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Abstract

This thesis is based on application of frailty and copula models to under five

child mortality data set in South Africa. The main purpose of the study was to

apply sample splitting techniques in a survival analysis setting and compare

clustered survival models considering left truncation to the under five child

mortality data set in South Africa. The major contributions of this thesis is in

the application of the shared frailty model and a class of Archimedean copulas

in particular, Clayton-Oakes copula with completely monotone generator, and

introduction of sample splitting techniques in a survival analysis setting.

The findings based on shared frailty model show that clustering effect was sig-

nificant for modelling the determinants of time to death of under five children,

and revealed the importance of accounting for clustering effect. The conclusion

based on Clayton-Oakes model showed association between survival times of

children from the same mother. It was found that the parameter estimates for

the shared frailty and the Clayton-Oakes models were quite different and that

the two models cannot be comparable. Gender, province, year, birth order and

whether a child is part of twin or not were found to be significant factors affect-

ing under five child mortality in South Africa.

Keywords: Frailty models, Archimedean copula, left truncation, penalised

likelihood, clustered survival models.
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Chapter 1

Introduction and background

1.1 Introduction

Under five child mortality is still a problem in Sub-Saharan Africa. The prob-

ability of the death of children under the age of five in Sub-Saharan Africa is

more than 14 times the probability of the death of children in developed regions

(Munyamahoro, 2016). One of the millennium developmental goals (MDG-4)

was to decrease under five child mortality cases by two-thirds between 1990-

2015 (Bryce et al., 2006). The aim of the Proposed Sustainable Development

Goal (SDG) is to end under five child mortality and deaths of new born babies

in 2030. The whole world is aiming to decrease deaths of babies born within

the first 28 days of their life by at least 12 per 1000 live births and also to de-

crease mortality rate of children under the age of five by at least 25 per 1000

live births (UNDP, 2019).

South Africa is one of the countries in Sub-Saharan Africa which is also ready

to decrease under five mortality rates in agreement with the SDG targets. Pol-
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icy makers and health officials require information about causes of child deaths

so that they can keep a track of child health and service delivery (Bamford

et al., 2018). The above-mentioned concern is one of the reasons why under

five mortality has attracted many researchers in order to identify causes of

high deaths of under five children. It is important to use correct statistical

methods to determine factors that are strongly associated with child mortality

to come up with intervention strategies (Munyamahoro, 2016). Children be-

longing to the same family share the same environment and are often exposed

to the same conditions in terms of parental care. They also share the same

genes and socio-economic position. One or more covariates shared by children

of the same mother will induce a correlation between their mortality risks. The

risks of mortality of siblings are related and therefore standard estimation pro-

cedures can produce faulty results (Cesar et al., 1997).

This thesis investigates clustered survival models for analysing time until the

death of children under five years of age born in South Africa. Often, the time

to event is right-censored, which occurs when an individual leaves the study

before an event happens, for example due to drop-out. The time to event can

also be left truncated for some individuals in the study. This happens when an

individual is not observed if the event happens before a certain period or date.

A survival study can involve grouped data such as children from the same

mother as it applies to our study. Since grouped study items share common

traits, their event times show within-cluster correlation. Popular survival mod-

els that account for association in grouped survival data are the frailty and the

copula models. The difference between these models is that a frailty model is a

hazard model with a cluster-specific random term called frailty. A copula model

describes the joint survival function of the survival times using the marginal

survival functions and a dependence function called copula. Both survival mod-
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els provide measures for the strength of association between event times next

to the estimated covariates effects. This thesis has considered both right cen-

soring and left truncation to explore shared frailty and copula models.

Further, in many instances, researchers come across large data sets that are

difficult to analyse at once. This thesis proposes a sample splitting technique in

a survival analysis setting that can partition large data sets into sub-samples,

analyse each sub-sample separately and properly combine estimates into one.

1.2 Background of the study area

South Africa officially known as the Republic of South Africa (RSA) is one of

the countries in Sub-Saharan Africa with a population of about 59 million peo-

ple and a land area of about 1220813 squares kilometres (Mabin et al., 2021).

Its neighbouring countries are Zimbabwe, Botswana, Namibia, Mozambique

and Lesotho. South Africa has nine provinces namely: Western Cape, East-

ern Cape, Northern Cape, North West, Free State, KwaZulu Natal, Gauteng,

Limpopo and Mpumalanga. The map of South Africa showing the location of

all nine provinces is given in Figure 1.1.
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Figure 1.1: The map of South Africa with its provinces

Table 1.1 gives the 2019 mid-year provincial population estimates by Statistics

South Africa (Stats SA).

Table 1.1: 2019 mid-year provincial population estimates

Rank Province Population Percentage
1 Gauteng 15 176 115 25.8%
2 KwaZulu Natal 11 289 086 19.2%
3 Western Cape 6 844 272 11.6%
4 Eastern Cape 6 712 276 11.4%
5 Limpopo 5 982 584 10.2%
6 Mpumalanga 4 592 187 7.8%
7 North West 4 027 160 6.9%
8 Free State 2 887 465 4.9%
9 Northern Cape 1 263 875 2.2%

Total 58 775 022 100%
Statistics South Africa

Table 1.1 shows the estimated percentages in 2019 of the entire population in

each of the nine provinces of South Africa (SA, 2019). Gauteng province has the

largest portion of population with about 15.2 million (25.8%) people, followed

by KwaZulu Natal with close to 11.3 million (19.2%) people. Thus, nearly half of
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South Africa’s population reside in these two provinces. Northern Cape is the

province with the smallest portion of the population with about 1.26 million

(2.2%) people.

1.3 Statement of the problem

In most cases survival data are in groups of clusters such as children from the

same mother, husband and wife, society and geographical divisions. Observa-

tions taken from subjects belonging to the same cluster are likely to be related

just because they share something in common. As an example, children of

the same mother share similar familial background and environment that con-

tribute towards their survival rate. Most of researchers in the literature admit

that the correlation should be considered, but less has been done so far (Guo

and Rodriguez, 1992). Siblings share certain unobserved characteristics (het-

erogeneity) which may not be described enough by covariates in the models and

neglecting such heterogeneity association may give rise to estimates which are

unreliable (Guo and Rodriguez, 1992). In most applications of survival analy-

sis, only few and known covariates such as gender, age and marital status are

included in the analysis (Li and Wu, 2018). There are many other factors that

influence survival such as family diet, life style, health status and smoking sta-

tus which are unknown and end up not being included in the analysis. It is not

always possible to add all important covariates in the model because of many

reasons. For example, some covariates are not added because we do not know

that they are important, while others are not added due to reasons of economic,

ethical and practical nature. Eliminating those important covariates can cre-

ate some unobserved heterogeneity between subjects (Vaupel et al., 1979).

In most cases, researchers do not analyse survival data of related individuals

in an optimal way, mainly because of ignoring the association which resulted
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in a biased estimate. Most of the limited studies conducted on child mortality

used logistic regression and Cox proportional hazard models to estimate the

significance of the risk factors on child mortality. Logistic regression is not an

optimal method because it does not consider the time to event variable (Schober

and Vetter, 2018). Cox proportional hazard model on the other hand assumes

that survival times of individuals are independent, and this requires a popu-

lation of the same kind, but in most instances the population is not alike. In

some situations, researchers ignore left truncation, which needs to be consid-

ered to avoid getting misleading results and conclusions. The main purpose

of the study is to model under five child mortality in South Africa by applying

frailty and copula survival models that consider clustering and left truncation.

These models provide unbiased estimates as they take association of siblings

into consideration. Due to the size of our data sets, sample splitting technique

was used to partition the data into sub-samples, analyse each sub-sample sep-

arately and then combine estimates of sub-samples.

1.4 Motivation of the study

Standard regression models are not appropriate to analyse clustered survival

data and therefore techniques that consider clustering need to be considered

(Bouwmeester et al., 2013). The use of standard logistic regression and sur-

vival models such as Cox model is not appropriate and can cause biased esti-

mates because of the association of survival times in the data. Even though

survival analysis has been studied extensively, frailty and copula models have

not yet been applied and tested to the left truncated under five child mortality

data set with clusters of large and unequal sizes in South Africa. To make ef-

ficient and valid inferences, we need statistical methods that can account for

associations among observations within clusters. Furthermore, sample split-

ting technique has not yet been applied in survival analysis. In this study, we
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used appropriate techniques designed for left truncated data sets which also

considers dependence between observations within a cluster. The survival of

subjects in a cluster such as children from the same family in this case depends

on the value of frailty. Frailty information of those subjects with left truncated

survival times needs to be considered when analysing the data (Jensen et al.,

2004). Ignoring truncation and censoring will make our estimates of popula-

tion parameters to be inconsistent. The use of sample splitting technique also

makes this study unique.

1.5 Purpose of the study

1.5.1 Research aim

The aim of the study is to apply sample splitting techniques in a survival anal-

ysis setting and compare clustered survival models considering left truncation

to the under five child mortality data set in South Africa.

1.5.2 Objectives

The following objectives have been followed to achieve the aim of the study:

• to compare survival curves using non-parametric tests;

• to analyse the under five child mortality data set using marginal survival

model, where the dependence structure between the event times is taken

care of via a robust standard error estimation technique;

• to compare Cox proportional and shared frailty models;

• to model the association of individuals within a cluster using frailty mod-

els that also consider left truncation;

• to explore association within a cluster by using copula models;
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• to apply sample splitting techniques in a survival analysis setting;

• to compare Clayton-Oakes copula and shared frailty models with respect

to how they handle association within a cluster;

• to assess if there are unobserved genetic and environmental factors that

aggravate under five child mortality;

• to recommend to decision makers and programme managers in the child

health sector on how the application of advanced survival models can be

useful to improve situation of child mortality in South Africa.

1.6 General literature review

In many studies, there is a natural grouping of individuals in such a way that

survival times of individuals belonging to the same group may be related (Mar-

tinussen and Scheike, 2007). Ignoring such correlation may produce estimates

that are faulty and unreliable. There are two approaches that are mainly used

to analyse correlated survival time data. These are frailty and copula mod-

els. In the present study, the two models were investigated with respect to

the manner with which they handle association within clusters. Previous in-

vestigators such as Zhenzhen (2000), Moerbeek et al. (2003), and Islam et al.

(2010), ignored association within clusters. It was shown by Bouwmeester et al.

(2013) that a model with a random effect was better compared to the standard

logistic regression model. There are researchers who have recognised that ig-

noring association between related individuals in the survival studies would

produce faulty and unreliable results. These include: Vaupel et al. (1979), Guo

and Rodriguez (1992), Sastry (1997), and Mahmood et al. (2013). It has been

pointed out by Sainani (2010) that application of many statistical tests to ob-

servations that are correlated will overestimate p-values in situations where

we consider within-subject or within-cluster effect and underestimate p-values
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in cases where we consider between-cluster effects.

1.7 Introducing under five child mortality data

This study is conducted using mortality and causes of death data set and

recorded live birth data set obtained from Stats SA. Since 2006, Stats SA has

been collecting data on deaths using forms containing death information ob-

tained from the Department of Home Affairs for data processing. The data sets

are openly available and can be downloaded from Stats SA website. Mortality

and causes of death data set and recorded live birth data set were merged so

that different survival analysis techniques can be possible to apply. The two

merged data sets were in SPSS file formats and analysis was done using R

software. A brief description of the two data sets is given.

1.7.1 Mortality and causes of death data set

The form which is used to notify death of a person in South Africa confirms

legally that the death occurred, and the same form is also used to prepare

mortality and causes of death statistics. A death certificate is issued after the

death registration process is completed. Stats SA collects all forms on a reg-

ular basis to capture, process, analyse and disseminate data sets containing

mortality and causes of death. During data processing, forms are coded accord-

ing to the year of death and are also given different numbers to identify them.

Socio-demographic variables and causes of death are coded. Stats SA processes

death certificates from the Department of Home Affairs and publishes statis-

tical release called mortality and causes of deaths on annual basis (Stats SA,

2017). Together with the statistical release, raw data are also made available

for public use. The limitations and the under reporting are well documented

in the statistical release and data are declared adequate to use for research

purposes. Contents of the mortality and causes of deaths data include geo-
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graphic information, dates of birth, dates of death, demographic information

of the deceased, particulars of next of kin, educational information, occupation

as well as broad description of causes of deaths. The earliest unit record data

published was from year 2006 and the most recent is year 2015. Earlier years,

i.e., 2006 to 2008 contained less information regarding dates and years as com-

pared to years from 2009 to 2015. As a result of the above limitation, only years

from 2009 to 2015 were extracted. The death data set was reduced by selecting

children who died from 2009 to 2015 and that resulted to 348941 deaths.

1.7.2 Recorded live births data set

Birth of a child in South Africa is recorded in the population register and the

process is coordinated by Department of Home Affairs in South Africa. Chil-

dren are supposed to be registered within 30 days of their birth date. It is also

allowed to register them after 30 days as long as strong reasons for not regis-

tering them in time are given (Stats SA, 2017). Birth month, birth year, birth

registration month and birth registration year are included when reporting

birth cases. The background characteristics include gender, geographic infor-

mation such as province of birth and district municipalities. There were 23 601

976 people in total in the births data set recorded from 1998 to 2015. These

people were recorded from birth registration forms by Stats SA provided by

the Home Affairs Department. There are five categories of recorded live birth

files. These are: birth cases happened within 30 days of birth date; birth cases

happened between 30 days and 15 years; births cases happened in health care

facilities and birth cases happened outside South Africa to South Africans. To

provide comparable births data set, only children born between 2009 to 2015

were selected and that resulted to 7020612 births.
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1.7.3 Matching of birth and death data sets

Variables such as birth province, year of birth, month of birth and gender were

used to match in the causes of death data with those in recorded live births

data set. Observations not matching were not included in the final data set.

The final data set containing children born between 2009 and 2015 had a total

of 7020612 children.

1.7.4 Data sets used in the study

Two data sets were established from the final data set containing 7020612

children which was created after merging birth and death data sets. The two

data sets were established so that different survival techniques can be possible

to apply. The two data sets used in the study to demonstrate the developed

methodology are described in the following sections.

1.7.4.1 Data set 1

This data set was established after 18214 children born outside South Africa

and two observations that were wrongly captured were excluded. The total

number of children resulted to 7002396 of which 294507 (4.2%) were indicated

as died and 6707889 (95.8%) alive. From the total of 7002396 children, 3473972

(49.6%) were females and 3528424 (50.4%) were males. This data set contains

stillbirths, babies who survived for less than a day (24 hours) and also babies

who survived more than 24 hours. Stillbirths are regarded as babies born dead

after at least 26 weeks of gestation. The response variable in this case survival

time was obtained by calculating the difference (in days) from date of birth

until date of death or censoring date if the child survived after the end of the

study in this case, 31 December 2015. Observations are right-censored if no

death had happened at the time the data are analysed. All those who survived

for less than a day were given a survival time of 0.5 which is equivalent to half
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a day and all stillbirths were given a survival time of zero. A contingency table

including year, gender and province is given in Table 1.2.

1.7.4.2 Data set 2

This data set was established so that frailty and copula models can be ap-

plied. Children included in this data set were selected from data set 1, but

excluded stillborn babies and children with missing mother’s identity number

because the mother’s identity number was used to identify children from the

same mother to form clusters. This data set was not a random sample of the

entire population of children in data set 1. Only children with mother’s identity

number and non-stillbirths were selected. This resulted to a total of 2072621

children of which 25055 (1.2%) were indicated as died and 2047566 (98.8%) as

alive. There were 1028141 (49.6%) females and 1044480 (50.4%) males. The

recording of death information was problematic because only those who died

between 2013 and 2015 had their death information recorded. This resulted

to missing death data for children that died between 2010 and 2012. Due to

missing death information in this data set, survival models that consider left

truncation need to be used in order to get reliable results.

A contingency table including year, gender and province is given in Table 1.3.
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Mothers of children were considered as the clustering variable. This resulted

to a total of 1945471 different mothers (clusters) varying in sizes between 1

and 5. The distribution of cluster sizes according to the number of clusters is

given in Table 1.4.

Table 1.4: Distribution of cluster sizes according to the number of clusters

Cluster size No. of clusters

1 1822361
2 119200
3 3785
4 120
5 5

Total 1945471

There were 1822361 clusters of size 1, 119200 clusters of size 2, 3785 clusters

of size 3, 120 clusters of size 4 and 5 clusters of size 5.

The data of children under the age of five from the study appear in Table 1.5.

Table 1.5: South Africa under five child mortality data set

id clusterid gender Province Year twin order status Time Trunctime
1 1 Female Western Cape 2013 0 0 0 1003 0
2 2 Male Western Cape 2013 0 0 0 931 0
3 3 Female Kwazulu Natal 2012 0 0 0 1393 299
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
2072626 1945477 Female Western Cape 2015 1 0 0 219 0
2072626 1945477 Female Western Cape 2015 1 0 0 219 0

The first column in Table 1.5 contains the unique child identification number.

The second column contains the cluster identification number. The third col-

umn gives the gender of children. The fourth column contains the province in

South Africa where a child was born. The fifth column is the year of birth of

children. The sixth column is the twin identifier. The seventh column contains

the birth order which gives previous number of children that the mother had.

The eighth column is the status of an event, taking the value 1 if the child died
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and zero if censored or still alive and the ninth column gives the time (in days)

to death or censoring. The last column gives the time for truncation.

Due to the limitations associated with data provided by Stats SA, the covari-

ates that are available and expected to affect the survival of under five children

are year, gender, province, twin and order. These covariates are included in dif-

ferent models in the subsequent chapters. The variables used in the study are

fully described and summarised in Table 1.6.

Table 1.6: Description of variables used in the analysis

Variables Description Codes/Values
Gender Gender of a child 0=Female, 1=Male

0=Limpopo 1=Eastern Cape, 2= Free State,3= Gauteng,
Province Province of birth 4= Kwazulu Natal,5= Mpumalanga,6= North West,

7 =Northern Cape, 8=Western Cape
Year Year of birth 0=2009,1=2010,2=2011,3=2012,4=2013,5=2014,6=2015
Twin Twin identifier 0 =not part of a twin, 1= part of a twin
Order Previous number of living children 0= Eldest, 1= Second, 2= Third, 3= Fourth, 4= Fifth
Status Survival status 0 =alive/censored, 1= dead
Time Follow-up time Number of days between day of birth and day of death or

censoring
Trunctime Time for left truncation Number of days between day of birth and day of

truncation (31/12/2012)
clusterid Cluster variable identifying

children from the same mother

1.8 Overview of thesis

This thesis is divided into six chapters. The main aim of the first chapter is to

describe data sets used in the study, to give a background of the study and to

outline the purpose of the study, which includes research aim and objectives.

Chapter 2 deals mainly with univariate survival analysis without considering

clustering. This chapter contains some basic concepts of survival analysis, no-

tations, theorems and basic results on which the methodology developed in this

thesis is based. In Chapter 3 we show that left truncated shared frailty models

are well suited for the left truncated data set with clusters of unequal sizes.

Chapter 4 tackles the problem of modelling multivariate survival data that are

grouped in clusters of different sizes through Archimedean copulas. We fit the



Introduction and background 16

data with the Clayton-Oakes model and model the marginal survival functions

by two stage estimation approach to obtain parameter estimates and introduce

sample splitting technique. In Chapter 5 we compare shared frailty and copula

models with respect to how they handle association within clusters. We also

used the sample splitting technique introduced in Chapter 4 to partition our

data set. Finally, in Chapter 6, we give the general summary of all chapters

and main findings in the thesis and possible work to consider in future.



Chapter 2

Univariate survival analysis

In survival analysis, it is advisable to first consider simple univariate analysis

without clustering before delving into more complicated models. In this the-

sis, univariate survival methods were considered first in this chapter before

advanced clustered survival models were introduced in Chapter 3 and Chapter

4. In this chapter, different analysis techniques such as logistic regression and

Cox proportional hazard models are considered to establish factors influencing

probability of stillbirths and also to investigate the effects of covariates upon

time to death of these children. Non-parametric procedures for survival data

such as Kaplan-Meier estimator and Log-rank test are discussed and analysed.

All analyses in this chapter were done using data set 1 described in Chapter 1,

Section 1.7.4.1.

2.1 Introduction to survival analysis

Survival analysis is a branch of statistics used to analyse time to events data.

In survival analysis, the event may be time until recovery from accident, time

until marriage, time to an epileptic seizure, time it takes for a patient to re-
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spond to a therapy, or death as it applies in our study. The time of entry is not

always at the same time point for all individuals in the study and this results

in what we call staggered entry. Staggered entries do not affect the analysis.

What matters most is the total duration of time individuals spent in the study.

Each individual’s time to event is measured from the date of entry to the time

of event. The reason why standard statistical techniques are not appropriate

in the analysis of survival data is because survival data are positively skewed

and not symmetrically distributed as normal distributions. Another reason is

that survival times are often censored and truncated, which makes analysis to

be more complicated (Schober and Vetter, 2018). Censoring and truncation are

clearly defined in the next section.

2.1.1 Special features of survival data

Survival data are difficult to analyse due to censoring and truncation. These

two features make survival analysis different from other areas of statistics.

Both censoring and truncation need to be taken into consideration when deal-

ing with survival data to avoid getting misleading results (Schober and Vetter,

2018).

2.1.1.1 Censoring

Censoring occurs when we cannot fully observe a time until an event, but

only observe some boundaries for this time. Three different types of censor-

ing schemes are right censoring, left censoring and interval censoring.

1. Right censoring happens when an individual leaves the study before

an event of interest occurs. This occurs when an individual is lost due to

follow-up or when the study ends, and the individual has not experienced

the event of interest.
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There are three types of right censoring, namely:

• Type I or fixed censoring

• Type II censoring

• Type III or random censoring

(a) Type I or fixed censoring

Let tc ∈ R be a fixed time point and take a sample of survival times

T1, ..., Tn.

We only observe a survival time Ti if it is smaller than tc, or else we

get a fixed time point. Hence we get a sample Y1, ..., Yn where

Yi =

Ti, if Ti ≤ tc i = 1, 2, ..., n

tc, if Ti > tc

(b) Type II censoring

Suppose that s < n and let T(1), ..., T(n) be the ordered survival times.

We observe until the s− th system has failed. Hence we get

Y(i) =

T(i), if T(i) ≤ T(s) i = 1, 2, ..., n

T(s), if T(i) > T(s)

(c) Type III or random censoring

Let C1, ..., Cn be a sample of censoring times. We observe a sample of

couples, (Y1, δ1), ..., (Yn, δn) where, for i = 1, 2, ..., n,
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Yi = min(Ti, Ci) =

Ti, if Ti ≤ Ci

Ci, if Ti > Ci

δi = I(Ti, Ci) =

1, if Ti ≤ Ci

0, if Ti > Ci

We assume that Ti and Ci are independent for i = 1, ..., n.

2. Left censoring happens when the event of interest has already occurred

to the individual prior to the start of the study. If the event of interest is

death as it applies in our case, the data cannot be left censored.

We observe a sample (Y1, δ1), ..., (Yn, δn), where, for i = 1, ..., n,

Yi = max(Ti, Ci) =

Ti, if Ti ≥ Ci

Ci, if Ti < Ci

δi = I(Ti ≥ Ci) =

1, if T(i) ≥ Ci

0, if T(i) < Ci

As an example, if we are following individuals until they become HIV pos-

itive, we may record a failure when an individual first tests positive for

the virus. We may not know the exact time when he or she was exposed

to the virus and hence the survival time is left censored because the true

survival time ending at exposure is shorter than the follow-up time end-

ing when an individual tests positive (Kleinbaum, 1998).

3. Interval censoring happens when an event of interest has occurred

within some interval. In the interval censoring, we get an interval in

which the event occurred for each individual instead of survival times

T(1), ..., T(n). In this case we get (L1, U1), (L2, U2), ..., (Ln, Un), where Li is the
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lower limit of the interval and Ui the upper limit of the interval.

An example to illustrate right censoring and left censoring schemes is a study

age at which children learn a certain task. Some already knew a task (left-

censored) and some had not learnt by end of a study (right censored).

2.1.1.2 Truncation

Truncation happens when we only observe certain individuals whose event

times are within certain intervals. Truncation schemes are left truncation and

right truncation. Left truncation happens when some individuals are not

observed if the event happens before a certain date. This is when individuals

come under observation only some known time after the natural time origin of

the phenomenon under study. Individuals only show up in the data set when

their event of interest happens later than a certain boundary. Otherwise they

are missed completely. Right truncation happens when we include in the

study, individuals who have experienced the event of interest by a specified

time. This thesis dealt with left truncation because of the missing death data

for children who have died between 2010 and 2012.

The illustration of these special features of survival data using a sample of six

subjects is given in Figure 2.1. The horizontal axis indicates the time of event

(in months). Capital letter X indicates the exact time at which the event of in-

terest is observed. Capital letter O indicates that the subject is right censored

at that point and finally T indicates left truncated point.
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Figure 2.1: Illustration of special features of survival data using a sample of
six subjects

We can see from Figure 2.1 that subjects 1 and 2 were exposed to the risk for

some time. Both subjects were left truncated. Subject 1 experienced event of

interest whereas subject 2 was right censored due to loss of follow-up. Subject

3 was followed until an event of interest occurred. Subject 4 was right censored

due to termination of the observation period. This individual was still alive at

the end of the study. Subject 5 was left censored. In this particular case we

do not have X at the right end of the time line for this subject because we do

not have any information as to when the event of interest occurred. Finally,

Subject 6 was both left-truncated and right censored.
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2.1.2 Basic concepts of univariate survival analysis

This section provides a brief outline of the basic concepts of univariate survival

analysis.

Suppose we have right censored survival times of n independent individuals.

We observe for individual i time Yi = min(Ti, Ci), where Ti is the survival time

and Ci is the censoring time.

We define T as a positive random variable representing the survival time, i.e.,

T ≥ 0, and it has the probability density function denoted by f(t) and cumula-

tive density function denoted by F (t).

The cumulative density function is mathematically represented as:

F (t) =

∫ t

0

f(s)ds = P (T ≤ t),

where t is the specific value of T and P (T ≤ t) is the probability that the sur-

vival time until the event happens is less than or equal to the specific value of

T . F (t) gives us the probability that an event of interest has occurred by time

t. To get f(t), we differentiate F (t) with respect to t, as follows:

f(t) =
dF (t)

dt
= F ′(t)⇒ f(t) = lim

dt→0

F (t+ dt)− F (t)

dt
,

where dt represents the small-time interval. Relating this to the current study,

f(t) will give us the unconditional instantaneous probability that a child died

in the interval (t, dt) and it is formally written as follows:

f(t) = lim
dt→0

P (t ≤ T < t+ dt)

dt
.

The two basic functions that are very important in survival analysis are sur-

vival and hazard functions. The survival function S(t) focuses on surviving and

the hazard function h(t) focuses on failing of the subject. The two concepts are
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mathematically presented in the following way:

S(t) = P (T > t) =
∫∞
t
f(x)dx = 1− F (t)

and

h(t) = limdt→0
P (t ≤ T < t+ dt|T ≥ t)

dt
= f(t)

S(t)
.

The survival function S(t) gives the probability that a subject or item will sur-

vive beyond a specified time t. The hazard function h(t) is the instantaneous

failure rate that a subject survived up to time t.

Two properties of the survival function S(t) are:

• S(t) is a decreasing function on [0,∞]

• S(0) = 1 and S(∞) = 0.

The survival, density and hazard functions have the following relationships:

f(t) = −dS(t)
dt

h(t) = f(t)
S(t)

= −dlogS(t)
dt

S(t) = exp(−H(t)) where H(t) =
∫ t

0
h(s)ds = −logS(t).

H(t) is the cumulative hazard function.

Suppose we have a random sample of pairs (Tj, dj), j = 1, 2, ..., n. The likelihood

function is written as

L =
n∏
j=1

[S(tj)]
1−dj [f(tj)]

dj ,

where dj is the number of observed events at time tj.

2.2 Research methodology

This section presents the univariate survival analysis methods used to analyse

data set 1 described in Chapter 1. The methods include logistic regression

model, Kaplan-Meier estimator, log-rank test and Cox PH model.
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2.2.1 The logistic regression model

This section provides a brief background on the statistical technique called lo-

gistic regression model used to predict the probability of stillbirths. The target

by World Health Assembly-endorsed Every Newborn Action Plan which is to

reduce stillbirth cases from 18.4 in 2015 to 12.0 in 2030 per 1000 birth cases

(Bamford et al., 2018). About 2,6 million stillbirth cases occur every year across

the world. Most cases of stillbirths occur in low- and middle-income countries

because causes of stillbirths are not often investigated (Madhi et al., 2019).

According to Aminu et al. (2014), the following were reported as risk factors

connected with stillbirth in developing countries: gender, age of the mother,

gestation age at birth, insufficient antenatal care, weight at birth and physical

or mental illnesses of the mother during pregnancy. It has been pointed out

by Aminu et al. (2014) that most of stillbirth deaths can be prevented. It is

very important to investigate factors associated with stillbirths so that still-

birth cases can be reduced.

In this thesis, logistic regression model was employed to predict the probability

of stillbirths and also to determine whether there is an association between be-

ing a stillborn baby and factors included in the model which are birth province,

birth year, and gender. Logistic regression model is used to model the rela-

tionship between multiple independent variables and a categorical dependent

variable. In most cases, the outcome variable in logistic regression is a binary

event like alive versus dead, fail versus pass, win versus lose and stillbirth

versus non-stillbirth. The independent variables can be binary or continuous.

The difference between this model and the Proportional hazard (PH) model is

that a logistic regression model calculates the probability of an event happen-

ing based on the factors included in the model. A Cox PH model is used to

explore the relationship between the survival of a subject and the explanatory

variables. The Cox PH model takes into account time to event which is not the
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case in a logistic regression model.

2.2.1.1 Odds

Logistic regression determines the chance of an event to occur over the chance

of an event not to occur. The effect of covariates is usually explained in terms of

odds. The odds of an event are ratio of the likelihood that the event will happen

to the likelihood that event will not happen. Suppose that p is the probability

that an event will occur, and 1− p is the probability that it will not occur (Park,

2013).

The odds of an event are given by:

Odds =
p

1− p
.

The effect of covariates is usually explained in terms of odds. The natural log

odds are modelled as a linear function of the independent variables as follows:

logit(y) = ln(
p

1− p
) = β0 + β1x, (2.1)

where p is the probability that an event will occur, x is the covariate, β0 and

β1 are parameters of the logistic regression. We can predict the occurrence by

taking antilog in simple logistic regression as follows:

p =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.



Univariate survival analysis 27

The logit in 2.1 can be extended to include multiple covariates as follows:

logit(y) = ln(
p

1− p
) = β0 + β1x1 + ...+ βkxk. (2.2)

The probability of occurrence based on equation 2.2 is given by:

p =
exp(β0 + β1x1 + ...+ βkxk)

1 + exp(β0 + β1x1 + ...+ βkxk)
.

2.2.1.2 Odds ratio

The odds ratio (OR) is a measure to compare two odds relative to different

events, say A and B. As an example, the odds of event A occurring relative to

event B occurring is:

Odds ratio = OddsA
OddsB

= pA(1−pA)
pB(1−pB)

.

The odds ratio measures the association between an exposure and an outcome.

It represents the odds that an outcome will occur given a particular exposure

compared to the odds of the outcome occurring in the absence of that exposure.

2.2.1.3 Overall model evaluation

The overall fit of the statistical model gives us an idea of the strength of a rela-

tionship between all covariates included in the model. The logistic regression

model with all k covariates (full model) is considered a better fit to the data if

we see an improvement over the model without covariates (null model) (Park,

2013). The overall fit can be examined via the LRT and test the null hypothe-

sis.

H0 = β1 = β2 = ... = βk = 0.
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This hypothesis says that there is no independent variable that affects the pre-

diction of the outcome. The goodness of fit index denoted by G is a χ2 statistic

with k degrees of freedom is given by:

G = χ2 = (−2 log likelihood of null model)− (−2 log likelihood of full model).

The likelihood of the null model is the likelihood of obtaining the observation if

the covariates had no effect on the outcome and the likelihood of the full model

is the likelihood of obtaining the observations with all independent variables

included in the model.

If the p-value for the overall model fit statistic is less than 0.05, we reject H0

and conclude that there is evidence that at least one of the covariates affects

the prediction of the outcome.

Statistical significance of individual regression coefficient

We next determine the importance of each covariate included in the model. The

likelihood ratio test can be used to assess the contribution of covariates that are

included in the model. The LRT for a particular parameter compares the like-

lihood of getting the data when the parameter is zero (L0) with the likelihood

(L1) of getting the data evaluated at the MLE of the parameter. The statistic is

calculated as follows:

G = −2ln
L0

L1

= −2(lnL0 − lnL1).

An alternative way to assess the contribution of individual covariate is by using

the Wald statistic. The Wald statistic is the square of the regression coefficient

to the square of the standard error of the coefficient as follows:



Univariate survival analysis 29

Wj =
β2
j

SE(β2
j )
.

Each Wald statistic is compared with a Chi square with 1 degree of freedom.

2.2.2 Non-parametric procedures

Non-parametric procedures for survival data, namely, Kaplan-Meier estimator

and Log-rank test are presented in this section.

2.2.2.1 The Kaplan-Meier estimator

The most common method of estimating the survival function S(t) is the Kaplan-

Meier (K-M) estimator also called the product limit estimator. It is a non-

parametric statistic that gives us the probability that an individual included

in the study will survive past a particular time t. One of the advantages of

this statistic is that it is not based on the assumption of the underlying prob-

ability distribution and that is good because the distribution of survival data

is skewed. To estimate the proportion of individuals who are still alive at a

given time point, K-M estimator uses information of those who have died and

also for those who have survived. The estimator is plotted over time and the

curve is called the K-M curve. The K-M curve is a series of horizontal steps of

declining magnitude that, when a large enough sample is taken, approaches

the true survival function for that population. It is a step function that jumps

at the observed event times. The K-M estimator shows what the probability

of an event is at a particular time point. It is the method for estimating the

survival function S(t).

Recall that S(t) = P (T > t) is the probability of survival beyond time t. The

survival function S(t) can be estimated as follows:
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Suppose that p individuals have failures in a group of individuals.

Let the ordered event times be given by t1, t2, ..., tp. We will denote the size of

the risk set by rj, the number of censored observations between the jth and

jth + 1 failure times. Let the number of observed events at time tj be denoted

by dj. The risk set includes all individuals who have survived just before time

tj.

The conditional probability of an individual surviving past time tj given sur-

vival to that time is estimated by (rj−dj)
rj

. Thus the unconditional probability of

surviving past any time t is estimated by

Ŝ(t) u
∏
j:tj<t

(rj − dj)
rj

,

where j = 1, 2, ..., p.

Ŝ(t) is the K-M estimate.

A table to obtain K-M estimator is shown with the survival function estimate

in Table 2.1.

Table 2.1: K-M estimator table

j tj dj cj rj rj − dj (rj−dj)
rj

Ŝ(t)

0 t0 d0 c0 r0 r0 − d0
(r0−d0)
r0

(r0−d0)
r0

1 t1 d1 c1 r1 r1 − d1
(r1−d1)
r1

(r0−d0)
r0

∗ (r1−d1)
r1

. . . . . . . .

. . . . . . . .

. . . . . . . .
p tp dp cp rp rp − dp (rp−dp)

rp

(r0−d0)
r0

∗ (r1−d1)
r1

∗ ... ∗ (rp−dp)
rp

Ŝ(t) only goes to zero if the last observation is uncensored. If there is no cen-

soring, the K-M estimator equals the empirical survival estimate.
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2.2.2.2 Log-rank test

The Log-rank test is the most often used statistical test to compare survival

distributions of two or more groups such as treated versus control group in

a randomised trial. The test is named after Nathan Mantel and David Cox,

hence is called Mantel-Cox test. We use it to test the null hypothesis that there

is no difference between the survival curves.

The Log-rank test statistic for two groups is as follows:

χ2 =
(Oi − Ei)2

V ar(Oi − Ei)2
∼ χ2

1.

Mathematically, the log-rank formula for more than two groups is very compli-

cated in such a way that a computer is needed. In general, the test statistic

is approximately chi-square in large samples with k − 1 degrees of freedom,

where k is the number of groups being compared (Kleinbaum, 1998). Other al-

ternatives to the log-rank test are Wilcoxon, the Tarone-Ware, the Peto and the

Flemington-Harrington tests. In this thesis, the log-rank test will be applied

to check if survival curves are the same or not.

2.2.3 The Cox Proportional hazard model

One of the main goals of the survival analysis is to investigate if there are fac-

tors (covariates) that affect the risk of an event of interest. The aim in survival

analysis is to obtain some measure of effect describing the relationship between

covariates and time to event. The effect of the covariates is often measured us-

ing Proportional hazard (PH) model (Kristiansen, 2012). The Cox Proportional

Hazard model proposed by Cox (1972) is the most commonly used model for the

analysis of censored survival data in the presence of covariates. In this model,

time is treated as continuous and it makes no assumption about the shape of

the hazard function. The effect of the covariates is assumed to act multiplica-
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tively on the baseline hazard rate and the ratio of the hazards is constant over

survival time (Basar, 2017). There are two assumptions that must be satisfied

before one can apply this technique. The first assumption is that there is a

linear relationship between log hazard and a covariate. The second assump-

tion is that the hazard ratios are constant over time. The second assumption

means that the hazard for one individual is proportional to the hazard for any

other individual. If these two assumptions are violated, they can lead to bi-

ased results (Basar, 2017). The strength of the Cox PH model lies in the ability

to model and test many inferences without making any specific assumptions

about the form of the life distribution model (Hanagal, 2011).

The Cox Proportional hazard model is used to assess the effects of the covari-

ates on the hazard function and does not take into consideration clustering

acting as if the event times are independent of each other, even if they belong

to the same cluster (Gachau, 2014). The analysis in the Cox PH model assumes

that individuals in the study are all homogeneous in the sense that they are

prone to experience events in the same way, but in reality, some individuals are

more frail and thus, more likely to experience an event of interest.

The conditional hazard of an individual given the covariate values X1, X2, ..., Xp

is given by

h(t|X) = h0(t)exp(β
′
X), (2.3)

with h0(t) the baseline hazard function at time t and β the regression coeffi-

cients. The baseline hazard function h0(t) is the hazard function of individuals

whose covariate values equal to 0. The good thing about this model is that

h0(t) can be left unspecified or take a parametric form. A popular choice is the

Weibull baseline hazard which takes the form h0(t) = λρtρ−1 with λ > 0 a scale

parameter and ρ > 0 a shape parameter.

Suppose that ha(t) and hb(t) are the hazard functions at time t of the ath and bth
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individuals respectively. Then the ratio of the two hazard functions is given by

ha(t)

hb(t)
= exp[β

′
(Xa −Xb)]. (2.4)

Equation 2.4 implies that the hazard ratio of two individuals is constant over

time, and that explains the notion proportional hazards model. The hazard

ratio which can be denoted by HR is the measure of the effect of the given

covariates on survival time.

HR = 1 implies that individuals in the two groups are at the same risk of get-

ting the event of interest. HR > 1 implies that the event is happening faster

for the treatment group than for the control group and HR < 1 implies that the

event is happening slower for the treatment group than for the control group.

2.2.3.1 Estimation in Cox Proportional Hazard model

By fitting the Cox Proportional hazard model, we wish to estimate model pa-

rameters or vector of regression coefficients β. The parameters can be esti-

mated using the method of partial likelihood developed by Cox (1972) which

considers only the probability of individuals that have experienced the event of

interest.

To construct the partial likelihood function, we let t1, t2, ..., tn be the observed

survival times of n individuals in the study. Furthermore, let the ordered death

times of p individuals be t(1) < t(2)... < t(p) and let R(ti) be the risk set just before

t(i). The risk set includes those individuals alive and not censored at a time just

before t(i).

The conditional probability that the jth individual from the risk set dies at time

t(i) is:

P (individual j dies at t(i))/P (one death from R(ti) at t(i))
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=
P (individual j dies t(i))
P (one death at t(i))

=
hj(ti)∑

kεR(t(i))
hk(t(i))

=
ho(t(i))exp(β

′
xj(t(i)))∑

kεR(t(i)
ho(t(i))exp(β ′xk(t(i)))

=
exp(β

′
xj(t(i)))∑

kεR(t(i))
exp(β ′xk(t(i)))

.

(2.5)

Then the partial likelihood function for the Cox PH model is given by:

L(β) =

p∏
i=1

exp(β
′
xj(t(i)))∑

kεR(t(i))
exp(β ′xk(t(i)))

. (2.6)

The likelihood in equation 2.6 is only for individuals not censored, xj(t(i)) is a

vector of covariate values for individual j who dies at t(i). Let δi be the censor-

ing or event indicator. The event indicator is equal to zero if the jth survival

time is censored and one otherwise. The likelihood function can now be written

as:

L(β) =
n∏
j=1

exp(β
′
xj(t(j)))∑

kεR(t(j))
exp(β ′xk(t(j)))

. (2.7)

R(t(j)) is the risk set at time tj. The partial likelihood in equation 2.7 is valid

only if there are no ties in the data, i.e., when we do not have two individuals

with the same event time.

2.3 Data analysis and results

In this section, methods and models discussed in te previous sections were used

to perform data analysis. In all the analyses, the data set described in Section

1.7.4.1 was used.
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2.3.1 Descriptive statistics for categorical variables

A total of 7002396 children were included in the analysis. A summary of de-

scriptive statistics is presented in Table 2.2.

Table 2.2: Distribution of births and deaths by some of survival determinants

Factors Level Total (%) Death N (%) Censored N (%)
Gender Female 3473972 (49.6%) 135604(3.9%) 3338368 (96.1%)

Male 3528424 (50.4%) 158903(4.5%) 3369521(95.5%)
Limpopo 880657 (12.6%) 33889(3.8%) 846768(96.2%)

Eastern Cape 852234 (12.2%) 24846 (2.9%) 827388(97.1%)
Free State 369036 (5.3%) 27109(7.3%) 341927(92.7%)

Province Gauteng 1416925 (20.2%) 61996(4.4%) 1354929(95.6%)
KwaZulu-Natal 1479302(21.1%) 60597(4.1%) 1418705(95.9%)
Mpumalanga 583775(8.3%) 23858(4.1%) 559917(95.9%)
North West 528366(7.5%) 29148(5.5%) 499218(94.5%)

Northern Cape 173102(2.5%) 9637(5.6%) 163465(94.4%))
Western Cape 718999 (10.3%) 23427(3.3%) 695572(96.7%)

2009 1027369(14.7%) 53631(5.2%) 973738 (94.8%)
2010 1017633 (14.5%) 48982(4.8%) 968651(95.2%)
2011 1023883(14.6%) 43581(4.3%) 980302(95.7%)
2012 1017572(14.5%) 42561(4.2%) 975011(95.8%)

Year 2013 1001119(14.3%) 41015(4.1%) 960104(95.9%)
2014 998624(14.3%) 36338(3.6%) 962286 (96.4%)
2015 916196(13.1%) 28399(3.1%) 887797(96.9%)

Table 2.2 shows the frequency table of some of the covariates included in the

study. Out of the total number of 70002396 children, 294507 (4.2%) were re-

ported dead and 6707889 (95.8%) were still alive on the date of the survey. A

higher percentage of death was observed among male children (4.5%) compared

to female children (3.9%). The mortality rates of children under the age of five

varied from one province to another in South Africa. The highest percentage of

deaths was observed in Free State (7.3%), followed by Northern Cape (5.6%);

while the lowest percentage of deaths was recorded in Eastern Cape (2.9%),

followed by Limpopo (3.8%).

Across birth year, a highest death rate (5.2%) was recorded in 2009 and the
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lowest (3.1%) was recorded in 2015. The declining of death rates over the

years might be due to improvement in the health institutions, like for exam-

ple, proper administration of Antiretroviral (ARV) treatment that can prevent

mother-to child transmission of HIV.

2.3.2 Proportion of stillbirths

Children were grouped into two categories namely, stillbirths and non-stillbirths

to investigate their survival rate separately. Stillbirths are regarded as babies

born dead after at least 26 weeks of gestation and non-stillbirths are those that

were born alive. The proportions of the two groups are given in Table 2.3.

Table 2.3: Percentages of stillbirths and non-stillbirths

Factors Level Stillbirths (%) Non-stillbirths (%) Total
Female 41090(1.2%) 3432882 (98.8%) 3473972

Gender Male 49766 (1.4%) 3478658 (98.6%) 3528424
Total 90856(1.3%) 6911540 (98.7%) 7002396

Limpopo 8100(0.9%) 872557 (99.1%) 880657
Eastern Cape 4626(0.5%) 847608(99.5%) 852234

Free State 8118 (2.2%) 360918 (97.8%) 369036
Province Gauteng 20541(1.4%) 1396384(98.6%) 1416925

KwaZulu-Natal 22935(1.6%) 1456367 (98.4%) 1479302
Mpumalanga 6813(1.2%) 576962 (98.8%) 583775
North West 7302(1.4%) 521064(98.6%) 528366

Northern Cape 2563(1.5%) 170539(98.5%) 173102
Western Cape 9858 (1.4%) 709141(98.6%) 718999

Total 90856(1.3%) 6911540 (98.7%) 7002396
2009 11755 (1.1%) 1015614 (98.9%) 1027369
2010 13733 (1.3%) 1003900 (98.7%) 1017633
2011 12866 (1.3%) 1011017 (98.7%) 1023883
2012 13180 (1.3%) 1004392 (98.7%) 1017572

Year 2013 13672 (1.4%) 987447 (98.6%) 1001119
2014 13093 (1.3%) 985531 (98.7%) 998624
2015 12557 (1.4%) 903639 (98.6%) 916196
Total 90856(1.3%) 6911540(98.7%) 7002396

The total number of stillbirths for this study was 90856 (1.3%), of which 41090
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(1.2%) were females and 49766 (1.4%) were males. On the other hand, the to-

tal number of non-stillbirths were 6911540 (98.7%), with 3432882 females and

3478658 males. Out of 6911540 non-stillbirths, 203651 (2.9%) were reported

dead and 6707889 (97.1%) were still alive. The probability of dying given that

a child is not a stillbirth is 0.029 and the probability of being alive given that a

child is not stillbirth is 0.971. It can be shown from Table 2.3 that the majority

of stillbirth cases occurred in Free State province (2.2%), followed by KwaZulu

Natal province (1.6%). The lowest percentage of stillbirth cases was in Eastern

Cape province with 0.5% followed by Limpopo with 0.9%. Majority of stillbirths

were born in 2013 and 2015.

The predicted probabilities of stillbirths in each of the gender groups for all

provinces were calculated. These are probabilities that children are stillborn

given predictor values. Figure 2.2 shows the predicted probabilities of still-

births in each of the gender groups for all nine provinces in South Africa.

Figure 2.2: Predicted probability of stillbirths in each of the gender groups for
all provinces

The probabilities of stillbirth for both males and females in Free State province

are the highest compared to other provinces. On the other hand, probabilities
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for both males and females in Eastern Cape province are the lowest.

2.3.3 Results from non-parametric procedures

2.3.3.1 The overall K-M survivor curve

The overall K-M survivor curve to show the probability of survival on a certain

day is given in Figure 2.3.

Figure 2.3: K-M survival curve for all individuals excluding stillbirths

According to the K-M survivor curve in Figure 2.3, the probability of under

five children surviving was high at the first few days and then decreased as

follow-up time increased. We see a drop of survival probability from 100% at

the beginning of the study to 97.9% at about day 600 and after that it became

constant.

2.3.3.2 Comparison of survival curves

Figures 2.4 (a) - (c) present K-M survival curves to show the risk of death of

under five children as distributed across the categories of gender, year and

province.
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(a) (b)

(c)

Figure 2.4: Survival plots of U5CM by (a) gender (b) year (c) province

Figure 2.4 (a) shows the K-M survival plot of under five mortality by gender.

The figure shows that both groups have a similar pattern of survival. We see

a rapidly descending estimated survival function within the first 400 days and

then survival became constant thereafter. The line for female children lies

above that for male children, which indicates that female children survived

longer during the entire study period than male children.

Figure 2.4 (b) shows the K-M survival plot of under five mortality by year. The
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line indicating 2014 birth year in the survival plot lies above all other lines

with 2009 lowest. It displays clearly that children born in 2014 survived longer

than other children. Figure 2.4 (c) shows the K-M survival plot of under five

mortality by province. The plot shows that all children in all nine provinces

have a similar pattern of survival. The line indicating Western Cape province

is above all others with Free State the lowest. This shows that children born in

Western Cape had a longer survival span than children born in other provinces.

2.3.3.3 Log-rank test

The log-rank test was performed to see whether there is a significant difference

among survival experiences of two or more groups of the covariates included in

the study. If p-value < 0.05, we reject the null hypothesis that groups are the

same. The results of the log-rank test are given in Table 2.4.

Table 2.4: Results of log-rank test of equality of survival distribution for the
three covariates

Covariates Chi-square d.f p value
Gender 898 1 0.000

Province 14793 8 0.000
Year 3262 6 0.000

Based on Table 2.4, we found that the log-rank test is significant in survival

experience of children in different categories of gender, province and year at

5% level of significance. We can conclude that the risk of child mortality for

these three covariates varies significantly from group to group.

2.3.4 Results from the Cox PH model

The Cox PH model was fitted to the data to find factors affecting under five

mortality in South Africa. The LRT was performed to check the overall effect

of the variables. The results are shown in Table 2.5.
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Table 2.5: Overall effect of the variable using the LRT

Covariates df Chi Square Pr(> Chi)
Gender 1 1594.4 <0.0010

Province 8 16367 <0.0010
Year 6 1702.5 <0.0010

Gender * Province 8 27.612 0.0006
Gender * Year 6 13.361 0.0377

Province * Year 48 933.45 <0.0010

The LRT is highly significant for all covariates including the interaction terms.

We would conclude that all the covariates included in Table 2.5 should remain

in the model.

Tables 2.6 and 2.7 show the estimated β coefficients, standard errors, hazard

ratios and p-values of the Cox PH model.
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Table 2.6: Results of the Cox PH on the effect of covariates on under five
mortality

Factors Level Coef (β) Hazard ratio Se(β ) z p-value
Gender Female (Ref)

Male 0.13834 1.14837 0.01539 8.99 0.00000
Limpopo (Ref)
Eastern Cape -0.17993 0.83533 0.02351 -7.65 0.00000
Free State 0.72024 2.05493 0.02351 30.64 0.00000

Province Gauteng 0.08979 1.09395 0.02006 4.48 0.00000
KwaZulu-Natal -0.04975 0.95147 0.02023 -2.46 0.01394
Mpumalanga 0.06324 1.06528 0.02459 2.57 0.01012
North West 0.35412 1.42492 0.02315 15.30 0.00000
Northern Cape 0.33617 1.39958 0.03449 9.75 0.00000
Western Cape -0.50967 0.60070 0.02727 -18.69 0.00000
2009 (Ref)
2010 -0.10851 0.89717 0.02261 -4.80 0.00000
2011 -0.18342 0.83242 0.02300 -7.98 0.00000
2012 -0.16914 0.84439 0.02307 -7.33 0.00000

Year 2013 -0.17750 0.83736 0.02344 -7.57 0.00000
2014 -0.24684 0.78126 0.02459 -10.04 0.00000
2015 -0.27756 0.75763 0.02844 -9.76 0.00000
(Ref:Female)* (Ref:Limpopo)
Male * Eastern Cape -0.00281 0.99719 0.01883 -0.15 0.88126
Male * Northern Cape -0.03220 0.96831 0.02688 -1.20 0.23099

Gender* Province Male * Free State 0.03453 1.03513 0.01919 1.80 0.07196
Male * KwaZulu-Natal 0.01928 1.01947 0.01621 1.19 0.23427
Male * North West 0.00813 1.00816 0.01843 0.44 0.65938
Male* Gauteng 0.04268 1.04360 0.01591 2.68 0.00731
Male * Mpumalanga 0.03022 1.03068 0.01980 1.53 0.12690
Male *Western Cape -0.02741 0.97296 0.02125 -1.29 0.19720
Ref:Female* Ref:2009
Male * 2010 -0.03444 0.96614 0.01450 -2.38 0.01749
Male * 2011 -0.03886 0.96189 0.01507 -2.58 0.00991

Gender*Year Male * 2012 -0.01391 0.98619 0.01527 -0.91 0.36241
Male * 2013 -0.01390 0.98620 0.01561 -0.89 0.37328
Male * 2014 -0.02822 0.97217 0.01641 -1.72 0.08548
Male * 2015 -0.01132 0.98875 0.01873 -0.60 0.54573
Ref:Limpopo* Ref:2009
Eastern Cape * 2010 0.01208 1.01215 0.03118 0.39 0.69849
Northern Cape* 2010 -0.02531 0.97501 0.04631 -0.55 0.58474

Province*Year Free State * 2010 -0.04114 0.95970 0.03101 -1.33 0.18462
KwaZulu-Natal* 2010 -0.03535 0.96527 0.02683 -1.32 0.18755
North West * 2010 -0.02386 0.97643 0.03075 -0.78 0.43791
Gauteng* 2010 -0.05125 0.95004 0.02661 -1.93 0.05410
Mpumalanga* 2010 -0.03763 0.96307 0.03272 -1.15 0.25014
Western cape * 2010 0.05841 1.06015 0.03607 1.62 0.10541
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Table 2.7: Continuation of the results of the Cox PH on the effect of covariates
on under five mortality

Factors Level Coef (β) Hazard ratio Se(β) z p-value
Ref: Limpopo* Ref:2009
Eastern Cape * 2011 -0.04142 0.95942 0.03200 -1.29 0.19548
Northern Cape* 2011 -0.02382 0.97646 0.04735 -0.50 0.61494
Free State * 2011 -0.10825 0.89740 0.03206 -3.38 0.00074
KwaZulu-Natal * 2011 -0.10181 0.90320 0.02754 -3.70 0.00022
North West* 2011 -0.07632 0.92652 0.03162 -2.41 0.01579
Gauteng * 2011 -0.10916 0.89659 0.02726 -4.00 0.00000
Mpumalanga * 2011 -0.14107 0.86843 0.03377 -4.18 0.00000
Western cape* 2011 0.04372 1.04469 0.03702 1.18 0.23767
Eastern Cape * 2012 -0.11293 0.89321 0.03243 -3.48 0.00050
Northern Cape* 2012 0.05773 1.05943 0.04622 1.25 0.21168
Free State * 2012 -0.28413 0.75267 0.03300 -8.61 0.00000
Kwazulu-Natal* 2012 -0.14263 0.86708 0.02775 -5.14 0.00000
North West * 2012 -0.08558 0.91798 0.03168 -2.70 0.00690
Gauteng * 2012 -0.17260 0.84147 0.02745 -6.29 0.00000
Mpumalanga * 2012 -0.14403 0.86586 0.03376 -4.27 0.00000
Western cape * 2012 0.02267 1.02293 0.03721 0.61 0.54245
Eastern Cape * 2013 -0.04640 0.95466 0.03272 -1.42 0.15616
Northern Cape* 2013 0.10312 1.10863 0.04645 2.22 0.02642
Free State * 2013 -0.29896 0.74159 0.03389 -8.82 0.00000
KwaZulu-Natal* 2013 -0.22368 0.79957 0.02845 -7.86 0.00000

Province * Year North West * 2013 0.04665 1.04776 0.03209 1.45 0.14600
Gauteng * 2013 -0.24586 0.78203 0.02791 -8.81 0.00000
Mpumalanga * 2013 -0.15836 0.85354 0.03477 -4.55 0.00000
Western cape * 2013 0.09115 1.09543 0.03765 2.42 0.01547
Eastern Cape * 2014 -0.07528 0.92749 0.03454 -2.18 0.02932
Northern Cape* 2014 0.03305 1.03360 0.04939 0.67 0.50340
Free State * 2014 -0.28979 0.74842 0.03552 -8.16 0.00000
KwaZulu-Natal* 2014 -0.22973 0.79475 0.03001 -7.65 0.00000
North West * 2014 -0.02276 0.97750 0.03413 -0.67 0.50489
Gauteng * 2014 -0.17787 0.83706 0.02918 -6.09 0.00000
Mpumalanga * 2014 -0.10795 0.89767 0.03609 -2.99 0.00278
Western cape* 2014 0.09908 1.10415 0.03916 2.53 0.01141
Eastern Cape* 2015 -0.13609 0.87277 0.04116 -3.31 0.00095
Northern Cape* 2015 0.09171 1.09604 0.05609 1.64 0.10204
Free State * 2015 -0.26621 0.76628 0.04177 -6.37 0.00000
KwaZulu-Natal* 2015 -0.09528 0.90912 0.03466 -2.75 0.00598
North West * 2015 0.13444 1.14390 0.03862 3.48 0.00050
Gauteng * 2015 -0.00659 0.99343 0.03324 -0.20 0.84292
Mpumalanga * 2015 -0.04666 0.95442 0.04220 -1.11 0.26895
Western cape * 2015 0.41035 1.50735 0.04260 9.63 0.00000

The results show that gender, year and province were significantly associated

with survival of under five children (p-value < 0). The results further revealed

that male children were more likely to die as compared to female children. A

hazard of dying of a male child under the age of five was 15% higher than that

of a female child under the age of five (HR = 1.148,p-value = 0). Children

born in Eastern Cape, KwaZulu Natal and Western Cape were less likely to die

as compared to children born in Limpopo. Children born from other provinces
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such as Free State, Gauteng, Mpumalanga, North West and Northern Cape

were more likely to die than those born in Limpopo. As an example, children

born in Free State were 2.054 times more likely to die as compared to children

born in Limpopo.

Children born between 2010 and 2015 were less likely to die than children

born in 2009. We see a reduced risk of under five mortality between 2010 and

2015 as compared to 2009. The results suggest that there is no significant

interaction between gender and birth province and birth province and birth

year. That is, survival times for children under five years do not depend on the

interaction between gender of a child and the province of birth and also not on

the interaction between province of birth and year of birth.

2.3.5 Results from the logistic regression model

The logistic regression was considered to check factors influencing the prob-

ability of stillbirths. The overall effects of the variables was checked via the

likelihood ratio test.

Table 2.8 shows the results of the overall effect of the variables.

Table 2.8: Overall effect of the variables

Factors df Deviance Pr(>Chi)
Gender 1 709.50 0.0000

Province 8 9011.70 0.0000
Year 6 308.05 0.0000

Gender * Province 8 27.16 0.0007
Gender * Year 6 6.6973 0.3498

Province * Year 48 330.88 0.0000

The results in Table 2.8 show that the likelihood ratio test is highly significant

for all the variables except for gender and year interaction. We conclude that

gender, province, year, gender and province interaction, province and year in-

teraction should remain in the model. The logistic regression model excluding
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gender and birth year interaction is given in Table 2.9 and Table 2.10.

Table 2.9: Results of the logistic regression model

Factors Level Estimate Se z p
(Intercept) -5.045288 0.036655 -137.642 0.0000

Gender Ref: Female
Male 0.162109 0.022411 7.234 0.0000
Ref: Limpopo
Eastern Cape -0.482077 0.058283 -8.271 0.0000
Northern Cape 0.429674 0.074568 5.762 0.0000
Free state 1.110188 0.048575 22.855 0.0000

Province KwaZulu natal 0.712860 0.041471 17.189 0.0000
North West 0.446087 0.051250 8.704 0.0000
Gauteng 0.643450 0.042246 15.231 0.0000
Mpumalanga 0.439748 0.050970 8.628 0.0000
Western Cape 0.522184 0.047717 10.943 0.0000
(Ref: 2009)
2010 0.208946 0.046333 4.510 0.0000
2011 0.132755 0.046665 2.845 0.00444

Year 2012 0.293395 0.045151 6.498 0.0000
2013 0.390256 0.044348 8.800 0.0000
2014 0.449826 0.043851 10.258 0.0000
2015 0.406048 0.044629 9.098 0.0000
Ref:Female* Ref:Limpopo
Male * Western Cape -0.025873 0.030270 -0.855 0.39270
Male * Eastern Cape 0.025802 0.037160 0.694 0.48747
Male * Northern Cape 0.082439 0.045977 1.793 0.07296

Gender*Province Female * Free State 0.081995 0.031844 2.575 0.01003
Male * Kwazulu-Natal -0.011037 0.026087 -0.423 0.67224
Male * North West 0.077268 0.032658 2.366 0.01798
Male * Gauteng 0.012443 0.026488 0.470 0.63853
Male * Mpumalanga 0.032801 0.033201 0.988 0.32318
Ref:Limpopo* Ref:2009
Western Cape* 2010 -0.027371 0.060455 -0.453 0.65073
Eastern Cape * 2010 0.088294 0.072909 1.211 0.22589
Northern Cape* 2010 0.185386 0.091550 2.025 0.04287

Province*Year Free State * 2010 -0.023857 0.060944 -0.391 0.69546
Kwazulu-Natal* 2010 -0.069508 0.052530 -1.323 0.18577
North West * 2010 -0.044099 0.064837 -0.680 0.49641
Gauteng * 2010 -0.074464 0.053501 -1.392 0.16397
Mpumalanga * 2010 -0.114642 0.064997 -1.764 0.07776
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Table 2.10: Continuation of the results of the logistic regression model

Covariate Level Estimate Se z p
Ref:Limpopo* Year Ref:2009
Eastern Cape * 2011 0.031461 0.074286 0.424 0.67193
Northern Cape* 2011 0.133446 0.093496 1.427 0.15350
Free State * 2011 -0.039856 0.061866 -0.644 0.51943
KwaZulu-Natal * 2011 -0.065827 0.053048 -1.241 0.21464
North West* 2011 -0.022891 0.065482 -0.350 0.72665
Gauteng * 2011 -0.051534 0.053952 -0.955 0.33949
Mpumalanga * 2011 -0.100980 0.065399 -1.544 0.12257
Western Cape * 2011 0.028224 0.060895 0.463 0.64302
Eastern Cape * 2012 -0.100354 0.073186 -1.371 0.17030
Northern Cape* 2012 0.039336 0.091370 0.431 0.66682

Province * Year Free State * 2012 -0.351825 0.061757 -5.697 0.0000
KwaZulu-Natal* 2012 -0.215328 0.051756 -4.160 0.0000
North West* 2012 -0.073887 0.063636 -1.161 0.24561
Gauteng * 2012 -0.143556 0.052421 -2.739 0.00617
Mpumalanga * 2012 -0.221704 0.063983 -3.465 0.00053
Western Cape * 2012 -0.166434 0.059997 -2.774 0.00554
Eastern Cape * 2013 -0.114524 0.072178 -1.587 0.11258
Northern Cape* 2013 -0.029784 0.090659 -0.329 0.74251
Free State * 2013 -0.428171 0.061392 -6.974 0.0000
KwaZulu-Natal* 2013 -0.210854 0.050764 -4.154 0.0000
North West * 2013 -0.006759 0.062784 -0.108 0.91427
Gauteng * 2013 -0.325210 0.051827 -6.275 0.0000
Mpumalanga * 2013 -0.322730 0.064013 -5.042 0.0000
Western Cape * 2013 -0.106324 0.058795 -1.808 0.07055
Eastern Cape * 2014 -0.183966 0.071917 -2.558 0.01053
Northern Cape* 2014 -0.172610 0.091535 -1.886 0.05933
Free State * 2014 -0.505864 0.061046 -8.287 0.0000
KwaZulu-Natal* 2014 -0.373604 0.050685 -7.371 0.0000
North West *2014 -0.146229 0.063017 -2.320 0.02032
Gauteng * 2014 -0.384068 0.051484 -7.460 0.0000
Mpumalanga *2014 -0.381209 0.063500 -6.003 0.0000
Western Cape * 2014 -0.256285 0.058717 -4.365 0.0000
Eastern Cape * 2015 -0.091094 0.059136 -2.146 0.03188
Northern Cape* 2015 -0.077659 0.091683 -0.847 0.39697
Free State * 2015 -0.509720 0.062752 -8.123 0.0000
KwaZulu-Natal*2015 -0.225227 0.051441 -4.378 0.0000
North West * 2015 -0.162133 0.064514 -2.513 0.01197
Gauteng * 2015 -0.270924 0.052174 -5.193 0.0000
Mpumalanga * 2015 -0.286693 0.064665 -4.434 0.0000
Western Cape* 2015 -0.126899 0.059136 -2.146 0.03188

Results obtained from logistic regression analysis indicate that being a still-

born is influenced by gender, province of birth and year of birth. The three

predictors were found to be statistically significant at 0.05 level of significance.

The results further revealed that male children were more likely to be born
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as stillbirths than female children (Coef = 0.162). The coefficient for Eastern

Cape province is negative (-0.482). This means that children born in Eastern

Cape province were less likely to be born as stillbirths than children born in

Limpopo province. With regard to birth year, those who were born after 2009

were more likely to be stillbirths than those who were born in 2009.

2.4 Discussion

Findings from this chapter are in line with findings from other countries in

Sub-Saharan Africa. Our findings revealed a higher percentage of male still-

births as compared to female stillbirths. These findings agree with those in

(Madhi et al., 2019). The probability of stillbirths for both males and females

were highest in Free State, a rural province in South Africa. A paper published

by Bhattacharyya and Pal (2012) showed also that rural residence contributes

to the risk of stillbirths. The logistic regression results revealed that gender,

birth province and birth year were factors influencing probability of stillbirths.

Although Feresu et al. (2004) found no statistical difference between the risk of

stillbirths in female and male children, Madhi et al. (2019) found gender to be

a factor associated with stillbirth in other developing countries. A study done

by Graner et al. (2009) also showed that place of residence influence stillbirths.

Women who delivered in rural areas were at higher risk of stillbirth compared

to those delivered in urban areas due to unavailability of health facilities and

trained health practitioners.

The study also investigated potential risk factors for under five mortality us-

ing the Cox model. Gender was found to be significant factor of under five

mortality. Male children had higher risks of death than female children. These

findings agreed with those in (Nasejje, 2013) and Ezeh et al. (2015). Another
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factor contributing to under five mortality was found to be birth province. Re-

sults obtained by Zike et al. (2018) and Ezeh et al. (2015) also showed that

residential area influence the survival of under five children. A study done by

Worku (2009) showed that in South Africa, residential area plays a role in child

survival and that most of the disadvantaged children are those residing in ru-

ral areas. Although his study was done in South Africa, his focus was not on

clustered survival models and he also focused on different variables other than

what we have used in our study. His focus was on variables such as education

level of mother, accessibility to clean water, income status of the family, breast

feeding duration, family planning methods usage, age and marital status of

mother. The K-M and predicted probability plots showed that children born

in Western Cape had better survival rates compared to other children. This

might be due to the fact that Western Cape is much more advanced in terms

of resources, number of well-trained health practitioners and access to health

care facilities. It has also been found that children born in 2014 had the highest

survival rate compared to children born in other years.

2.5 Summary of the chapter

The objective of this chapter was to identify factors influencing probability of

stillbirths and to investigate predictors of under five child mortality. Logis-

tic regression model was applied to data set 1 described in Chapter 1, Section

1.7.4.1 to identify factors influencing probability of stillbirths. Three factors

contributing to stillbirth cases were found to be gender, birth province and

birth year. K-M curves and log-rank test were used to compare survival distri-

butions of two or more categories of covariates included in the analysis. The

results of the Log-rank test showed significant differences in the occurrence

of death of different categories of gender, birth province and birth year. The

K-M curves revealed that female children survived longer than male children
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and that those born in Western Cape survived longer than children in other

provinces. The results further revealed higher survival of children born in

2014. The Cox PH model was applied to identify important predictors of under

five mortality. The results showed that under five mortality was significantly

influenced by three covariates, namely: gender, birth province and birth year.



Chapter 3

Shared frailty model for left

truncated survival data

So far we have seen time to event data analysis without taking into account

clustering and left truncation in all analyses. It is important to consider these

two aspects now. In this chapter, the importance of considering clustering and

left truncation is demonstrated.

3.1 General introduction

In many studies, natural clustering of subjects exists such that survival times

within the same cluster may be correlated because of certain features such as

shared environmental factors or genetic factors. Data containing clustered sur-

vival times also emanate from data involving multiple occurrences of an event

from the same person, i.e., where an individual experiences the same type of

event such as suicide attempts, more than once (Knox et al., 2013). These

studies involve clusters of subjects or individuals who have common factors

that might influence the results of interest. As an example, patients treated at
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the same medical institution such as hospital are likely to have similar results

than those treated at other medical institutions. Another example is that there

may be an association in the times to events of a disease between children born

from the same mother. Individuals within a group or cluster are likely to have

similar results than subjects in other groups. There are two techniques that

consider dependence between observations within a cluster that can be used

to analyse this type of clustered survival data. These are frailty and copula

models. Both models can give us estimates of the association between survival

times in a cluster. The disadvantage of the marginal regression model approach

such as the Cox model applied in Chapter 2 is that it does not provide us with

information concerning the association between survival times of individuals

in a cluster. The focus in this chapter is on the frailty model. The copula model

is discussed in the next chapter, i.e., Chapter 4.

The main aim of this chapter is to analyse factors affecting under five child

mortality taking consideration heterogeneity present in the data and left trun-

cation. A shared frailty model using the gamma distribution as the choice of

the frailty distribution is explored. In the sections that follow, introduction to

frailty models, descriptive statistics, methodology and estimation methods are

described. All analyses were done using data set 2 described in Chapter 1 Sec-

tion 1.7.4.2. Clusters of size one were excluded in the analysis because they

were in majority. For each cluster of size 1, we introduced a frailty term and it

was not possible to include all of them in the model. Another reason is that our

main focus was on links between siblings.

3.1.1 Introduction to frailty models

Frailty models are widely used to model association between failure times of

the same cluster by including a random component called frailty term for the
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hazard function in the model. Frailty can be defined as susceptibility to a

certain event which can be individual or shared by different individuals in a

cluster (Goethals, 2011). Frailty models are also called conditional models be-

cause covariate effects are specified conditionally on the frailty term. In frailty

modelling, the assumption is that different members within the same cluster

or group are related to each other conditionally on the frailty term(s). Condi-

tional on the frailty, the survival times of children within a cluster are assumed

to be independent. A frailty model is often used when we are interested in the

association between failure times within the same cluster (Andersen, 2005).

The purpose of the frailty model is to take care of the heterogeneity caused by

covariates which were related to the event of interest, but were not measured.

The likelihood is constructed by first considering the conditional contribution

of a member within a cluster to the likelihood function and then integrate over

the frailty distribution. The interpretation of covariate effect is at the condi-

tional level. There are different frailty models, namely, univariate, correlated

and shared frailty models.

In a univariate frailty model, each member in the study has its own frailty

term and we assume that members who are most frail will experience event of

interest at an earlier time than others. In the correlated frailty models, each

member in the cluster has its own frailty term and that results to event times

of members of the same cluster being correlated. In a shared frailty model,

members belonging to the same cluster share the same frailty. In all these

models, the frailty term is a positive random variable following some distribu-

tion such as gamma, positive stable or lognormal. Children in this study came

from different households, raised by different mothers and hence clustered at

mother’s level. A shared frailty model is the appropriate model in this study.

The frailty term in our study will take into consideration the situation where

some of the children may be exposed to hazard of death more than others.
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3.1.2 Left truncation

Left truncation in survival data exists when some of the individuals in the data

are not observed from the time origin of interest (Jensen et al., 2004). In this

study, death information for children who died between 2010 and 2012 was not

captured in the two data sets provided by Stats SA and that resulted to left

truncated data. The reasons for the missing information were not provided.

The recording of death information was problematic because death informa-

tion was recorded for only those who died between 2013 and 2015. Due to

missing death information in this data set, survival models that consider left

truncation need to be used in order to get reliable results. Individuals with

left truncated survival times have survived until entry period and will carry

information about their frailty value and this needs to be considered in the

analysis (Jensen et al., 2004). When left truncation exists in the data set, the

frailty distribution among those who survived in a cluster is different because

the distribution will tend to have lower frailty values (Jensen et al., 2004).

3.1.3 Consequence of ignoring frailty

Analyses that ignore associations will overestimate the variability (Sainani,

2010). Ignoring heterogeneity in the data will produce incorrect estimated pa-

rameters (Abdulkarimova, 2013). Previous investigators such as Zhenzhen

(2000), Moerbeek et al. (2003) and Islam et al. (2010), ignored association

within clusters in their studies. On the other hand, researchers such as Vau-

pel et al. (1979), Guo and Rodriguez (1992), Sastry (1997), and Mahmood et al.

(2013) have recognised that ignoring association between related individuals in

the survival studies would lead to estimates that are inefficient and biased. It

was shown by Bouwmeester et al. (2013) that a model developed with a random

effect exhibited better discrimination than the standard logistic regression ap-
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proach, if the cluster effects were used for risk prediction. It was also shown by

Sainani (2010) that the application of many statistical tests to correlated ob-

servations will lead to the overestimation of p values in certain cases when one

considers within-subject or within-cluster effect and underestimation in others

when one considers between-cluster effects. Including the unobserved frailty

term in the model avoids underestimation or overestimation of the model pa-

rameters (Gachau, 2014).

3.2 Methodology

In this section, the Cox PH model and the gamma shared frailty models with

parameters estimated by penalised likelihood maximisation will be described.

3.2.1 The Cox PH model

The Cox PH model discussed in detail in Section 2.2.3 was analysed using

frailtypack package. With frailtypack, it is possible to fit Cox PH model with pa-

rameters estimated by penalised likelihood estimation (Rondeau et al., 2012).

The aim was to compare the Cox PH model and the shared frailty model for

their performance. The Cox PH model is the same as the frailty model without

including a random effect. This model can be extended to include a random ef-

fect term through a linear component considers the unobserved heterogeneity.

The extended model is called the frailty model (Niragire et al., 2011).

3.2.2 Univariate frailty model

To illustrate the shared frailty model, let T be the survival time of an individ-

ual and Z be the frailty variable. The conditional hazard function for a given

frailty variable Z = z at time t > 0 is given by:

h(t|z) = zh0(t)exp(Xβ).
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In this model, h0(t) is the baseline hazard function and β is the column vector

of regression coefficients. The conditional survival function for a given frailty

at time t > 0 is given by

S(t|z) = exp
[∫ t

0

h(x|z)dx

]
= exp[−zH0(t)exp(Xβ)].

(3.1)

The marginal survival function can be obtained by integrating over the range

of frailty variable z as follows:

S(t) =

∫ ∞
0

S(t|z)f(z)dz

=

∫ ∞
0

exp[−zH0(t)exp(Xβ)]f(z)dz

= L[H0(t)exp(Xβ)],

(3.2)

where L(.) is the Laplace transformation of the distribution of Z.

3.2.3 The shared frailty model

In this section, the shared frailty model with a gamma distribution of the ran-

dom effect is discussed. The model with the gamma distribution is very easy to

fit and interpret in terms of the hazard ratios (Guo and Rodriguez, 1992).

In the shared frailty model, it is assumed that individuals belonging to the

same cluster share the same frailty term (Duchateau and Janssen, 2007). This

frailty term tells us that members in the same group behave in a similar but

unknown manner. A shared frailty model can be regarded as a random ef-

fects model with two sources of variations, namely, cluster variation which is

described by the frailty and individual variation described by the hazard func-

tion (Hougaard, 2012). A random effect is introduced for each cluster so that

individuals from one cluster are more similar than individuals from different

clusters. The random effect describes the unobserved influences common to all
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individuals of that particular cluster (Gachau, 2014). The main assumption

of shared frailty model is that all items or individuals in a cluster share the

same value of frailty, which is the reason why the model is called shared frailty

model. It is assumed that the frailties in different clusters are not related. Fail-

ure times of individuals in a cluster are dependent, while those across clusters

are independent (Nguti, 2003). Frailty is assumed to be independent across

the groups or clusters, while the survival times of individuals within the same

group are conditionally dependent (Nasejje, 2013). The aim of the frailty model

is to take care of the heterogeneity caused by variables not measured.

Let us assume that we have a total of n individuals coming from k differ-

ent clusters. Let Lij be the left truncated times. For each individual in the

study, we observe Yij = min(Tij, Cij) and indicators showing censoring status

δij = ITij≤Cij . Tij are survival times and Cij the censoring times of individuals

under study. The survival times are said to be left truncated in a situation

where only individuals with Tij > Lij are observed.

The shared frailty model which specifies that the hazard function conditional

on the frailty is given by:

hij(t|zi) = zih0(t)exp(β
′
Xij), (3.3)

where:

h0(t) is the baseline hazard at time t, Xij is a vector of covariates for individual

j in cluster i, β is a vector of regression coefficients, and zi’s are the frailties

which are independently and identically distributed from a gamma distribu-

tion which has a mean of 1 and unknown variance θ. Individuals in cluster i

share frailty zi, and conditional on zi their survival times are assumed to be

independent.

The frailty for cluster i gives us an idea on how the hazard for that cluster
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varies from the hazard of an event in general. Large values for the frailty,

i.e., zi > 1 indicate that the event is happening earlier as compared to clusters

with zi < 1 (Legrand et al., 2006). Subjects with a larger frailty are more frail

and expected to die earlier than subjects with the same measured covariates.

In case the event of interest is a positive outcome, like for example, recovery

from a disease, individuals with larger frailty values are expected to experi-

ence the positive outcome earlier than others with the same covariates. In

other words, they are expected to heal faster than others (Balan and Putter,

2020). In shared frailty models, the correlation between frailties of different

groups is equal to zero and the correlation between subject frailties of mem-

bers in a group is equal to one (Goethals et al., 2008).

In this study, an R package called frailtypack was used to fit Cox and shared

frailty models. Estimation of unknown parameters in both models were done

using the full penalised likelihood approach. Frailtypack can be used to es-

timate the parameters in a shared gamma frailty model with possibly right

censored, left truncated and stratified survival data (Rondeau and Gonzalez,

2005). For a detailed description of frailtypack, see Rondeau and Gonzalez

(2005) and Rondeau et al. (2012).

3.2.4 Heterogeneity parameter θ

It crucial to detect the presence of cluster effects or heterogeneity in a clustered

survival data. When we estimate the heterogeneity parameter (variance θ), we

get a better idea of the heterogeneity of the values of the random effect be-

tween clusters. The stratified Cox model, in which cluster to-cluster variability

is treated as nuisance, does not provide a framework for describing heterogene-

ity (Glidden and Vittinghoff, 2004).



Shared frailty model for left truncated clustered data 58

In a frailty model, θ is estimated to get an idea on heterogeneity in the out-

come between clusters (Gachau, 2014). The variance parameter θ measures

the degree of between-cluster variability (Glidden and Vittinghoff, 2004). If θ

equals zero then there is no evidence of frailty, and that the frailty component

does not contribute to the model (Mills, 2011). Thus, when θ = 0, the frailties

are independently equal to 1 and in that case the cluster effects are absent,

and events are independent within and across clusters. This will be the same

as using the Cox Proportional hazard model. On the other hand, a value of θ

greater than 0 reflects heterogeneity between clusters and a strong association

between members of the same cluster. Large values of θ reflect a greater degree

of heterogeneity (Zike et al., 2018). The larger the value of θ, the larger would

be the heterogeneity in outcome between clusters (Legrand et al., 2006).

3.2.5 Choice of frailty distribution

The distribution of the random effect can be chosen among several distribu-

tions (Mauguen, 2014). The most common ones are the gamma and log-normal

distributions. Even though the gamma models do not have closed forms expres-

sions for survival and hazard functions, from a computational view, it fits well

to frailty and it is easy to derive the closed form expressions for unconditional

survival and hazard functions (Zike et al., 2018). In this thesis we used the

gamma frailty as the distribution for the random effect with baseline hazard

estimated using the penalised likelihood approach as proposed by Rondeau and

Gonzalez (2005). The popularity of a gamma distribution is based on mathe-

matical and computational aspects that it has a simple Laplace transform and

that makes inference less complicated (Goethals et al., 2008).

Suppose that T is a gamma distributed random variable with scale and shape
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parameters b and α, respectively. The probability density function is given by:

f(t) =
bαtα−1e−bt

Γ(α)
, (3.4)

where Γ(α) is the gamma function given by:

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Parameters b and α are greater than 0. The expected value and variance of the

gamma distribution are as follows:

E(T ) =
α

b

and

V ar(T ) =
α

b2

respectively.

The survival and hazard functions are given by:

S(t) = 1− Iα(bt)

and

h(t) =
bαtα−1e−bt

1− Iα(bt).Γ(α)

respectively.

Iα(x) is the incomplete gamma function defined as

Iα(x) =

∫ x
0
bα−1e−xdx

Γ(α)
.

In a gamma frailty model, the restriction α = b is used which resulted to ex-
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pectation of 1. The variance of the frailty variable is then 1/b. Assume that the

frailty term Z is distributed as gamma with E(Z) = 1 and V ar(Z) = θ. Then

b = α = 1/θ. The probability density function is given by

f(z) =
z(1/θ−1)exp(−z/θ)

Γ(1/θ)θ1/θ
(3.5)

and the Laplace transform is given by

L(s) = (1 + θs)−1/θ. (3.6)

One way to express dependence in a frailty model is to use Kendall’s tau to

quantify dependence. Kendall’s tau measures the dependence between any

two event times from the same cluster. For a gamma distribution, Kendall’s

tau is expressed as:

τ =
θ

θ + 2
ε (0, 1).

3.3 Estimation methods for the shared frailty

models

Depending on the assumptions made about the baseline hazard and the dis-

tribution of the random effect, various likelihood-based procedures have been

proposed to estimate the variance of the random effect (Legrand et al., 2006).

In this section the estimation methods for the shared frailty model are dis-

cussed. Drawbacks of common methods used previously by other authors are

discussed as well as the Penalised likelihood estimation method used in this

thesis. There are several methods that can be used to estimate unknown pa-

rameters in a frailty model. These include maximum likelihood methods such

as Expectation-Maximisation (EM) algorithm and penalised likelihood method.
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The maximum likelihood estimation in the gamma frailty model is straightfor-

ward as we can easily integrate the frailties out in the likelihood function and

obtain the parameter estimates using classical maximum likelihood techniques

(Abdulkarimova, 2013). In this thesis, the penalised full likelihood method was

used.

3.3.1 Expectation-Maximisation (EM) algorithm

The EM algorithm is a method to find maximum likelihood estimates of pa-

rameters in a statistical model where the model depends on unobserved latent

variables. The approach consists of two steps namely: an Expectation step (E-

step) and a maximisation step (M-step). In the E-step, the expected values of

the unobserved frailties conditional on the unobserved information and current

estimates are obtained. In the M-step, these expected values of the parameters

of interest are obtained by maximisation of the likelihood given the expected

values (Duchateau and Janssen, 2007). The drawbacks of this approach were

highlighted by Therneau and Grambsch (2013), i.e. the algorithm is slow and

proper variance estimates need further computation. Rondeau et al. (2012)

noted that no implementation has appeared in any of the more widely avail-

able packages.

3.3.2 The (partial) penalised likelihood method

An alternative estimation method to the EM algorithm is the penalised like-

lihood approach where the random effect is treated as a penalty term. The

penalised likelihood approach is favoured over the EM algorithm because it is

faster and is implemented in most standard software (Gachau, 2014). The pe-

nalised partial likelihood method proposed by Therneau and Grambsch (2013)

has some drawbacks, i.e, the convergence can be slow, direct estimate of the

variance of the frailty term is not provided and that the method cannot be used
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to estimate a hazard function (Rondeau and Gonzalez, 2005).

Due to the drawbacks of the two approaches mentioned above, i.e., EM al-

gorithm and penalised partial likelihood, we decided to use an alternative

method, a non-parametric penalised full likelihood approach. The use a non-

parametric penalised likelihood and the smooth estimation of the baseline haz-

ard function is provided by using an approximation by splines. Penalised tech-

nique is a useful estimation tool (Therneau and Grambsch, 2013). The dif-

ference between partial penalised likelihood by Rondeau et al. (2012) and full

penalised likelihood approach is that the baseline hazard function is penalised

in full penalised approach and the frailties are penalised in partial penalised

approach.

The full log-likelihood for left-truncated and right censored data in the shared

gamma-frailty models are given by:

l(h0(.), β, θ) =
k∑
i=1

{
n∑
j=1

δij{β
′
Xij + ln(h0(Yij))}

− (1/θ +mi)ln[1 + θ
n∑
j=1

H0(Yij)exp(β
′
Xij)]

+ 1/θln(1 + θ
n∑
j=1

H0(Lij)exp(β
′
Xij))

+ Imi 6=0

mi∑
p=1

[ln(1 + θ(mi − p))]}, (3.7)

where H0(.) is the cumulative baseline and mi =
Ji∑
j=1

I(δij=1)
is the total number

of observed events in the ith group. The penalised log-likelihood is then defined

as:
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pl(h0(.), β, θ) = ι(h0(.), θ)− κ
∫ ∞

0

h
′′2
0 (t)dt, (3.8)

where l(h0(.), β, θ) is the full log-likelihood defined in 3.7. κ ≥ 0 is a positive

smoothing parameter. Maximum penalised likelihood estimators ĥ0(t), β̂, θ̂ can

be found by maximising equation 3.8. Ĥ−1 can be used as a variance esti-

mator of the parameters, where Ĥ is the converged Hessian of the penalised

log-likelihood.

3.3.2.1 Approximation with splines

A baseline hazard function h0(t) is estimated using splines after estimating

the covariate coefficients in the shared frailty model. The estimator of the

baseline hazard h(.) can be approximated on the basis of splines with Q knots:

h̃0(.) =
∑m

i=1 ηiMi(.), where m = Q + 2, Q is the number of knots, η′is are con-

trol points of increasing knots and Mi represents the cubic M-splines (Rondeau

et al., 2012). In frailtypack, we set a knot on the first and last data values

and the other knots are put in such a way that the distance is equal between

them. It is advisable to start with a small number of knots and then gradually

increase the number until the graph of baseline hazard function remains un-

changed. The more the number of knots used, the longer the time of running.

According to Rondeau et al. (2012), the suggested number of knots should be

between 4 and 20. Initial values are needed in most of the algorithms in the

frailtypack programs. It is important to choose good initial values to maximise

the penalised likelihood because the convergence is faster if the initial value

is closer to the true value. In our case, the splines, regression coefficients and

variance of the frailty term were initialised to 0.1.

3.3.2.2 Estimation of smoothing parameter κ

The maximisation of a likelihood cross-validation criterion is used for estimat-

ing the smoothing parameter κ (Tang, 2014). To find the smoothing parameter
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κ, we minimise the function

V̄ (k) =
1

Q
[tr(Ĥ−1

pl Ĥl − pl(Φ̂k))], (3.9)

where Q is the number of knots, Ĥpl is the converged Hessian matrix, Ĥl is

the converged Hessian matrix of the log-likelihood and pl(Φ̂k) is the penalised

log-likelihood.

3.4 Data analysis and results

In this section, the data set introduced in Section 1.7.4.2, excluding clusters of

size one, is analysed.

3.4.1 Descriptive statistics

A total of 250260 children and 123110 mothers (clusters) were included in the

analysis. A summary of descriptive statistics is presented in Table 3.1.
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Table 3.1: Descriptive and summary statistics of the data

Covariate Level Total (%) Death N (%) Censored N (%) Left truncated N (%)
Gender Female 124901(49.9%) 2482(2.0%) 122419 (98.0%) 15282(50%)

Male 125359 (50.1%) 2720(2.2%) 122639(97.8%) 15274(50%)
Limpopo 29779(11.9%) 824(2.8%) 28955(97.2%) 3189(10.4%)

Eastern Cape 33146(13.2%) 598(1.8%) 32548(98.2%) 4761(15.6%)
Free State 11299(4.5%) 402(3.6%) 10897(96.4%) 997(3.3%)

Province Gauteng 51328(20.5%) 1047(2.0%) 50281(98.0%) 4812(15.7%)
KwaZulu Natal 59876(23.9%) 766(1.3%) 59110(98.7%) 9425 (30.8%)
Mpumalanga 21073(8.4%) 458(2.2%) 20615(97.8%) 2705(8.9%)
North West 15530(6.2%) 517(3.3%) 15013(96.7%) 2431(8.0%)

Northern Cape 5782(2.3%) 249(4.3%) 5533(95.7%) 1703(5.6%)
Western Cape 22447(9.0%) 341(1.5%) 22106(98.5%) 533(1.7%)

2010 6887(2.8%) 11(0.2%) 6876 (99.8%) 6887 (22.5%)
2011 8676 (3.5%) 24(0.3%) 8652(99.7%) 8676(28.4%)
2012 14993 (6.0%) 189(1.3%) 14804(98.7%) 14993(49.1%)

Year 2013 103811 (41.5%) 3624(3.5%) 100187(96.5%) 0(0%)
2014 12694 (5.1%) 191(1.5%) 12503(98.5%) 0(0%)
2015 103199 (41.2%) 1163(1.1%) 102036(98.9%) 0(0%)

Twin No 197956(79.1%) 3775(1.9%) 194181 (98.1%) 28781 (94.2%)
Yes 52304 (20.9%) 1427(2.7%) 50877(97.3%) 1775(5.8%)
0 147274(58.8%) 4073(2.8%) 143201 (97.2%) 27525 (90.1%)
1 100424 (40.1%) 1098(1.1%) 99326(98.9%) 3000(9.8%)

Order 2 2504 (1.0%) 29(1.2%) 2475(98.8%) 31(0.1%)
3 55 (0.0%) 2(3.6%) 53(96.4%) 0(0%)
4 3 (0.0%) 0(0.0%) 3(100.0%) 0(0%)

Out of the total number of 250260 children, 5202 (2.1%) were dead and 245058

(97.9%) were still alive at the date of the survey. The mortality rates of children

under the age of five varied from one South African province to another. The

highest percentage of deaths was observed in Northern Cape (4.3%), followed

by Free State (3.6%), while the lowest percentage of deaths was recorded in

KwaZulu Natal (1.3%), followed by Western Cape (1.5%).

With regard to gender of these children, a higher percentage was observed

among male children (2.2%) compared to female children (2.0%). Across birth

year, the highest death rate (3.3%) was recorded in 2013 and the lowest (0.2%)

was recorded in 2010.

Children born as a result of multiple births (twins) recorded the highest per-

centage of death compared to those who were not part of twins (singletons).
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About 2.7% of the children in multiple births (twins) had died before reaching

the age of five, compared to those born out as singletons, which recorded 1.9%.

The majority of children included in the data set were censored. The death rate

also varied by the number of previous children that a mother had (birth order).

The lowest percentage of the death was when mothers had four previous living

children (0.0%) than when they had no previous living children. This shows

that the more children born previously to a mother, the more experience the

mother had, and the lower the risk of dying.

With regard to left truncated individuals, 30556 (12.2%) were left truncated.

Half of them were females and half were males. The highest percentage of left

truncated individuals were observed in KwaZulu Natal province (30.8%) fol-

lowed by Gauteng (15.7%) and closely by Eastern Cape (15.6%), and the lowest

was in Western Cape (1.7%). Across birth year, by far the highest percentage

of left truncated individuals (49.1%) was recorded in 2012. There were no left

truncated individuals recorded between 2013 and 2015. This confirms the in-

formation given in Chapter 1, Section 1.7.4.2. We had more left truncated

singletons (94.2%) in our data set as compared to twins (5.8%). With regard

to previous number of living children that mothers had (birth order), it was

found that the highest percentage of left truncated individuals (90.1%) was

when mothers had no previous living children.

3.4.2 Results

The Cox Proportional model and shared gamma frailty models were analysed

using a penalised likelihood on the hazard function. A p-value < 0.05 was con-

sidered statistically significant. The parameter estimates for the two models

are presented in Table 3.2.
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Table 3.2: Cox PH and shared frailty models with parameters estimated by
penalised likelihood maximisation

Factors Levels Cox PH model Shared frailty model

Coef Hazard ratio Se p-value Coef Hazard ratio Se p-value
Gender Female Ref

Male 0.095 1.099 0.028 0.0007 0.096 1.100 0.029 0.0010
Limpopo Ref

Eastern Cape -0.390 0.677 0.055 < 0.0000 -0.404 0.667 0.062 < 0.0000
Free State 0.251 1.286 0.062 < 0.0000 0.268 1.308 0.070 0.0001

Province Gauteng -0.331 0.718 0.047 < 0.0000 -0.336 0.714 0.054 < 0.0000
KwaZulu -0.737 0.478 0.052 < 0.0000 -0.758 0.468 0.055 < 0.0000

Mpumalanga -0.221 0.802 0.058 0.0002 -0.226 0.798 0.066 0.0007
North West 0.260 1.296 0.057 < 0.0000 0.270 1.310 0.066 < 0.0000

Northern Cape 0.478 1.613 0.073 < 0.0000 0.517 1.678 0.083 < 0.0000
Western Cape -0.632 0.532 0.065 < 0.0000 -0.646 0.524 0.071 < 0.0000

2010 Ref
2011 0.821 2.273 0.293 0.0051 0.824 2.279 0.497 0.0972
2012 1.283 3.609 0.324 < 0.0000 1.288 3.626 0.192 < 0.0000

Year 2013 1.835 6.264 0.342 < 0.0000 1.883 6.577 0.175 < 0.0000
2014 1.422 4.146 0.325 < 0.0000 1.446 4.247 0.197 < 0.0000
2015 1.687 5.406 0.346 < 0.0000 1.723 5.603 0.180 < 0.0000

Twin 0.167 1.182 0.035 < 0.0000 0.180 1.197 0.037 < 0.0000
Order -0.367 0.693 0.047 < 0.0000 -0.372 0.690 0.049 < 0.0000

θ (P-value) - 2.342 (p < 0.0000)
Penalised marginal log-likelihood -55833.07 -55742.73

LCV 0.2232 0.2228

Table 3.2 shows the potential risk factors contributing to high rate of under-

five child mortality in South Africa. The Cox PH model and the shared frailty

model parameters were fitted by penalisation approach suggested by (Rondeau

et al., 2012). Factors that were expected to affect the survival of children were

gender of a child, birth province, birth year, twin and birth order. A hazard

rate of 1.1 was obtained for male children compared to female children. The

chances of male children to die was found to be very high compared to those for

female children. The hazard rates of Eastern Cape, Gauteng, KwaZulu Natal,

Mpumalanga and Western Cape provinces were all less than 1, indicating that

children residing in those provinces were less likely to die compared to those

in Limpopo. The results also show that the hazard of death for children born

between 2011 and 2015 were higher compared to the hazard of death for those

born in 2010. This also confirms the descriptive statistics in Table 3.1.

We also compared the hazard rates of children who were part of twin with those

who were singletons. Both models show that a child born as part of twin turns

to have a probability of dying which is more than 1.1 times the probability of

dying for a singleton. This means that children who were part of twins were

more likely to die than those who were singletons. The results from the output
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show that birth order was another significant factor of under five child mor-

tality. The hazard ratio of children who were born from a mother with other

children is 0.690. This means that the more children born previously to the

mother, the lower the hazard of dying.

To test the importance of frailty effect in our model, we evaluated the value

of theta shown in Table 3.2. The variance of the frailty term θ = 2.342 with

a p-value < 0 shows evidence of frailty, that heterogeneity was found between

mothers of children and strong connection between children from the same

mother (siblings). The results of the frailty term also show that there are other

factors except the ones included in the model that affect high mortality of chil-

dren under the age of five at mother’s level. The shared frailty model showed

a lower likelihood cross validation value (LCV = 0.2228) compared to the Cox

Proportional hazard model (LCV = 0.2232). This shows that the shared frailty

model was the most efficient model to describe the data set.

3.5 Discussion

The results of this study show that the death of a child under the age of five

is contributed by gender, birth province, birth year, birth order and whether a

child is part of twin or not. Male children were more likely to die than female

children. These results agreed with other studies done in other countries such

as in Bangladesh by Khan and Awan (2017), in Uganda by Nasejje (2013), in

Ethiopia by Zike et al. (2018) and in Turkey by Seçkin (2009). It has been

indicated by Khan and Awan (2017) that female children have a biological ad-

vantage against many causes of mortality than male children and that might

be the reason of higher risk of male children deaths. Twins were more likely to

die than singletons. These findings are similar to many previous researchers
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such as (Zike et al., 2018). First born children from mothers were likely to die

than second, third, fourth and fifth born children. This might be due to the

experience of handling children mothers had. It can also be concluded from the

results that the risk of dying is lower for children born in provinces like Eastern

Cape, Gauteng, KwaZulu Natal, Mpumalanga and Western Cape compared to

those born in Limpopo.

The value of θ shows evidence of the existence of unobserved heterogeneity at

mother’s level. This shows the presence of other factors contributing to the

death of children which were not described by those factors included in the

model. Although there is little variation of the parameter estimates in the

two models, the regression estimates showed an increase in the shared frailty

model where the frailty term was included. This was expected because the

shared frailty model accounts for extra variance associated with risks not mea-

sured. We notice that the effects of covariates included in the model is biased

downward when the effects of frailty are not considered.

Stone (1974) showed that LCV was asymptotically identical to AIC, but more

flexible because it can be applied to penalised likelihood estimators. The LCV

value of the shared frailty model was found to be minimum as compared to

the Cox PH model, this indicates that the shared frailty model is the most

efficient model to describe the under five child mortality data set. Although

Cox PH model can describe the association between survival probabilities and

covariates in the model, it does not take into consideration the unmeasured

variability among individuals beyond that of measured covariates. Adding a

frailty term made a significant contribution when we compare the penalised

log-likelihoods for the Cox PH and the shared frailty models. Considering cor-

relation among survival times of individuals in the same cluster can improve

the efficiency in the estimation of regression coefficients.
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3.6 Summary of the chapter

In this chapter, we considered the penalised likelihood estimation technique

proposed by Rondeau and Gonzalez (2005) on the hazard function for both Cox

proportional hazard and shared frailty models. This technique was more flex-

ible with the use of penalised splines for the baseline hazard. The proposed

technique was applied to a data set with 250260 children and 123110 mothers

(clusters). We used an R package called frailtypack to estimate model param-

eters in both Cox PH and gamma shared frailty models. The drawbacks of the

EM algorithm and the partial likelihood methods commonly used for estima-

tion were highlighted and the reason for choosing the full penalised likelihood

method.

The estimator of the baseline hazard function was approximated on the basis

of splines with 7 knots. It is advisable not to use large number of knots to avoid

running problems. The maximum number of knots should be limited to 20 and

the minimum should be limited to 4. We used 7 knots as the recommended

number to start with until one sees that the graph of the baseline hazard func-

tion is stable.

Results showed that gender, birth province, birth year, twin and birth order

were significant contributors in the survival of the under five children in South

Africa at 5% level. There was heterogeneity between mothers and a strong as-

sociation between survival times of children from the same mother. The gamma

shared frailty estimates were quite similar to the Cox proportional model with-

out frailty term. As expected, the hazard of dying was found to be higher for

twins as compared to singletons. The hazard of dying was found to be higher

for boys than girls and higher for children born between 2011 and 2015 than

those born in 2010. Children born in Eastern Cape, Gauteng, KwaZulu Natal

and Western Cape had a lower risk of dying compared to those born in Limpopo.
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The results also revealed that the hazard of dying is low in cases where mothers

had children before due to experience of handling children that those mothers

previously had. We compared the penalised log-likelihoods for the two models

and noticed the importance of adding a frailty term. We finally used LCV crite-

rion to compare the fit of the Cox PH and the shared gamma frailty models. It

can be concluded that the use of shared frailty model that consider the correla-

tion in the data was necessary because of the positive correlation which existed

in the data set.



Chapter 4

Copula model for clustered data

In this chapter, we describe a copula model for clustered survival data by con-

sidering Archimedean copulas, a class of copulas with completely monotone

generator. Clusters in our data set are large and vary in size and this class of

copulas can handle that very well.

We illustrate the methodology discussed in the chapter on the under five child

mortality data set described in Chapter 1 Section 1.7.4.2, but excluded chil-

dren with left truncated survival times and clusters of size 1. We used timereg

R package to analyse the data as it can handle large clusters of different sizes.

The main emphasis in this chapter is on Archimedean copula models, in par-

ticular the Clayton copula, and the focus is on survival copulas. The primary

interest is on the association between failure times of children from the same

mother (siblings).

This chapter begins by outlining general introduction to copula model, which

includes basics of joint distributions that are used more often in copula mod-

elling. In Section 4.2, we give a short literature review on copulas. In Section
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4.3, we discuss copula in a survival analysis setting paying more attention on

Archimedean copulas. A sample splitting technique used to partition our large

data set is given in Section 4.4. Results of the analysis and discussions are

given in Section 4.5. Finally, in Section 4.6, we concluded the chapter by pre-

senting a summary of the whole chapter.

4.1 General introduction to the copula model

4.1.1 Basics of joint distributions

The joint distribution of random variables T1, ..., Tn is defined by Trivedi et al.

(2007) as:

F (t1, ..., tn) = P (T1 ≤ t1, ..., Tn ≤ tn) and the survival function corresponding

to S(t1, ..., tn) is given by

S(t1, ..., tn) = P (T1 > t1, ..., Tn > tn)

= 1− F1(t1) for n = 1

= 1− F1(t1)− F2(t2) + F1(t1)F2(t2) for n = 2

= 1− F1(t1)− F2(t2)− F3(t3) + F12(t1, t2) + F13(t1, t3) + F23(t2, t3)− F (t1, t2, t3)

for n = 3.

Survival function expressions for any given n are also available.

4.1.1.1 The Frechet-Hoeffding bounds for joint distribution function

Consider any joint cdf F (t1, ..., tn) with univariate marginals cumulative dis-

tribution functions given by F1, F2, ..., Fn. Each marginal distribution can take

any value between 0 and 1. The joint cdf is bounded below and above by the

Frechet’s Hoeffding lower (W ) and upper (M) bounds defined by Trivedi et al.

(2007) as: W = max[
∑n

j=1 Fj − n+ 1, 0]

and
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M = min[F1, ..., Fn]

so that

W ≤ F (t1, ..., tn) ≤M .

The upper bound (M ) is always a cdf.

4.1.2 The Copula model

The copula model is used to join the marginal survival functions and the joint

survival function and gives the type of association (Goethals et al., 2008). It is

also multivariate distribution function with margins that are uniform on the

interval [0, 1].

In copula modelling, a copula function is introduced to model the associa-

tion between members belonging to a cluster. This copula function links the

marginal survival functions of different individuals in a cluster and then gen-

erates the joint survival function. The concept of copula was introduced by

Sklar (1959) and since then it has been recognised as a powerful tool for mod-

elling association between random variables (Munyamahoro, 2016). Statisti-

cians are interested in copulas because it is a way of studying measures of

dependence and also a point where one can start to construct families of bi-

variate distributions (Nelsen, 2007). Another reason is that copula approach

to model correlated variables is very useful because a copula can give depen-

dence structures regardless of the form of the margins (Trivedi et al., 2007).

The dependence structure and the margins can be modelled and estimated sep-

arately (Tran et al., 2020). What makes copula functions desirable is that the

marginal distributions may come from different families (Trivedi et al., 2007).

There are many copulas that are proposed in the literature, but the most com-

monly applied copula families are Archimedean, Gaussian and t-copulas. The

most suitable copula for a particular case is the one that best captures depen-

dence feature of the data.
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4.1.2.1 Concepts of copula modelling

In this section we review some of the concepts of copulas, general definitions,

known properties and theorems that will be used in the sections that follow.

We will focus on main topics, but a full explanation about copulas can be found

in Georges et al. (2001), Djehiche and Hult (2004), Tibaldi (2004) and Nelsen

(2007). Firstly, we introduce the definition of the multi-dimensional copula

function.

Let T1, T2, ..., Tn be random variables with marginal cumulative distribution

functions Fi(ti) = P (Ti ≤ ti) for i = 1, 2, ..., n. If we apply the probability in-

tergral transform to each component, Ui = Fi(ti) has a uniform distributed

marginal. The copula of (T1, T2, ..., Tn) is defined as the joint cumulative distri-

bution function of (U1, U2, ..., Un) namely:

C(u1, u2, ..., un) = P (U1 ≤ u1, U2 ≤ u2, ..., Un ≤ un). (4.1)

The copula C contains all information on the dependence structure between

the components of (T1, T2, ..., Tn) whereas Fi(ti) contains all the information on

the marginal distributions (Chen, 2014).

Equation 4.1 can be rewritten as the expression of the inverse function F−1
i (ti)

for i = 1, 2, ..., n as

C(u1, u2, ..., un) = P (T1 ≤ F−1
1 (u1), T1 ≤ F−1

2 (u2), ..., Tn ≤ F−1
n (un)). (4.2)

The Frechet’s-Hoeffding bounds discussed in Section 4.1.1.1 also apply to cop-

ulas because copulas are multivariate distribution functions. If we denote the

upper bound as CU(u1, u2, ..., un) and the lower bound as CL(u1, u2, ..., un), then

the Frechet bounds for copulas are as follows:

CL(u1, u2, ..., un) ≤ C(u1, u2, ..., un) ≤ CU(u1, u2, ..., un).
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We now state the Sklar’s theorem which links the marginals with the depen-

dence structure.

4.1.2.2 Sklar’s theorem

Copula models are popular because of Sklar’s theorem which says that any

joint distribution of random variables can be described by the marginal distri-

butions and a copula.

Let T1, T2, ..., Tn be random variables with Fi(ti) = P (Ti ≤ ti), the distribution

function of Ti. Let F (t1, t2, ..., tn) = P (T1 ≤ t1, T2 ≤ t2, ..., Tn ≤ tn) be a joint

density function. Then there exists a copula C such that for all t1, t2, ..., tn in R2

F (t1, t2, ..., tn) = C(F1(t1), F2(t2), ..., Fn(tn)). (4.3)

Conversely, if C is a copula and F1, ..., Fn are distribution functions, then F (t1, t2, ..., tn)

defined by (4.3) is a joint distribution function with marginal distribution func-

tions F1, ..., Fn (Djehiche and Hult, 2004).

4.1.2.3 Bivariate copulas

A bivariate copula C is a function from [0, 1]x[0, 1] into [0, 1] with the following

properties:

• For every u1, u2 in [0, 1], C(u1, u2) is grounded, i.e., C(u1, u2) = 0 if at least

one of the coordinates is zero.

• C(u1, u2) is two-increasing, i.e., for every a1 and a2 in [0, 1] such that a1 <

a2, the C-volume VC([a1, a2]) of the box [a1, a2] is positive.

• C(u1, 1) = u1 and C(u2, 1) = u2 for every (u1, u2) ∈ [0, 1]x[0, 1].

It follows that a copula is a bivariate distribution function with uniform mar-

gins. When the margins are independent, the following product copula is ob-
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tained: Cp(u1, u2) = u1u2.

4.1.2.4 Multivariate copulas

In this section, the results of the bivariate case are extended to the multivariate

case. A multivariate copula is a continuous multivariate distribution function

with uniform margins on the unit interval (Tibaldi, 2004).

An n-copula is a function C from [0, 1]n into [1, 0] satisfying the following con-

ditions in order to be a distribution function with standard uniform marginal

distributions (Trivedi et al., 2007):

• C(1, ..., 1, ui, 1, ..., 1) = ui for every i ≤ n and all ui in [0, 1].

This property says that if the joint probability of the i outcomes is the

same as the probability of the remaining uncertain outcome, then the

realisations of i− 1 variables are known with marginal probability.

• C(u1, ..., un) = 0 if ui = 0 for any i ≤ n.

This property says that the joint probability of all outcomes is zero if the

marginal probability of any outcome is zero. This property is also referred

to as the grounded property of a copula.

• C(u1, ..., un) is n-increasing.

This property says that the C-volume of any n-dimensional interval is

positive.

An n-copula is an n-dimensional distribution function with all n univariate

margins being U(0, 1). A natural extension of the bivariate copula to a multi-

variate case is by considering F1(u1), ..., Fn(un). Then the function C(F1(u1), ..., Fn(un)) =

F (u1, ..., un), denotes a multivariate distribution function evaluated at u1, ..., un

with marginal distributions F1, ..., Fn.
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4.1.2.5 Measures of dependence

In this section, different types of dependence measures are discussed, namely:

the Pearson linear correlation, the rank correlation and the tail dependence.

Pearson’s linear correlation

This is the most commonly used type of dependence measure which measures

the direction and the degree to which variables are linearly related to one an-

other. It is developed with an intention of measuring correlation and addresses

only linear dependence (Munyamahoro, 2016).

Let T1 and T2 be two vectors of random variables with finite and non-zero vari-

ances, then the Pearson’s linear correlation coefficient is given by:

ρ(T1, T2) =
Cov(T1, T2)

V ar(T1)V ar(T2)
,

where Cov(T1, T2) is the covariance between T1 and T2 and V ar(T1) and V ar(T2)

are the two variances of two random variables T1 and T2, respectively. The Pear-

son correlation coefficient always lies between −1 and 1. When ρ(T1, T2) = 1,

then T1 and T2 are said to be perfectly dependent by an increasing relationship.

When ρ(T1, T2) = −1, then T1 and T2 are said to be perfectly dependent by a

decreasing relationship and when ρ(T1, T2) = 0, then T1 and T2 are independent

(Mahfoud and Michael, 2012). Inference about ρ(T1, T2) for small samples is de-

pendent on the assumption of normality of the data. When these assumptions

are not met, non-parametric methods may be applied.

Rank correlation

Rank correlation is the correlation between two variables whose values are

ranks. In this section, two rank correlation measures are discussed, namely:

Spearman’s rank and Kendall’s rank correlations. Both measures are based on
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concordance concept which says that large values of one variable are associ-

ated with large values of another variable. The disconcordance says that large

values of one variable are associated with small values of another variable.

a. Spearman’s rank

This is a non-parametric correlation defined by Cherubini et al. (2004) as:

ρs = 1− 6
∑
d2
i

n(n2 − 1)
,

where n is the number of paired ranks and di is the difference between two

ranks of the ith observation. The ranking of variables is done by assigning the

highest rank to the highest value. The advantages of Spearman’s rank are

that, it is easier to calculate by hand and that it can be used for any data that

can be ranked including quantitative data. Another advantage of the Spear-

man’s rank is its ability to capture the non-linear dependence between the two

variables (Mahfoud and Michael, 2012).

b. Kendall’s rank correlation

Kendall’s tau τ measures the strength of the relationship between two failure

times and it ranges between -1 and 1 (Hsieh, 2010).

Suppose that T1 and T2 are correlated random variables. Suppose that (T1i, T2i)

and (T1j, T2j), where i 6= j are independent realisations from T1 and T2. The

pairs (T1i, T2i) and (T1j, T2j) are concordant if (T1i − T1j)(T2i − T2j) > 0 and dis-

cordant if (T1i − T1j)(T2i − T2j) < 0. The population Kendall’s tau is now given

by:

τ = P [(T1i − T1j)(T2i − T2j) > 0]− P [(T1i − T1j)(T2i − T2j) < 0].

In a situation where censoring is not present, the sample value of Kendall’s tau

can be estimated as
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τ̂ =
1(
n
2

) ∑
1≤i≤j≤n

gij

where

gij =

−1, if (T1i − T1j)(T2i − T2j) < 0

1, if (T1i − T1j)(T2i − T2j) > 0

In cases where censoring is present in T2, we observe data of the form (T1i, Zi, δi),

where Zi = min(T1i, Ci) and δi = 1(T1i ≤ Ci). Ci is the censoring variable.

The Kendall’s tau in the presence of censoring can be estimated based on

Brown Jr et al. (1973) as follows:

τ̂ =

∑n
i=1

∑n
i=1 mijpij√

(
∑n

i=1

∑n
i=1m

2
ij)(
∑n

i=1

∑n
i=1 p

2
ij)
, (4.4)

where mij = 1(T1i > T1j)− 1(T1i < T1j)

and pij = P (T2i > T2j|Zi, Zj, δi, δj; Ḡn)− P (T2i < T2j|Zi, Zj, δi, δj; Ḡn).

Ḡn(t2) represents a Kaplan-Meier estimate of Ḡ(t2) = P (T2 > t2).

In 4.4, pij reduces to 1(Zi > Zj) − 1(Zi < Zj) whenever min(Zi, Zj) is observed,

that is when δi = δj = 1.

Tail dependence

Another useful concept in copula modelling is the upper and lower tail depen-

dence. They measure the dependence between the two variables in the upper

and lower tail values of the two variables. Tail dependence looks at the concor-

dance between extreme values of random variables. It is the most appropriate

when interested in the probability that one variable exceeds or fall below some
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given threshold (Mahfoud and Michael, 2012). According to Nelsen (2007), the

upper tail dependence parameter λU is the limit (if it exists) of the conditional

probability that the variable takes a very high value given that the other also

takes a very high value. Similarly, λL is the conditional probability in the limit

that one variable takes a very low value given that the other also takes a very

low value.

To define the upper and the lower tail dependence parameters:

Let T1 and T2 be two continuous random variables with copula C and marginal

functions F1(.) and F2(.) for a quartile threshold t, the upper and the lower tail

dependence are defined as

λU = lim
t→1−

P (F2(t2) ≥ t|(F2(t1) ≥ t = lim
t→1−

1− 2t+ C(t, t)

1− t

λL = lim
t→0+

P (F2(t2) ≤ t|P (F1(t1) ≤ t = lim
t→0+

C(t, t)

t
,

provided that λU ∈ [0, 1] and λL ∈ [0, 1] exist.

If λU ∈ [0, 1], T1 and T2 are asymptotically dependent in the upper tail; if λU = 0,

T1 and T2 are asymptotically independent in the upper tail. Similarly, if λL ∈

[0, 1], T1 and T2 are asymptotically dependent in the lower tail; if λU = 0, T1

and T2 are asymptotically independent in the lower tail. The association is

positive if the copula attains the upper Frechet Hoeffding bound and negative

if it attains the lower Frechet Hoeffding bound (Trivedi et al., 2007).

4.2 Review of related literature

Copula models were first applied by Clayton (1978) who studied the life tables

of fathers and sons in a bivariate survival data. He was then followed by other

researchers such as Hougaard (1986) and Genest and MacKay (1986). Copula

models are popular in modelling dependence between random variables, espe-
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cially in the fields of actuarial science, biostatistics and finance. It is often a

good idea to study the joint mortality pattern of groups of individuals instead

of a single individual because of the strong confirmation that supports the as-

sociation of mortality on pairs of individuals (Emamverdi et al., 2014). This

group could be patients in a hospital, married couple or children from the same

mother (siblings) as it applies in our study. It has been pointed out by Frees

and Valdez (1998) that pairs of individuals show association in mortality be-

cause they share common risk factors which might be genetic in the case of

siblings or environmental in the case of married couples.

Studies involving joint mortality pattern of individuals were studied by differ-

ent researchers including Parkes et al. (1969), Ward (1976), Frees et al. (1996),

Emamverdi et al. (2014) and King et al. (2017). A study done by Parkes et al.

(1969) to investigate mortality pattern among widowers showed a higher rate

of mortality among widowers during the first six months of bereavement after

the death of their spouses. The highest percentages of causes of death were re-

lated to coronary thrombosis and heart diseases. In a study conducted by Ward

(1976), a death pattern of widowers and widows was followed for two years

after the death of their spouses. The results showed more widowers’ deaths

during the first six months of bereavement and that confirmed the study by

(Parkes et al., 1969).

The work done by Frees et al. (1996), which investigated mortality of individ-

uals surviving spouses entitled to collect annuity investments using a copula,

showed a reduction in annuity values when accounting for dependency in mor-

tality than the standard models that assume independence. A strong positive

association between joint lives was shown. A study done by Emamverdi et al.

(2014) to investigate joint life policy’s premium using copula revealed a lower

joint life insurance premium than when the sum of two policies of the spouse
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were bought separately. King et al. (2017) studied men and women who died

and had been living with other people as husband and wife, but not legally

married to them. The results of their study showed a higher risk of death in

the first three months of bereavement.

(Dufresne et al., 2018) conducted a study to model the association between sur-

vival times within married couples. In their paper, age difference and gender of

the elder partner were introduced as an argument of the association parameter

of the copula. The results revealed that correlation decreases with age differ-

ence and that the association between survival times were higher when the

husband is older than the wife. The scholars further suggested that survival

times dependence factors should be taken into consideration when evaluating

annuity products involving couples. Studies discussed above showed the impor-

tance of considering association between observations of related individuals or

items.

4.3 Copula in survival analysis

The notations of copulas as introduced before will be extended to survival cop-

ulas.

4.3.1 Sklar theorem in survival functions

The Sklar’s theorem is also applicable to survival functions.

Let X = (X1, X2, ..., Xp) be a random variable with joint survival F̄ and univari-

ate survival marginals F̄i, i = 1, 2, ..., p, then

F̄ (x1, x2, ..., xp) = C̃(F̄1(x1), F̄2(x2), ..., F̄p(xp)).

C̃ is the survival copula of X.
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In particular, let C be the copula of X and U = (U1, U2, ..., Up) be a vector such

that U v C. This means that U follows a copula function C (Durante and

Sempi, 2010).

Then,

C̃(u) = C̄(1− u1, 1− u2, ..., 1− up), where

C̄(u) = P (U1 > u1, U2 > u2, ..., Up > up) is the survival function associated with

C.

4.3.2 Archimedean copulas

Archimedean copulas are a popular class of copulas because of the nice prop-

erties they possess which makes it easy to construct them. They are also

popular because they can capture wide ranges of dependence (Trivedi et al.,

2007). There are three families of Archimedean copulas that are commonly

used: Clayton-Oakes, Gumbel and Frank, but the focus in this thesis is on

Clayton-Oakes.

Let Cθ be an Archimedean copula with a generator function pθ(.). Then

• Cθ is symmetric, i.e., Cθ(u1, u2) = Cθ(u2, u1) for all u1, u2 in I.

• Cθ is associative, i.e., Cθ(Cθ(u1, u2), u3) = Cθ(u1, Cθ(u2, u3)) for all u1, u2, u3 in I.

θ denotes the dependence parameter of the copula measuring the association

between the marginals. A copula Cθ is called Archimedean if it takes the form:

Cθ(u1, u2, ...un) = pθ(p
−1
θ (u1) + ....+ p−1

θ (un)). (4.5)

Here pθ(.) is a strictly decreasing generator function of the Archimedean cop-

ula with pθ(0) = 1 and pθ(∞) = 0. The inverse function of pθ(.) is denoted by p−1
θ .
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Three common families of Archimedean copulas with their generators and Kendall’s

are summarised in Table 4.1.

Table 4.1: Archimedean copulas with their generators and Kendall’s tau

Copula family Range of θ Generator pθ(t) Cθ(u1, u2) Kendall’s tau
Frank θ ε[−∞,∞] −log e

−θt−1
e−θ−1

−1
θ log

[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
1− 4

θ [1−D
?(θ)]

Gumbel-Hougaard θ ε[1,∞] (−log t)θ exp
[
−{(−log u1)

θ + (−log u2)
θ}

1
θ

] θ − 1

θ

Clayton θ ε[0,∞] t−θ−1
θ max{(u−θ1 + u−θ2 − 1)

−1
θ , 0} θ

θ + 2
D?(x) = x−1

∫ x

0
t

et−1dt

Generators of these families have only one parameter θ which is used to mea-

sure the degree of dependence between two random variables u1 and u2.

The three families of Archimedean copulas are described briefly in subsequent

subsections.

4.3.2.1 Frank copula

The Frank copula takes the form:

Cθ(u1, u2) = −1
θ

log
[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
.

The dependence parameter θ may assume any value between −∞ and ∞. A

value of −∞ corresponds to the Frechet lower bound, a value of zero shows in-

dependence and∞ corresponds to the Frechet upper bound. The Frank copula

is popular because negative dependence between the marginals is allowed and

that the dependence is symmetric in both tails. We can use this model to model

outcomes with both negative and positive association and is the right model for

data that show weak tail dependence.

4.3.2.2 Gumbel-Hougaard copula

The Gumbel copula takes the form:

Cθ(u1, u2) = exp
[
−{(−log u1)θ + (−log u2)θ}

1
θ

]
. (4.6)
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The dependent parameter θ assumes any value between 1 and ∞. A value of

1 corresponds to independence and a value of ∞ corresponds to the Frechet

lower bound. Gumbel copula is the most suitable in cases where outcomes are

strongly associated at high values but less associated at low values.

4.3.2.3 Clayton-Oakes copula

Clayton copula is an asymmetric Archimedean copula that exhibits greater

dependence in the negative tail than in the positive tail. When correlation be-

tween two events is strongest in the left tail of the joint distribution, Clayton

copula is the right model to be used (Trivedi et al., 2007). Similarities between

Clayton-Oakes and shared gamma frailty model have been pointed out in liter-

atures such as Goethals et al. (2008).

The Clayton Oakes copula is given by:

Cθ(u1, u2) = max{(u−θ1 + u−θ2 − 1)
−1
θ , 0},

where θ is the copula parameter restricted on the interval (0,∞). The marginals

become independent as the value of θ approaches zero. As the value approaches

infinity, the marginals are dependent, and the copula takes the Frechet upper

bound. No value takes the Frechet lower bound (Trivedi et al., 2007).

Its generator is given by:

pθ(t) = 1
θ
(t−θ − 1).

Coefficients of the upper and the lower tail dependence

The coefficients of the upper tail dependence are λu = 0 and the lower tail de-

pendence is

λl = limu→ 0
C(u,u)
u

= (2u−θ−1)
−1
θ

u
= 2

−1
θ for θ > 0.
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Relationship between Kendall’s tau τ and θ

The relationship between Kendall’s τ and θ is given by:

τ = θ
θ+2

and θ = 2τ
1−τ .

The values of τ range between −1 and 1. A value of 1 corresponds to a perfect

correlation and −1 a perfect inverse correlation. If τ = 0, then the survival

times are independent.

4.3.2.4 Description of the Archimedean model

Suppose that we have a total of k clusters (i = 1, ..., k). Let Tij denote the sur-

vival times for different individuals (j = 1, ..., n) in each cluster. Here n is the

total number of members in cluster i. For each member in a cluster, we assume

that there is an independent random censoring variable Cij.

The observed quantities under the right censoring scheme are Yij = min(Tij, Cij)

and the censoring indicators δij = ITij≤Cij . The risk of death may also depend

on a set of covariates xij. The joint survival function for the survival time of

different members within cluster i is given by:

S(ti1, ..., tin|Xi1, ..., Xin) = P (Ti1 > ti1, ..., Tin > tin|Xi1, ..., Xin)

= pθ[p
−1
θ (S(ti1|Xi1)) + ...+ p−1

θ (S(tin|Xin))].
(4.7)

S(tij|Xij) is the survival function for the jth univariate marginal given covari-

ate Xij. The generator, pθ, is a continuous strictly decreasing function with

pθ(0) = 1 and pθ(∞) = 0 and its inverse is p−1
θ . The Archimedean copula has

to be defined in such a way that it accommodates all clusters of different sizes.

Therefore, this generator is assumed to be completely monotonic, i.e., all the

derivatives exist and have alternating signs:(−1)r d
r

dtr
pθ(s) > 0, for all s > 0 and

r = 0, 1, 2, ... (Prenen et al., 2017).
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4.3.3 Estimation in copula models

In this section, the estimation method usually used in copula models is a two-

stage method (Martinussen and Scheike, 2007). Nonparametric approaches do

not achieve maximum productivity and when there is censoring they can be

inconsistent.

Copula models combine the marginal approach with a model for the associa-

tion within individuals. The joint survival function is modelled through the

marginal survival functions and an association parameter. Due to the way cop-

ula models divide the estimation process into two stages, a two-stage estima-

tion procedure is naturally suggested by first estimating the marginal survival

functions in the first stage and then replacing the marginal function in the

likelihood function by their estimates obtained in the first stage so that the

association parameter can be estimated in the second stage. When marginal

survival functions are estimated in the first stage, clustering is not taken into

consideration and therefore, the event times of members are taken as indepen-

dent of each other even though they belong to the same cluster.

A two-stage estimation procedure was first suggested by Hougaard (1986) and

then studied by Genest et al. (1995), Shih and Louis (1995), Glidden (2000),

Andersen (2005) and Othus and Li (2010).

In a study done by Hougaard (1986), a Nelson-Aalen type estimator was used

for the margins. The two-stage procedure was investigated using a data on 50

litters of female rats each containing one drug treated and two control animals.

Genest et al. (1995) used this procedure in a bivariate setting without including

covariates. In their paper, comparisons with other procedures in Clayton’s fam-

ily were made using simulated data. In a study conducted by Shih and Louis

(1995), each margin was modelled separately. Both two-stage parametric and

semiparametric estimation procedures were investigated for the association
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parameter in a bivariate setting without covariates included. The two estima-

tion procedures were applied to AIDS data set. The work done by Genest et al.

(1995) and Shih and Louis (1995) were limited to bivariate settings excluding

covariates.

Glidden (2000) studied two-stage estimation using Clayton-Oakes copula, and

the model for association parameter was based on gamma model. His work was

an extension to the work done by Shih and Louis (1995) to allow the marginal

hazard for survival of individuals to follow a stratified Cox model. The ap-

proach by Glidden (2000) considered multiple survival times per cluster with

covariates modelled by a marginal Cox model. The two-stage estimation was

applied to a data set containing sets of twins to analyse the association between

monozygotic and dizygotic twins in various diseases.

A study done by Andersen (2005) was also an extension to the work done by

(Shih and Louis, 1995). In this study, groups of siblings were followed until dis-

ease occurrence, death or follow-up period. The disease times were then said to

be correlated within siblings if there was a familial clustering of disease. A con-

tribution of this study was in the adjustment for confounders, while estimating

the association parameter and the variation of the estimates. Although the

method was found to be very efficient in both parametric and semi-parametric

models, the author also concentrated only on paired survival times, and not

consider families of different sizes.

Massonnet et al. (2009) extended the above-mentioned studies to include clus-

ters of size four to model the time until infection in the four different quarters

of a cow udder. A two-stage estimation approach was used, and a new boot-

strap algorithm was proposed so that the standard errors of the parameter

estimates can be obtained. Othus and Li (2010) applied a two-stage estimation
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approach using a Gaussian copula to a Children’s Oncology data set. The aims

of the study were to test if there was an association between the chemotherapy

schedule and improved survival and also to test whether correlation exists,

while controlling for known factors or characteristics that will define the natu-

ral history of the disease. In most of the studies cited above, researchers used

clusters of small and equal sizes because it is difficult to obtain an expression

for the likelihood function when we have large cluster sizes. As an example, if

the cluster size is 2, then there are only 4 contributions (22 = 4) to the likeli-

hood for the observed outcomes within the cluster and that depends on whether

none, the first, second or both of individuals are censored. In general, when we

have clusters of size n, we will have 2n possible combinations, i.e., a likelihood

function will contain different 2n possible terms and to find each term we need

to take the derivatives of the joint survival function over the uncensored cases,

and that becomes difficult.

Prenen et al. (2017) considered large and varying clusters to model time to

insemination in cows clustered in herds using both one-stage and two-stage

estimation procedures. They further showed consistency and asymptotic nor-

mality of estimators produced by both one-stage and two-stage estimation pro-

cedures. Although Glidden (2000), Othus and Li (2010) and Prenen et al. (2017)

gave results for unbalanced and balanced designs for different copula models,in

general, copula models have not been used when cluster sizes are more than

four and differ over clusters to model mortality of under five children in South

Africa using timereg package.

In this thesis, a two-stage semi-parametric estimation procedure is used, and

the marginal survival functions are estimated using a marginal Cox model

under the independence working assumption.
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4.3.3.1 Two stage semi-parametric estimation procedure

Two stage parametric estimation can be illustrated as follows:

First stage: estimation of the marginal survival functions

In this stage, we estimate the marginal survival functions using the marginal

Cox model with covariate vector xij given by:

hij(t) = h0(t)exp(β
′

0Xij), (4.8)

where h0(t) is the baseline hazard at time t and β0 is the fixed effect parameter.

To estimate β0 in 4.8, we ignore clustering and we act as if the event times

of individuals are independent of each other. This is called the independence

working assumption. We then obtain the estimator β̂ for the true parameter β0

by solving the score equation Uβ(β) given by:

Uβ(β) =
∑k

i=1

∑n
j=1 δij

∂log(f(yij |Xij))
∂β

+ (1− δij)∂log(f(Sij |Xij))
∂β

= 0.

The marginal survival functions are then estimated as follows:

Ŝij(t) = exp[−Ĥ0(t, β̂)exp(β̂
′
Xij]),

where Ĥ0 is the estimator for the cumulative baseline hazard H0.

Second stage: estimation of the marginal survival functions

The association parameter θ is estimated by plugging in the estimates for the

margins into the likelihood expression which is then maximised to solve for θ̂.

The two-stage estimator for θ is the solution to

Uθ(β̂) = ∂log(L(β̂,θ̂))
∂θ

= 0.
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4.4 Sample splitting technique to partition large

data sets

Data analysts always come across data sets that are difficult to analyse at once.

Molenberghs et al. (2011) proposed pseudo-likelihood methodology which can

split such data sets into sub-samples, each of which can be analysed separately

and then combine all estimates to become one. Their method was found to be

efficient in a situation where the sub-samples are independent. We adopted

this sample splitting technique and applied it in our survival analysis setting

because it was difficult to include all observations at once to fit a Clayton cop-

ula. The data set was properly split-up in such a way that every child was a

member of one and only one sub-sample. We did the splitting of the data base

based on clusters (mothers) mainly in order to make sure that those children

with the same mother will be in the same data set for further analysis. The

sub-samples varied in sizes. The main goal was to find the overall association

parameter and the overall standard error. The overall association parameter

and the overall standard error were found using the sample splitting technique

as follows:

The data set was split into G sub-samples each of size ni.

Let

N denote the total number of individuals in the study,

θi be the association parameter obtained in sub-sample i,

Sei be the standard error obtained in sub-sample i.

The overall association parameter θ̂ was obtained as follows:

θ̂ =
G∑
i=1

ni
N
θi i = 1, 2, ..., G, (4.9)
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and the overall standard error as:

Ŝe =

√√√√ G∑
i=1

(ni
N

)2

(Sei)
2 (4.10)

4.5 Data analysis and results

In this section, the Clayton model and the two-stage estimation procedure dis-

cussed previously are illustrated using the data set introduced in Chapter 1

Section 1.7.4.2. We excluded children with left truncated survival times and

all children belonging to clusters of size 1. The total number of clusters in this

data set was 120033 with 219704 children. Clusters varied in size between 2

and 5 children. Out of 219704 children, 4978 (2.3%) were indicated as died and

214726 (97.7%) as alive. The number of clusters in this data set was too big

to be analysed at once. Due to this reason, the data set was divided into three

sub-samples of equal number of clusters selected randomly. There were 40011

clusters in each sub-sample. The total number of children in each sub-sample

were different. There were 75481 children in sub-sample 1, 74271 children

in sub-sample 2 and 69952 children in sub-sample 3 and that makes it to be

an unbalanced design. The three sub-samples were analysed separately. The

marginal parameters estimated in the first stage of a two-stage estimation pro-

cedure for the three sub-samples are given in Table 4.2.

Table 4.2: Marginal parameter estimates from the Clayton-Oakes copula
model

Factors Sub-sample 1 Sub-sample 2 Sub-sample 3

Coef Se Robust Se p-value Coef Se Robust Se p-value Coef Se Robust Se p-value
Gender 0.0665 0.0469 0.0470 < 0.0000 0.0928 0.0487 0.0487 < 0.0000 0.0863 0.0523 0.0515 < 0.0000

Province -0.0183 0.0107 0.0111 < 0.0000 -0.0361 0.0112 0.0118 < 0.0000 -0.0165 0.0124 0.0129 < 0.0000
Year -0.0702 0.0387 0.0402 < 0.0000 -0.0984 0.0422 0.0431 < 0.0000 -0.0254 0.0468 0.0479 < 0.0000
Twin 0.0617 0.0542 0.0559 < 0.0000 0.1340 0.0626 0.0650 < 0.0000 0.2170 0.0783 0.0831 < 0.0000
Order -0.4590 0.0860 0.0882 < 0.0000 -0.4590 0.0874 0.0848 < 0.0000 -0.5060 0.0878 0.0909 < 0.0000

The marginal parameters in Table 4.2 are estimated under the working inde-

pendence assumption in which the cluster structure is not considered when
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estimating the effects of the covariates and the cluster structure is only used

when deriving valid estimates of standard errors (robust standard errors) to

ensure correct inference. It can be seen from the output that robust standard

errors in all three sub-samples are higher than their naive counterparts. These

robust standard errors are derived by considering that survival times of sib-

lings cannot be taken as independent.

From Table 4.2 one can see that in all three sub-samples, there is an increased

risk of death in male children as compared to female children. The results also

show the decreased risk of death in children born in 2013 as compared to those

born in 2014 and 2015. We also observe that being part of a twin reduces the

chance of survival. The results show that a child who is born second, third,

fourth or fifth has a significantly higher chance of survival than a first born

child.

The association parameters for the three sub-samples were estimated in the

second stage by using Clayton-Oakes model. The association parameters (θ)

together with their standard errors, p-values and number of children in each

sub-sample are given in Table 4.3.

Table 4.3: Association parameters with standard errors for three sub-samples

Sub-sample No of children Association parameter θ Se p-value
1 75481 0.0515 0.0271 0.0576
2 74271 0.0664 0.0304 0.0289
3 69952 0.0364 0.0315 0.248

Overall 2190704 0.0517 0.0171 0.0025

The overall values of the association parameter and the standard error were

found by using the sample splitting technique described in Section 4.4. The

overall estimate of θ was found to be 0.0517 with an estimated standard error

of 0.0171 and a p-value of 0.00250. We can see that the p-value was highly
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significant. Based on these results, we can conclude that there is a positive

correlation between survival times of siblings at 5% level.

4.5.1 Discussion of results

The results in all three sub-samples showed that female children were more

likely to survive than male children. The results showed the decreased risk

of death in situations where mothers had previous living children. This might

be due to the fact that mothers are getting better ways to improve survival

chances with each additional child born. It has also been reported in a pa-

per by Masset and White (2003) that the mortality is higher among first birth

due to the fact that some mothers have their first children before being ready

physically and with no reproductive maturity. Sullivan et al. (1994) and Pebley

and Stupp (1987) noticed that high birth order increased mortality in ages be-

tween 1 and 4 outside Sub Saharan Africa. Pebley and Stupp (1987) suggested

that medical factors played a role in high birth order deaths and the chance of

spreading infectious diseases because most high birth order come from larger

families.

We also observe that being part of a twin reduces chance of survival. These

findings are also in line with results from previous studies like Alam et al.

(2007) and (Pebley and Stupp, 1987). A study by Alam et al. (2007) showed

that infant mortality among multiple births was more than five times higher

among singletons.

The results of this study also suggest that province of birth has a significant

effect on under five child mortality and that children born in Limpopo province

had better survival probabilities than children in other provinces. With regard

to birth year, the results of this study showed that children born in 2010 had

better survival probabilities than children born in other years. Based on the
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output, we can conclude that all factors included in the copula model signifi-

cantly contributed to the under five child mortality in South Africa and that

there is a positive correlation between survival times of siblings.

In general, the findings based on a Clayton-Oakes copula are similar to the

findings from a shared frailty model in the previous chapter.

4.6 Summary of the chapter and concluding re-

marks

The aim of this chapter was to model time to death of children clustered in

mothers using Clayton-Oakes copula. We used two.stage function available in

timereg R package to fit a Clayton-Oakes model.

We investigated the two-stage semiparametric estimation procedure in which

the marginal survival functions were estimated using the Cox PH model and

the association structure was modelled by a Clayton copula. We focused on

clusters with at least 2 individuals. Due to the big size of the data set, we

used the splitting technique to break the data into three sub-samples of equal

number of clusters and analyse each sub-sample separately. In the first stage

the marginal parameters were obtained under the working independence as-

sumption and in the second stage the estimate of the association parameter

was obtained. The results from the Clayton-Oakes model showed that gender,

birth province, birth year, twin and birth order had an effect on survival of

under five children. The results further revealed a poorer survival associated

with male children and also with being part of a twin. It was found that the

more children born previously to a mother, the lower the chance of dying due

to the experience of handling children of the mother. Children born in Limpopo

showed a lower risk of death compared to other children. Those who were born
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in 2010 showed lower risk of death than those who were born in other years.

The conclusion based on the results showed association between survival times

of children from the same mother. We can conclude that the use of the Clayton

Oakes model was necessary in this particular setting.



Chapter 5

Comparison between shared

frailty and copula models

In this chapter, shared frailty and copula models are compared to assess how

the two models handle association within clusters. Another reason is to check

if the equivalence between the two models really exists as claimed in some lit-

erature such as Andersen (2005). To make a good comparison between the two

models, we applied the same data set to both models. This data set contains

all clusters with at least two individuals, but excluded left truncated observa-

tions. Due to the number of clusters in this data set, the data set was divided

into three sub-samples of equal number of clusters and each sub-sample was

analysed separately.

The shared frailty model analysed in Chapter 3 included all left truncated ob-

servations. In this chapter, the shared frailty model was revisited without in-

cluding left truncated observations to establish how it handles association in

this new condition. Another reason for eliminating those observations was be-

cause it was difficult to include them in a copula model since most clusters
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contained one single individual, hence splitting clusters into sub-samples led

to some sub-samples having only independent single individual cluster. It was

not going to be possible for us to compare two models using two different data

sets.

5.1 Similarities and differences between copula

and frailty models

5.1.1 The copula and the frailty models compared

Let T be the survival time of an individual and Z be the frailty variable in a

univariate frailty model without considering clustering. The conditional haz-

ard function for a given frailty variable Z = z at time t > 0 is given by

h(t|z) = zh0(t)exp(Xβ),

where h0(t) is the baseline hazard function and β is the column vector of regres-

sion coefficients. The conditional survival function for a given frailty at time

t > 0 is given by:

S(t|z) = exp
[∫ t

0

h(x|z)dx

]
= exp[−zH0(t)exp(Xβ)].

(5.1)

The marginal survival function can be obtained by integrating over the range

of frailty variable z as follows:

S(t) =

∫ ∞
0

S(t|z)f(z)dz

=

∫ ∞
0

exp[−zH0(t)exp(Xβ)]f(z)dz

= L[H0(t)exp(Xβ)],

(5.2)

where L(.) is the Laplace transformation of the distribution of Z.

Now consider the clustered survival times (T1, ..., Tn) for a cluster of size n
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and let S1,c(t1), ....Sn,c(tn) be the marginal survival functions for individuals

(children) in a cluster (mother). These marginal survival functions are given

by Sc(tj) = P (Tj > tj) and are obtained from the marginal approach with-

out taking clustering into consideration. The joint survival function of the n-

dimensional survival copula model is given by:

Sc(t1, t2, ...., tn) = P (T1 > t1, ..., Tn > tn)

= Cθ(S1,c(t1), ....Sn,c(tn)),
(5.3)

with Cθ a copula function with parameter vector θ. The subindex c is added

to denote that the joint survival function is obtained from the copula presen-

tation. Cθ is a copula function on the unit square. This is a copula function in

the interval [0, 1] x [0, 1]. A copula is a function that assigns any point in the

unit square [0, 1] x [0, 1] to a number in the interval [0, 1] i.e Cθ : [0, 1]2 → [0, 1]

(Goethals et al., 2008).

The joint survival function for the copula model is given by:

Sc(t1, t2, ...., tn) = Cθ(u1, u2, ...un)

= L[L−1(S1,c(t1)) + ...+ L−1(Sn,c(tn))].
(5.4)

On the other hand, the hazard for the jth individual from cluster i in a frailty

model is given by:

hij(t) = ziho(t)exp(X
′

ijβ), (5.5)

where hij(t) is the hazard at time t in cluster i, zi is the frailty term, ho(t) is the

baseline hazard and Xij is a set of covariates for individuals j in cluster i.

Let us assume that the frailty term zi is distributed as gamma. Then the prob-

ability density function is given by:

fZ(zi) =
z
(1/θ−1)
i exp(−zi/θ)

Γ(1/θ)θ1/θ
.
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Equation 5.5 can also be written as

hij(t) = zihj,z(t), (5.6)

where hj,z(t) is the conditional hazard at time t for a cluster with frailty equal

to one and for individual j and zi is the frailty term.

To make a good comparison between the copula and frailty models, we consider

the family of Archimedean copulas discussed in Chapter 4 which take the form:

Cθ(u1, u2, ...un) = pθ(p
−1
θ (u1) + ....+ p−1

θ (un)). (5.7)

To find a link between the copula and the frailty models, we need to consider

functions pθ(.) that are Laplace transform of frailty densities fZ(.)

pθ(s) = L(s) = E[exp(−Zs)] =
∫∞

0
exp(−zs)fZ(z)dz.

Replacing pθ by L in equation 5.7, we get

Cθ(u1, u2, ...un) = pθ(p
−1
θ (u1) + ....+ p−1

θ (un))

= L[L−1(u1) + ...+ L−1(un)].
(5.8)

The joint conditional survival function for any cluster in a frailty model is:

S(t1, ..., tn) = exp[−z(H1,z(t1) + ...+Hn,z(tn))], (5.9)

where Hj,z(t) =
∫ t

0
hj,z(s)ds is the cumulative baseline hazard for individual j.

Integrating out the frailties with respect to the frailty density, we get the fol-

lowing joint survival function according to Goethals et al. (2008):

Sf (t1, ..., tn) =

∫ ∞
0

S(t1, ..., tn)fZ(z)dz

=

∫ ∞
0

exp[−z(H1,z(t1) + ...+Hn,z(tn))]fZ(z)dz

= E[exp(−Z(H1,z(t1) + ...+Hn,z(tn))].

(5.10)

The subindex f in the joint survival function of a frailty model is added to de-
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note that the joint survival function is obtained from the conditional frailty

model.

The joint survival function derived from the frailty model in equation 5.10 and

the joint survival function for the copula model in equation 5.4 are two different

ways to model P (T1 > t1, ..., Tn > tn).

Expression in equation 5.10 is the Laplace transform of the frailty distribution

when s = H1,z(t1) + ...+Hn,z(tn) so that

Sf (t1, ..., tn) = L(s)

= L(H1,z(t1) + ...+Hn,z(tn)).
(5.11)

According to Goethals et al. (2008), the marginal survival function for each

child in the cluster can be obtained by putting the survival times for other

children in the same cluster to zero in equation 5.11 and thus

Sj,f (t) = L(Hj,z(t)) and it follows that

Hj,z(t) = L−1(Sj,f (t)). (5.12)

By applying this relationship, equation 5.11 can be written as

Sf (t1), ..., tn) = L[L−1(S1,f (t1) + ...+ L−1(Sn,f (tn))]. (5.13)

The correlation structure used to obtain the joint survival function from the

marginal survival functions in equation 5.4 and equation 5.13 is the same.

However, the arguments of the correlation structure and the marginal survival

functions are not the same. We can clearly see that the two models indicated

in equation 5.4 and equation 5.13 are different in nature. This is the most

important distinction between frailty and copula models. To show clearly the

difference between the marginal survival functions for the two models, we con-

sider the Clayton-Oakes copula and the gamma shared frailty models in the
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next section.

5.1.2 Gamma shared frailty model versus Clayton-Oakes

copula model

It has been reported by different authors that some copula models can be

deduced from shared frailty models by choosing the appropriate distribution

for the frailty term. In this section we show that Clayton-Oakes copula and

gamma shared frailty model are only equivalent with respect to the copula

function used.

To model the correlation, we use the joint survival function in equation 5.4 with

L(s) = (1 + θs)−1/θ. According to Clayton (1978), the corresponding copula

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ is a Clayton-Oakes copula.

The joint survival function becomes:

Sc(t1, t2, ..tn) = [S1(t1)−θ + ....+ Sn(tn)−θ − 1]−1/θ. (5.14)

The joint conditional survival function of a frailty model is

Si(t1, ..., tn) = exp[−zi(H1,z(t1) + ...+Hn,z(tn))] and the Laplace transform for the

gamma frailty model is given by L(s) = E[−sZ] = (1 + θs)−1/θ.

The joint conditional survival function can be obtained by integrating out the

frailties using the frailty distribution as

Sf (t1, ..., tn) =
∫∞

0
exp[−z(H1,z(t1) + ...+Hn,z(tn))]fZ(z)dz.

This integral can be solved analytically for the gamma distribution resulting in

Sf (t1, ..., tn) = [1 + θ(H1,z(t1) + ...+Hn,z(tn))]−1/θ. (5.15)

On the other hand, the marginal survival function can be obtained from the

conditional frailty model using a similar derivation as for the joint survival

function
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Sj,f (tj) =

∫ ∞
0

exp[−z(Hj,z(tj)fZ(z)]dz

= [1 + θHj,z(tj)]
−1/θ.

(5.16)

It follows that

Hj,z(tj) =
(S1,f (tj))

−θ − 1

θ
. (5.17)

It is clear from equation 5.16 that the marginal survival functions arising from

the conditional frailty model are also functions of parameter θ, which is not the

case for the Clayton model in 5.14. In the frailty model, the frailty parameter

appears in the marginal survival functions. The parameter θ related to the

copula function appears in the expression for the marginal survival function

in the frailty model, but it does not show up in the expression for the copula

model. The marginal survival functions in the frailty model are obtained by

integrating out the frailty from the conditional survival functions.

If we substitute 5.17 in 5.15, we get

Sf (t1, ..., tn) = [(S1,f (t1))−θ + ...+ (Sn,f (tn))−θ − 1]−1/θ. (5.18)

The association parameters for the two models are defined in a different way.

In a shared frailty model, θ is the frailty variance which indicates unobserved

heterogeneity between clusters which is also a measure of association. In other

words, θ is also influenced by the marginal setting as we have seen in equation

5.16. On the other hand, in a Clayton-Oakes copula model θ is only a measure

of association. The Kendall’s tau τ for both gamma shared frailty and Clayton-

Oakes models is given by τ = θ
θ+2

. The Kendall’s tau is used to measure the

dependence within the clusters.

The similarities and differences between the two models can be summarised in

the next section.
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5.1.3 Summary of the similarities and differences

5.1.3.1 Parameter estimates

Parameter estimates in the copula model are found by modelling separately

the marginal survival functions in stage one and the copula function in stage

two. In frailty model, the frailty parameter appears in the marginal survival

functions, making separate estimation possible (Goethals, 2011).

5.1.3.2 Interpretation of covariate effects

Interpretation of covariate effects are interpreted at the conditional level in

frailty model, while, in the copula the interpretation is at the marginal level

(Goethals, 2011).

5.1.3.3 Association between observations

In copula model, the parameter θ represents association only while in frailty

model it is a measure for both association and heterogeneity. The dependence

structure in the shared frailty model is implied by the choice of a probability

density function, whereas in the Archimedean copula the dependence structure

is specified through generator functions. Furthermore, the correlation between

survival times in the frailty model is modelled through the frailties, whereas

in the copula model the association is modelled through the survival times

themselves (Geerdens et al., 2016). The copula function allows us to model the

dependence between survival times separately from their marginals.

5.1.3.4 Copula functions and marginal survival functions

The copula functions for Clayton-Oakes and shared frailty models used for the

joint functions are similar, but the marginal survival functions are modelled

differently. The marginal survival functions in a frailty model contain the as-

sociation parameter θ, which is not the case in the copula model. The difference
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in the parameters for the two models was also illustrated using the data set in

the next section.

5.1.4 Data analysis

The data set contains 219704 individuals with 120033 clusters. The data set

was divided into three sub-samples of equal number of clusters. Each sub-

sample was analysed separately. There were 40011 clusters in each sub-sample

and the number of individuals in each sub-sample varied.

5.1.4.1 Parameter estimates from shared frailty and Clayton-Oakes

copula models

Table 5.1 shows the parameter estimates for the shared frailty model. The re-

sults based on the three sub-samples show that male children died at a higher

rate than female children. Based on the year of birth, children born in 2014

and 2015 had a lower risk of death compared to those who were born in 2013.

All three sub-samples showed that children who were part of twin were dying

at a faster rate than singletons. With regard to birth order, children who were

not the first borns had a lower risk of death compared to first borns.

Table 5.2 shows the marginal parameter estimates from Clayton-Oakes copula

which were estimated in the first stage of a two-stage estimation procedure.

These estimates were estimated under the working independence assumption

in which clustering is not taken into consideration. From Table 5.2 one can see

that in all three sub-samples, there is an increased risk of death in male chil-

dren as compared to female children. We observe relative to children born in

Eastern Cape that children from other provinces are less likely to survive. The

results also show the decreased risk of death in children born in 2014 and 2015

as compared to those born in 2013. We also observe that being part of a twin re-

duces the chance of survival. The results show that a child who is born second,
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third, fourth or fifth has a significantly higher chance of survival than a first-

born child. This might be due to the fact that women became more educated

and experienced about child birth and caring after their first experiences.
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5.1.4.2 Association measures for Clayton-Oakes and shared frailty model

Table 5.3: Association measures for Clayton-Oakes and shared frailty model

Sample Number of observations Clayton-Oakes model Shared frailty model

θ Se p-value τ θ Se p-value τ
1 75481 0.0515 0.0271 0.0576 0.0251 2.2406 0.3869 0.0000 0.5284
2 74271 0.0664 0.0304 0.0289 0.0321 3.2067 0.5134 0.0000 0.6159
3 69952 0.0364 0.0315 0.2480 0.0179 1.3670 0.4237 0.006 0.4060

Overall estimates
θ̂ 0.05173 2.2890

SE 0.0171 0.2569
p-value 0.0289 0.0000
τ̂ 0.0252 0.5190

Table 5.3 shows the association measures for the Clayton and shared frailty

models. The overall parameter estimates in the copula model are θ̂ = 0.0517

with τ̂ = 0.0252. In the shared frailty model the overall estimates are given

by θ̂ = 2.2890 with τ̂ = 0.5190. We can clearly see that the overall estimates

for the two models are quite different. The overall estimates for the frailty

are much higher as compared to the estimates for the copula model. Based on

the estimated value of Kendall’s tau (τ̂ ), the two models show the presence of

positive association between survival times of children in the same cluster. The

difference between the overall estimates for the two models can be clearly seen

using a bar chart in Figure 5.1.

Figure 5.1: Bar chart showing association measures for the shared frailty and
Clayton-Oakes copula model
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We can clearly see from the bar chart that the two models are quite different.

This is because the marginals are estimated separately in the copula model,

while in the frailty model the marginals are included in the association param-

eter.

5.2 Discussion

It was revealed in our study that the two models are different. Tran et al.

(2020) agreed that the copula and the frailty models are quite different in na-

ture. Although the copula functions used in the two models are the same, their

marginal functions are quite different. Our findings agree with the study con-

ducted by Goethals et al. (2008). We have shown that the equivalence usually

mentioned by a number of investigators does not hold because the modelling

of the marginal survival function for the two models is done differently, which

makes their joint survival functions to be different. The marginal survival

functions for the frailty model contained θ, and this not the case with the cop-

ula model. The frailty model can be written in such a way that the joint sur-

vival function is expressed in terms of the marginal survival functions which

takes a form of an Archimedean copula and that might be the reason why it is

often stated that the shared frailty and the Clayton copula models are similar

whereas they are not (Goethals et al., 2008).

We have further identified that the estimated association parameters θ̂ are

quite different and that using θ̂ directly is not the right way to go about. It has

been pointed out by Geerdens et al. (2016) that the association on the survival

times of individuals in the same cluster are modelled indirectly through the

use of frailties for the frailty model, while the associations in the copula model

are modelled through the survival times themselves. That might also be the

reason why their association parameters are quite different. This is also due
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to the fact that the frailty parameter θ̂ in the frailty model is also influenced

by the marginal setting and does not only depend on the association. On the

other hand, the copula parameter estimate θ̂ in the copula model depends only

on the association.

Furthermore, both models showed that gender, birth province, birth year, twin

status and birth order were significant factors affecting under five child mor-

tality in South Africa. Both models showed that the hazard of death is higher

for males than for females and also higher for multiple births than singletons.

The results from the two models also showed that the hazard of dying is lower

when a mother had children previously than when a mother had no previous

living children at all.

5.3 Conclusion

In this chapter, similarities and differences between the copula model and the

frailty model were discussed. The main focus was on Clayton-Oakes copula and

the shared frailty model. The two models showed that gender, birth province,

birth year, twin and birth order were significant factors affecting under five

child mortality in South Africa. It can be concluded from the shared frailty

model as well as the copula model that there is positive correlation between

survival times of children from the same mother. The copula functions for the

shared frailty and Clayton-Oakes models used for the joint functions are sim-

ilar, but the marginal survival functions for the two models are obtained in

a different way. In the copula model, the parameter estimates are found by

modelling the survival functions separately in the first stage and the copula

function in the second stage, whereas the frailty parameter in a frailty model

appears in the marginal survival functions. The results from our study showed

that the estimates for theta (θ̂) and Kendall’s tau (τ̂ ) for the two models were
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quite different. We therefore conclude that the two models cannot be compara-

ble as they are quite different in nature.



Chapter 6

General discussion and

conclusion

6.1 Discussion

Under five mortality data sets have been analysed, presented and discussed

in various chapters of this thesis. The study assessed survival patterns of un-

der five children and examined determinants of under five mortality in South

Africa by considering clustered survival models. We started with univariate

survival models without considering clustering. Different techniques such as

Cox Proportional hazard and logistic regression model were considered to de-

termine factors contributing to child mortality and also those influencing prob-

ability of stillbirths.

We then formed clusters by using mother’s identity and applied clustered sur-

vival models, specifically, Clayton-Oakes copula and shared frailty models. In

Chapter 3, the shared frailty model was explored considering left truncation,
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but excluding clusters of size one. Clusters of size one were excluded because

the main focus was on links between siblings. In Chapter 4, our initial plan

was to apply different Archimedean copula families to the whole data set, but

that could not happen due to the size of our data set and lack of computer pro-

gram. The data was too big to analyse at once and a lot of clusters contained

only one individual. The only option left for us was to apply Clayton copula by

splitting the data into pieces and then analysing each piece separately. We then

combined estimates from each sub-sample to get the overall estimates such as

association parameter, standard error and p-value. We used the two-stage esti-

mation procedure in which the marginal parameters are estimated in the first

stage under the working independence assumption and the association param-

eter estimated in the second stage.

In Chapter 5, we compared the shared frailty and Clayton copula models to

determine if the two are equivalent, i.e., to identify similarities and differences

between the two models. Our plan was to use all data points at once for a copula

model in the first stage procedure. We wanted to estimate the fitted survival

probability for each individual based on the marginal model from stage 1 and

then plug-in at the second stage likelihood of the sub-group. In the second

stage, the plan was to apply the splitting techniques to the data set that con-

tains only clusters with at least two individuals in order to find the association

in each sub-group. That could not happen again due to programming. We de-

cided to analyse the copula model as we did in Chapter 4, i.e., we split up the

data set containing at least two individuals into sub-samples and then apply

two stage estimation procedure in each sub-sample. The estimates from each

sub-sample were combined to obtain the overall estimates. In order to make

a good comparison, we applied both shared frailty and Clayton copula to the

same data set containing clusters with at least two individuals.
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6.2 Thesis summary and concluding remarks

The thesis was organised into chapters in order to address the objectives indi-

cated in Chapter 1, Section 1.5.2.

Chapter 1 dealt with historical background of the study area (South Africa)

and gave a brief literature review about the importance of considering asso-

ciation when analysing clustered survival data. Data sets used to illustrate

methodologies developed in various chapters of this thesis were also described.

The purpose of the study including all variables used in the study were fully

described in Chapter 1. The outline of the subsequent chapters in the rest of

the thesis were also given.

The thesis has answered the objectives as stipulated in Chapter 1. In respond-

ing to the first and the second objectives, i.e., to compare survival curves using

non-parametric tests and to analyse the under five child mortality data set us-

ing marginal survival model, Chapter 2 investigated the univariate survival

models without taking clustering into consideration. The data set described in

Chapter 1, Section 1.7.4.1 was used in all analyses included in this chapter.

Models and procedures applied were Cox Proportional Hazard model, logistic

regression model and non-parametric measures such as log rank test and KM

estimator. The Cox PH model was included in order to determine the signifi-

cant variables associated with child mortality. The results showed that gender,

province and year significantly affected under five child mortality. The logis-

tic regression model was applied to identify factors influencing probability of

stillbirths. It was found that gender, province and year were the factors af-

fecting stillbirth cases. To check if there were significant differences among

survival experiences of covariates, KM estimator and log-rank test were con-

sidered. The KM plots showed that female children survived longer than male

children and that children born in Eastern Cape lived longer than children
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born in other provinces of South Africa. The KM results further revealed that

children born in 2014 survived longer than children born in other years. The

Logrank test statistically confirmed significant differences in the occurrence of

death of different categories of gender, birth province and birth year.

To address the third and the fourth objectives, i.e., to compare Cox propor-

tional and shared frailty models and to model the association of individuals

within a cluster using frailty models that also consider left truncation, Chapter

3 investigated the importance of ignoring frailty. Using the data set described

in Chapter 1, Section 1.7.4.2, the Cox PH model and the shared frailty model

were compared to see their performance. It turned out that among those factors

considered in the analysis, gender, province, year, order and twin status were

significant contributors of under five child mortality in the study area. Het-

erogeneity between mothers and strong association between children from the

same mother in the shared frailty model have improved the final results of the

study. Furthermore, comparing these two models, it was found that the shared

frailty model with the lowest LCV value, have provided a better fit for the

study than the Cox PH model. Estimation methods for the shared frailty model

were discussed and the drawbacks of the commonly used estimation methods

were highlighted. The full penalised likelihood estimation method to estimate

model parameters was used and the analysis was done using the R package

called frailtypack.

In responding to the fifth and the sixth objectives, i.e., to explore association

within a cluster by using copula models and to apply sample splitting tech-

niques in a survival analysis setting, Chapter 4 investigated the two stage

semi-parametric estimation approach with Cox marginals. We used the two.stage

function available in timereg R package to fit the Clayton-Oakes copula model.

In the first stage, the parameters of the marginal survival functions were es-
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timated and then inserted in the copula function. In the second stage, the

parameters of the copula functions together with association parameters, were

estimated. The Clayton-Oakes model was illustrated using the data set de-

scribed in Chapter 1, Section 1.7.4.2, but excluded clusters of size 1 and left

truncated observations. Due to the size of the data set, Clayton model could

not be analysed at once. We partitioned the data set into three sub-samples

of equal number of clusters, but with different sample sizes and then analysed

each sub-sample separately. We applied a sample splitting technique to com-

bine the association parameters, standard errors and p-values for the three

sub-samples in order to obtain the overall association parameter, overall stan-

dard error and overall p- value. We used the overall estimates to make the

final conclusion. The conclusion reached was that all covariates included in

the Clayton copula model had an effect on survival of the children and that

there is a link between individuals in the same cluster.

To address the seventh objective, i.e., to compare Clayton-Oakes copula and

shared frailty models with respect to how they handle association within a clus-

ter, we made a comparison between the shared frailty model and the Clayton-

Oakes model in Chapter 5. To make a good comparison between the two mod-

els, we used the same data set without clusters of size 1 and left truncated

observations. The data set was also partitioned into three sub-samples as in

Chapter 4 and the three sub-samples were analysed separately. We have seen

that the copula functions for the joint survival functions were similar for the

two models, but their marginal survival functions were modelled in a different

way. Our study also proved that the parameter estimates for the two models

were quite different and we reached a conclusion that the two models cannot

be compared as they were different in nature.

The eighth objective, i.e., to assess if there are unobserved genetic and envi-
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ronmental factors that aggravate under five child mortality was addressed in

Chapters 2, 3 and 4. Gender, province, year, birth order and twin status were

found to be factors aggravating under five child mortality.

6.3 Contributions of the study

It has been pointed out in the problem statement that the most of previous

studies on child mortality used logistic regression and Cox models. In the same

section some of the weaknesses of the two methods were also highlighted, i.e.,

logistic regression does not consider the time to event variable and Cox propor-

tional hazards model assumes that survival times of individuals are indepen-

dent. The major contribution of this thesis is in the application of shared frailty

and copula survival models that take care of clustering and left truncation in

modelling the under five child mortality in RSA. The specific contributions are:

1. Introduction of sample splitting techniques in a survival analysis setting.

2. Modelling association of siblings using a non-parametric penalised likeli-

hood estimation approach.

3. Improvement of the existing copula models to allow clusters of large and

unequal sizes using an R package called timereg.

4. Extension and improvement of the existing models in the literature such

as Clayton copula which was applied to the data set with large and differ-

ent cluster sizes.

6.4 Summary of the key findings

The main focus of this thesis was on methodological aspects of clustered sur-

vival models. We believe that the results of this study are the true reflection

of under five mortality in South Africa and could be applicable anywhere with
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similar setting.

Kaplan Meier curves show that survival times of male children were shorter

than their female counterparts. Gender, province, year and twin status were

found to be highly associated with the increased risk of death in children under

the age of five. The majority of stillbirths were males and most of them were

found in the Free State province. This might be due to the fact that Free State

province is situated in the rural part of South Africa with limited health facili-

ties and health practitioners. Twins and first-born children were more likely to

die. This shows a need to train women on child caring before they could even

become pregnant.

Due to the fact that a positive correlation existed in the data, using clustered

survival models was the right way to analyse the data set than using the Cox

model which does not consider clustering. The estimates for theta θ̂ and tau τ̂

for the shared frailty and the Clayton-Oakes copula were quite different and

therefore the two models cannot be comparable as they are quite different in

nature.

6.5 Limitations of the thesis

The data set used to analyse clustered survival models could not represent the

random sample of the entire population in South Africa due to the number of

cases with missing mother’s identity number and other missing information

necessary for clustered survival models. There was missing death information

in the data set for children who died between 2010 and 2012 and that resulted

in left truncation. Individuals with left truncated survival times were not con-

sidered in the copula model because the software could not allow us to capture

them.
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Some important factors that might affect under five mortality could not be

addressed due to unavailability of information in the data sets obtained from

Stats SA. Factors affecting under five child mortality are vital for policy mak-

ers to plan and draft policy to reduce child mortality.

Due to unavailability of software and volume of our data set, we could not

analyse all data points at once in Chapter 4 and Chapter 5. Our initial plan

was to use all data points at once and at the same time when calculating the

marginal parameters in stage 1 of the Clayton copula model and then use the

sampling splitting techniques on all clusters with at least two individuals to

find association parameter in each sub-sample. We could not find a way of

plugging-in the fitted survival probability for each individual in the second

stage likelihood. Our future plan is to develop a programme that can allow

us to plug-in the fitted survival probabilities of individuals in the likelihood of

stage 2 of the estimation process.

6.6 Future research directions

The following possible research directions are suggested:

• In this thesis, the gamma distribution has been used as a frailty distri-

bution. In future, it might be of interest to consider other frailty distribu-

tions and compare their performance.

• Future research might also consider other methods of parameter estima-

tion in frailty modelling. In our case, full penalised likelihood estimation

method was considered.

• In future studies, factors associated with child mortality risk other than

those considered in this study can be included to the model because there
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might as well be other factors that are associated with under five mortal-

ity.

• The shared frailty model presented in Chapter 3 of this thesis is limited to

one level of clustering. That is, children are clustered within their mother.

It would be a good idea in future to incorporate two levels of clustering in

a shared frailty model.

• In copula modelling, individuals with truncated survival times were not

considered. It might also be a good idea to consider other software that

can allow truncated survival times to be captured in the model.

• The Bayesian survival analysis techniques which considers prior infor-

mation when estimating parameter estimates can also be experimented

to model under five child mortality in a situation of left truncation in fu-

ture researches.

In general, researches for under five mortality should be considered as an ongo-

ing process to reduce child mortality rate in South Africa. Factors contributing

to high under five mortality should be given special attention and improvement

of quality care for pregnant women is needed.
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Appendices

SOME SELECTED R CODES

7.1 R code for Chapter 2

In this section, R codes used to analyse data in Chapter 2 are given.

7.1.1 Code for KM curve

#selecting non-stillbirths

group2 <- subset(dataset1,dataset1$Stillbirth==0)

# The overall K-M curve excluding stillbirths

kaplan1a<- survfit (Surv(group2$Time,Status)˜1,data=group2)

summary(kaplan1a)

plot(kaplan1a,xlab="Time until death (in days)",

ylab="Survival probability (%)", ylim=c(0.95,1))

title("KM survival plot for all individuals excluding still births")

7.1.2 Code for Log-rank test

attach(group2)
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survdiff(formula=Surv(Time,Status) ˜ Province, data =group2)

survdiff(formula=Surv(Time,Status) ˜ Gender, data =group2)

survdiff(formula=Surv(Time,Status) ˜ Year, data =group2)

7.1.3 Code for Cox PH model

#selecting non-stillbirths

group2 <- subset(dataset1,dataset1$Stillbirth==0)

#selecting baseline reference groups

group2$Gender<-relevel(group2$Gender,ref = "Female")

group2$Province<-relevel(group2$Province,ref = "Limpopo")

#COX PH model

coxph(formula=Surv(Time,Status) ˜ Gender + Province+Year+

Gender* Province+Gender*Year+Province*Year, data =group2)

7.1.4 Code for logistic regression model

attach(dataset1)

#selecting baseline reference groups

dataset1$ Gender<-relevel(dataset1$ Gender,ref = "Female")

dataset1$Province<-relevel(dataset1$Province,ref = "Limpopo")

#Logistic regression model

logistic18 <- glm(Stillbirth ˜ Gender + Province+Year

+Gender*Province+Province*Year,

family=binomial(link=’logit’),data=dataset1)

summary(logistic18 )
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7.2 R code for Chapter 3

In this section, R codes used to analyse data in Chapter 3 are given.

7.2.1 Code to create truncation time

#Creating truncation time#

attach(data2)

library(lubridate)

data2$TrunYear[is.na(data2$TrunYear)] <- 2013

data2$TrunMonth[is.na(data2$TrunMonth)] <- 01

data2$TrunDay[is.na(data2$TrunDay)] <- 01

data2$DateTrun <- paste(data2$TrunYear,

data2$TrunMonth, data2$TrunDay,sep = "-")

data2$DateBirth <- paste(data2$Year,

data2$BirthMonth, data2$BirthDay,sep = "-")

data2$DateTrun <- as.Date(strptime(data2$DateTrun,"%Y-%m-%d" ))

data2$DateBirth <- as.Date(strptime(data2$DateBirth, "%Y-%m-%d"))

TrunTime <- difftime(data2$DateTrun, data2$DateBirth, units = "days" )

7.2.2 Code for Penalized Cox model

# Creating clusters#

data2$clusterid <- data2 %>% group_indices( Mother_ID)

# Eliminating clusters of size 1

tt <- table(data2$clusterid)

data2a <- subset(data2, clusterid %in% names(tt[tt > 1]))

#Penalized Cox model#
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Coxph(Surv(TrunTime, Time, Status) ˜ Gender + Province +

factor(Year) + Twin + order, data = data2a)

7.2.3 Code for shared frailty model

#Penalized shared frailty model#

frailtyPenal(formula = Surv(TrunTime, Time, Status) ˜ Gender +

Province + factor(Year) + Twin + order, data = data2a

n.knots = 7, kappa = 10000)

7.3 R code for Chapter 4

In this section, R codes used to analyse data in Chapter 4 are given.

7.3.1 Code for copula model with Cox proportional haz-

ards model as marginal

## Copula model with Cox proportional hazards model as

marginal ##

# Step 1: Marginal model

result1b <- cox.aalen(Surv(Time,Status)˜prop(Gender)+

prop(Province)+prop(Year)+prop(order)+prop(Twin)+

cluster(clusterid),data=data2a,resample.iid=1)

# Step 2: Estimation of association parameter

result1bb<-two.stage(result1b,data=data2a,step=0.1,theta=0.5,Nit=500)

summary(result1bb)
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