and z = (4,5) which are not conjugate in N. See that (1,2)9 =
(4,5) so that ((1,2)g%)? = (4,5)g>.

(ii) take z = (1,2)(4,5,6) and z = (4,5)(7,8,9) which are not conjugate in N. See
that
((1,2)(4,5,6))9 = (4,5)(7,8,9) so that ((1,2)(4,5,6)g*)9 = (4
that ((4,5)(7,8,9))¢ = (7,8)(1,2,3) so that ((4,5)(7,8,9)g*)?

,5)(7,8,9)g%. See
= (7,8)(1,2,3)g%.

The following proposition generalizes Lemma 4.3.3.

Proposition 4.3.16 Let 29 = 2 in G. Then
(i) xg® is not conjugate to zg' in G unless t = s.

(i) we have

(wgs)ugr — { ng qu € CN(gs)

.
P 4 where v = u9 .
z(v™9 T)g®  otherwise,

Proof.

(i) Suppose xg® is conjugate to zg' in G. Then for some g € G we have (g) ! (zg*)g =
2gt, that is (g)"'2g(g) "'g°g = 2. This implies (¢°)7 = g, that is g° is conju-
gate to g' which is not possible by Lemmas 4.3.1 (ii) and 4.3.3 (ii).

(ii) We have (zg*)“9" = 2%9" (g*)*9" = ()9 ((¢°)*)9" = y9 ¢* if u € Cn(g°). Now if
u ¢ Cn(g®), then (zg*)"9" = (z*)7"((9°))* = y* (u™'g*w)” =y (u™'u? ")9 g*

= z(v™ 19 ") g%, OJ

Examples 4.3.17 In G = S5 : Cs, let g = (1,4,7)(2,5,8)(3,6,9),
¢ = (1,7,4)(2,8,5)(3,9,6) € Cs. Then

(i) take z = (1,2) and y = (2,3) which are conjugate in N. Then we have
u=(1,2,3)(4,5,6)(7,8,9),u™! = (1,3,2)(4,6,5)(7,9,8) € Cn(g°) as stated in
Proposition 4.3.5. Now see that (1,2)" = (2,3) so that ((1,2)g)"" = (2,3)9°g =
(8,9)g and ((1,2)*)" = (2,3)%g = (5,6)9”.
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(ii) take x = (1,2)(4,5,6) and y = (2,3)(5,6,4) which are conjugate in N. Note
that ((1,2)(4,5,6))" = (2,3)(5,6,4) so that

((1,2)(4,5,6)9)"" = ((2,3)(5,6,4))? g = (1,2,3)(8,9)g

and
((1,2)(4,5,6))g°)" = ((2,3)(5,6,4))79° = (5,6)(8,9,7)g".

Remark 4.3.18 Proposition 4.3.16 (i) implies that only the elements within a coset
Ng® can be conjugate in G. Thus to determine the conjugacy classes of G we may

consider elements within a coset of N in G.

Theorem 4.3.19 (Coset Analysis Equivalent) Let {y} be the set of elements of
Cn(g®) of type [A\]™, where [A] is a type of a conjugacy class of S, and m is prime.
Let Ng* # N be a non-identity coset of N in G. Then on conjugation by elements of
G, the coset Ng* breaks into sets of form

{o}g’In = {ot | o € {0}, € [¢°]n},

where o is one of the products of cycles of y being permuted within y. Further each

set {o}[g®]n is a conjugacy class of G.

Proof. By Remark 4.3.18, to determine the conjugacy classes of G we consider ele-
ments within a coset Ng® of N in G. Since |[Ng®| = |N| = |Cn(g®)||[¢°] N, We analyze
the set [¢°]n. Let t € [¢°]n. Then t = (¢°)* = (v u9 *)g® € Ng°. Now by Propo-
sition 4.3.16, an element h of G is conjugate to an element of form o(v—1v9 ")g*® for
some o = (:L'“)gr, that is o is conjugate under g" to some element z* of N. But the
only elements of N of this form are those parts of an element y of Cn(g®). This
suggests that ¢ is a product of cycles from some copies S, of N. Let y = 0102+ - oy
Ifafs =oj4qfori=1,2...,m—1and 0% = oy, then o = 0;, one fixed i = 1,2...,m

and take (0)9" = oy

Now notice that the elements of [¢°] y may be considered as products of the ele-
ments of [¢°]y by 0 = 1g, of 1. Following this notation, we multiply the elements of

[¢°]n by o(# 1) as o(u"tud " g°) € {o}[g°]n. We show that the element is conjugate

to h in G. Consider an element of Ng* as an element cu™'u9 "¢° of {o}[¢*]n. By
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the remarks following Remark 4.3.4, taking conjugation by g = ug” as conjugation

effectively by ¢", we have

(o™ )g) = o7 (v g
= )Yy
= opw twd g®
= 0i(9°)",

which belongs to {o}[g°]n. This shows that {o}[g°]y is a conjugacy class of G.  []

Corollary 4.3.20 Let ¢g° € C,,, where m is prime. Then for each s =1,2,...,m—1,

the set [g°]ny = {(g°)® | © € N} is a conjugacy class of G of size (n!)™ 1.

Proof. Let [A] = [1"] in Theorem 4.3.19. Then {1g,}[¢°]n = [¢°]n for each s =

1,2,...

]

,m — 1 is a conjugacy class of G. The size is clear from Proposition 4.3.8.

Definition 4.3.21 We call the classes [¢°|n, s =1,2,...,m — 1, basic conjugacy

classes of G.

Theorem 4.3.22 (Classes of G = S™ : Cp,)

()

(i)

(iii)

Let g° € Cy, where m is prime. Let :cfv, 1=1,2,...,k be the conjugacy classes
of N such that mfs =z for some j =1,2,...,k, that is the classes of N which
fuse under conjugation by elements of C,,. Then C = Ule wfv 18 a conjugacy
class of G of size Zle |z

Let {y} be the set of elements of Cn(g®) of type [A\]™, where m is prime and
[A] is a type of a conjugacy class of Sy. Let {o;} be the set of elements o;
iny = 01020y € {y} such that afs = 0541 fori = 1,2...,m — 1 and
o8 = o1. Let 0 = o;. Then for each s = 1,2,...,m — 1 and each set {0},
the set {o}[g°]n = {ot | o € {o},t € [¢°]n} is a conjugacy class of G of size

{y}l x |lg°]nl-

The classes in (i) and (i) above form a complete set of conjugacy classes of G.
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Proof.
(i) Follows from Theorem 4.3.9 and Proposition 4.3.16.

(ii) Follows from Theorem 4.3.19. The sizes of the conjugacy classes follow from

Proposition 4.3.8, Corollary 4.3.7 and Proposition 4.3.5.
(iii) By Theorem 4.3.19, we consider the cosets of N in G.

(a) If Ng° = N, we obtain the classes of G as given in Theorem 4.3.22 (i)

above.
(b) If Ng® # N, we obtain the classes of G as given in Theorem 4.3.22 (ii)

above.

Now since G = |-, Ng*, the result follows. O
Proposition 4.3.23 Let P(n) be the number of partitions of n. Let m be prime.

Then the total number of conjugacy classes of G = S™ : C,, is

Pm)[(P(n)™ ! +m? — 1]

m

Proof. By Proposition 4.3.13 the number of conjugacy classes of G obtained by

uniting the conjugacy classes of N that fuse on conjugation by elements of C, is
P(n)[(P(n))™ ' +m—1]

m — —
class {o}[g°]n of G, the number ngs of classes {y} gives the number of classes of G

. Also since for each class {y} in Cn(g®) of type [A]™ there is a
obtained from the non-identity cosets. Thus from Theorem 4.3.22, we obtain that the
total number of conjugacy classes of G is

m—1

P)[(P(m))™ +m 1] S nge.
s=1

m

Since m is prime, by Proposition 4.3.5 and Corollary 4.3.7 we have ngs = P(n)
for each s. Also there are m — 1 non-identity elements of C,,,. The formula above now

becomes

P(n)[(P(n)"™ ' +m—1]

m

+(m = 1)P(n),

which gives the result. ™
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Examples 4.3.24 Let m = 2 with n = 3. The group S3 : Cy is a subgroup of Sg of
order 72. Using the theory in Section 4.3, we obtain 6 conjugacy classes of S§ : Cy
from the coset N, these are of sizes 1,6,4,9,12,4. Since |[N| = (3!)2 = 36 and m = 2
is prime we have Cn(g°) = Cn(9) = {1,(1,2,3)(4,5,6), (1,3,2)(4,6,5),(2,3)(5,6),
(1,2)(4,5),(1,3)(4,6)} of order 3!=6, so that [N : Cn(g)] = 6. Thus |[¢°]] = 6. We
obtain 8 conjugacy classes of Sg : Cy from the coset Ng # N, these are of sizes
I1x6=26,3x6=18 and2x6 = 12. Thus S? : Cs has a total of 9 conjugacy classes.

4.4 Character tables of (S,)" : C,,, prime m

In this section we outline the steps we follow in constructing the character tables of
examples of groups of the form S : Cy,, prime m. We use the method of Fischer-
Clifford matrices to construct these tables. The method is applicable since by The-
orem 2.3.15 the group S, : C}, has the property that every Irreducible character of

N = (Sp)™ is extendible to its inertia group.

(i) We first calculate the conjugacy classes using the method discussed in section
4.3. Thus by Theorems 4.3.19, 4.3.22 and Proposition 4.3.23 we are able to

construct all the conjugacy classes of a group S} : Cy,, prime m.

(ii) To calculate the Fischer-Clifford matrix M(1A) of S : Cy,, prime m we apply
Proposition 2.4.4 and for the matrices M (g®) we apply Theorem 2.4.5(1) (see
[25]). In using Theorem 2.4.5 we consider S,, in the place of G and C,, in the
place of S, since in this case C,, is a subgroup of S,,. We obtain m Fischer-

Clifford matrices for each group S) : Cy, as follows.

(a) The matrix M(1A) is obtained from the orbit sums of the action of Cy, on
Irr((S,)™) and deleting the repeated columns.

(b) We consider the group S7* : C,, as the wreath product S,wC,,, where
the group C,, is taken as a group generated by a cycle of order m in S,
rather than a multiple of n cycles of order m in S,,,,. The Fischer-Clifford
matrices M (g®) at g°, where s # 1 are each equal to the character table of
Sh-

(iii) Since m is prime we have only two inertia factor groups, that is C1 and Cp,.

The fusion of the irreducible characters of C; into (), is trivial.



CHAPTER 4. A SUBGROUP (Sy)™ : Cy OF Sy y, PRIME M 71

Table 4.1: Character Table of (S3)?

[g] la 2a 3a 2b 2c 6a 3b 6b 3c
ICqgl | 72 | 24 | 36 | 24 | 8 | 12| 36 | 12 | 18
X1 1 1 1 1 1 1 1 1 1
X2 1| -1 1 1| -1 1 1| a1 1
X3 2 o | -1 2 o | -1 2 0 1
xa 1 1 1] 1| -1 -1 1 1 1
X5 1| 1 1] -1 1| 1 1| 1
X6 2 0| -1 | -2 0 1 2 0 1
x7 2| 2| 2 o| o of -1 -1 1
X8 2 | -2 2 0 0 o | 1 1 1
Xo 4 o | -2 0 0 o | -2 0 1

4.4.1 The group (53)? : C,

As shown in Examples 4.3.24, the group (S3)? : Cy =< (1,2),(1,2,3), (4,5), (4,5,6),
(1,4)(2,5)(3,6) > has a total of 9 conjugacy classes of sizes 1,6,4,9,12,4, 6,18 and 12.
We obtain the Fischer-Clifford matrices of (S3)? : Cy using the information as given

in (ii) above as follows. The character table of (S3)? is as given in Table 4.1.

Now we act Cy =< (1,4)(2,5)(3,6) > on Irr((S3)?) and we obtain that three
characters x1, x5 and xg are fixed while {x2, x4}, {x3, x7} and {xs, xs} form the rest
of the orbits. Thus we add rows 2 and 4, 3 and 7, 6 and 8 of the character table of
(S3)?, and deleting the repeated columns to obtain the Fischer-Clifford matrix M (1A)

which is as follows.

1 11 1
1 -1 1 1 — 1
4 —2 o0 1
MA =1, 2 -2 2
4 2 1 0 -1 -2
4 —2 1 o0 2

The Fischer-Clifford matrix M (2A) is as follows.
1 1 1

M(24) = ( 1 -1 1 ) .
2 0 -1

The character table of (S3)? : Cy is obtained by multiplying the partial character
tables of the inertia factor groups Cy and C3 with the corresponding rows of the above
Fischer-Clifford matrices according to the fusions. The character table of (S3)? : Cs
is given in Table 4.2.
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Table 4.2: Character Table of (S3)? : Cy

[g] 1A 2B
[9] la 2a 3a 2b 6a 3b 2c 4a 6b
lcg@| | 72 12 18 8 6 18 | 12 4 6
x1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 1 1 1 a1 -1
X3 1 -1 1 1 -1 1 1 -1 1
X4 1 -1 1 1 -1 1 -1 1 -1
x5 1 0 -2 0 0 1 2 0 -1
X6 4 0o -2 0 0 1] -2 0 1
7 2 0 2 2 0 2 0 0 0
Xs 4 2 1 0o -1 -2 0 0 0
X9 4 2 1 0 1 -2 0 0 0

4.4.2 The group (53)® : Cs

The group (S3)% : C3 =< (1,2),(1,2,3),(4,5),(4,5,6),(7,8),(7,8,9),
(1,4,7)(2,5,8)(3,6,9) > is a subgroup of Sy of order 648. We obtain 11 conjugacy
classes of (S3)% : C3 from the coset N, these are of sizes 1,9,6,27,18,18,12,27,54,36,8.
Since |N| = (3!)2 = 216 and m = 3 is prime we have that for all s, Cn(g*) = Cn(g) =
{1,(1,2,3)(4,5,6)(7,8,9), (1,3,2)(4,6,5)(7,9,8), (2,3)(5,6)(8,9), (1,2)(4, 5)(7,8),
(1,3)(4,6)(7,9)} of order 3!=6, so that [N : Cn(g)] = 36. Thus |[¢°]] = 36. We
obtain 6 conjugacy classes of (S3) : C3 from the cosets Ng® # N, these are of sizes
1% 36 =36, 3% 36 =108, 2x 36 =72 and 1 x 36 = 36, 3 x 36 = 108, 2 x 36 = 72, for
Ng and Ng? respectively. Thus (S3)3 : C3 has a total of 17 conjugacy classes. We
obtain the Fischer-Clifford matrices of (S3)% : C3 as described above. Thus

1 1 1 1 1 1 1 1 1 1 1
8 0 -4 0 0 0 2 0 0 0o -1
1 -1 1 1 -1 -1 1 -1 1 -1 1
3 1 3 -1 1 1 3 -3 -1 1 3
3 -1 3 -1 -1 -1 3 3 -1 -1 3
M(1A) = 6 —4 3 2 -1 -1 0 0o -1 2 -3
6 4 3 2 1 1 0 0o -1 -2 -3
6 0 3 -2 -3 3 0 0 1 0o -3
6 0 3 -2 3 -3 0 0 1 0o -3
12 -4 0 0 2 2 -3 0 0o -1 3
12 4 0 0 -2 -2 -3 0 0 1 3

The Fischer-Clifford matrices for g € 34 and g € 3B are the same, thus:
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Table 4.3: Character Table of (S3)3 : C3

[g] 1A 3A 3B
[9] la 2a 3a 2b 6a 6b 3b 2c 6¢ 6d 3c 3d 6e 9a 3e 6f 9b
|CE(§)| 648 72 108 24 36 36 54 24 12 18 81 18 6 9 18 6 9
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 1 1 1 1 1 1 1 [e% [e% [e% o o o
X3 1 1 1 1 1 1 1 1 1 1 1 & @ @ a a a
X4 8 0 -4 0 0 0 2 0 0 0 -1 2 0 -1 2 0 -1
X5 8 0 -4 0 0 0 2 0 0 0 -1 2 0 - 2a 0 -a
X6 8 0 -4 0 0 0 2 0 0 0 -1 2a 0 -a 2a 0 -a
X7 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1
X8 1 -1 1 11 -1 1 -1 1 1 a  -a a a @ @&
X9 1 -1 1 11 -1 1 -1 1 1 & & @ a  -a a
X10 3 1 3 -1 1 1 3 3 -1 1 3 0 0 0 0 0 0
x11 3 -1 3 -1 -1 -1 3 3 1 -1 3 0 0 0 0 0 0
x12 6 -4 3 2 1 a1 0 0o -1 2 .3 0 0 0 0 0 0
X13 6 4 3 2 1 1 0 o -1 -2 -3 0 0 0 0 0 0
X14 6 0 3 2 -3 3 0 0 1 0o -3 0 0 0 0 0 0
X15 6 0 3 -2 3 -3 0 0 1 0o -3 0 0 0 0 0 0
X16 12 -4 0 0 2 2 -3 0 0o -1 3 0 0 0 0 0 0
x17 12 4 0 o -2 -2 -3 0 0 1 3 0 0 0 0 0 0
_ —1+V3i
=73

The character table of (S3)® : C3 is obtained in the same way by multiplying the
partial character tables of the inertia factor groups C'y and C3 with the corresponding
rows of the above Fischer-Clifford matrices according to the fusions. The character
table of (S3) : C3 is given in Table 4.3.

4.4.3 The group (5,)? : Cy

The group (S;)? : Cy =< (1,2),(1,2,3,4),(5,6),(5,6,7,8),(1,5)(2,6)(3,7)(4,8) >
is a subgroup of Sg of order 1152. We obtain 15 conjugacy classes of (S4)% : Co
from the coset N, these are of sizes 1,12,16,6,12,36,96,36,72,64,48,96,9,36,36. Since
|N| = (4!)2 = 576 and m = 2 is prime we have Cn(g*) = Cn(g) of order 4!=24, so
that [N : Cn(g)] = 24. Thus |[g°]| = 24. We obtain 5 conjugacy classes of (S4)% : Cs
from the coset Ng # NN, these are of sizes 1 x 24 = 24, 6 x 24 = 144, 8 x 24 = 192,
3x 24 =72 and 6 x 24 = 144. Thus (S4)? : Cs has a total of 20 conjugacy classes.
We obtain the Fischer-Clifford matrices of (S4)? : C2 as described above. Thus
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 2 2 0 -2 0 0 -2 2 2 0 2 0 -2
4 2 1 4 2 0 -1 2 0 -2 1 -1 4 2 0
6 4 3 2 2 2 1 0 0 0 -1 -1 -2 -2 -2
6 2 3 2 4 -2 -1 -2 0 0 -1 1 -2 0 2
1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 -1 1
4 -2 1 4 -2 0 1 -2 0 -2 1 1 4 -2 0
M(1A) = 6 -2 3 2 —4 -2 1 2 0 0 -1 -1 -2 0 2
6 —4 3 2 -2 2 -1 0 0 0 -1 1 -2 2 -2
4 0 -2 4 0 0 0 0 0 1 -2 0 4 0 0
12 2 -3 4 -2 0 -1 2 0 0 1 1 —4 -2 0
12 -2 -3 4 2 0 1 -2 0 0 1 -1 —4 2 0
18 0 0 —6 0 -2 0 0 2 0 0 0 2 0 -2
9 3 0 -3 -3 1 0 -1 -1 0 0 0 1 1 1
9 -3 0 -3 3 1 0 1 -1 0 0 0 1 -1 1
The Fischer-Clifford matrix M (2A) is as follows.

1 1 1 1

1 -1 1 1 -1

M2A) =] 2 -1 2 0

3 0 -1 -1

3 -1 0 -1 1

The character table of (S;)? : Oy is obtained in the same way by multiplying the
partial character tables of the inertia factor groups C7 and Cs with the corresponding
rows of the above Fischer-Clifford matrices according to the fusions. The character
table of (S4)? : Cy is given in Table 4.4.
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Table 4.4: Character Table of (S4)? : Cy
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4.4.4 The group (5,)® : Cs

The group (54)3 1 O3 =< (1a 2)7 (]-a 2,3, 4)7 (55 6)7 (55 6,7, 8)7 (95 10)7 (95 10, 11, 12)5
(1,5,9)(2,6,10)(3,7,11)(4,8,12) > is a subgroup of Si2 of order 41472. We obtain 45
conjugacy classes of (S4)? : C3 from the coset IV, these are of sizes 1,9, 27, 27,24, 72,72,

216,192, 576,512, 18, 18, 54, 54, 54, 54, 162, 162, 144, 144, 432, 432, 144, 144, 432, 432, 1152,

1152,108, 108, 108, 108, 324,324,324 , 324, 864, 864, 864, 864, 216, 648, 648, 216. Since
|N| = (4!)3 = 13824 we have

Cn(g°) =< 1,(1,2,3,4)(5,6,7,8)(9,10,11,12), (1,2, 3)(5,6,7)(9,10,11),(1,2)(5,6)(9, 10) >,

of order 4! = 24, so that [N : Cn(g®)] = 576. Thus |[¢g°]| = 576. We obtain 10
conjugacy classes of (S4)% : C3 from the cosets Ng® # N, these are of sizes 1 x 576,
6 x 576, 3 x 576, 8 X 576, 6 X 576 and 1 X 576, 6 X 576, 3 X 576, 8 X 576, 6 X 576
respectively for Ng and Ng?. Thus (S;)® : C3 has a total of 55 conjugacy classes.
We obtain the Fischer-Clifford matrices of (S4)® : C3 as described above. Thus
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15
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M(1A) =
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M(1A contd.) =
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12

M (1A contd.)

The Fischer-Clifford matrices M (3A) and M (3B) are equal as follows.

= M(3B).

1
1
0

-1

-1

Cj5 is obtained in the same way by multiplying the

The character table of (S4)? :
partial character tables of the inertia factor groups C7 and Cs with the corresponding

The character

rows of the above Fischer-Clifford matrices according to the fusions.

table of (S;)3

: ('3 is given in Tables 4.5, 4.6, 4.7, 4.8.



79

Cuy OF Syn, PRIME M

CHAPTER 4. A SUBGROUP (Sy)M

C3

Character Table of S3 :

Table 4.5
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C'3 contd.

Character Table of S5 :

Table 4.6
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C'3 contd.

Character Table of S5 :

Table 4.7
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C3 contd.

Table 4.8: Character Table of S3 :
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