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Abstract

Water is a precious natural resource and one of the most vital substance
for sustainability of life . The increase in water evaporation is a major prob-
lem where factors such as high temperature and minimum rainfall are the
contributing factors. The aim of the study was to perform time series mod-
elling of water evaporation from the selected dams in the Limpopo province
South Africa. A daily evaporation time series data was used in the study
with variables such as temperature and rainfall. Daily water evaporation
rate time series data was differenced to make the data series stationary and
Dickey-Fuller test was used to test the stationarity of the data series. The
Autoregressive Conditional Heteroskasticity (ARCH) and Generalized Au-
toregressive Conditional Heteroskasticity (GARCH) model was performed
on the water evaporation time series data from the selected dams. Vec-
tor Autoregression (VAR) was used to determine the relationship between
the variables evaporation, rainfall and temperature. Identification of time
series models was done using the autoregressive integrated moving average
(ARIMA). The best ARIMA models were selected based on the autocor-
relation function (ACF) and partial autocorrelation function (PACF), and
the smallest value of Bayseian Information (BIC). The best models selected
for each dam are: Mokolo dam, ARIMA (1, 1, 2) model; Ga-Rantho dam,
ARIMA (1, 1, 2) model; Leeukraal DeHoop dam, ARIMA (1, 1, 1) model
and Luphephe dam, ARIMA (2, 1, 3) model. The correlation coefficient,
coefficient of determinant (R?) and root mean square (RMSE) were used to
determine the performance of the model. The water evaporation time series
data from the selected dams was forecasted using the best selected ARIMA
models from the selected dams and then predicted for the next 3 years, where
the results showed a positive constant water evaporation rate.
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Chapter 1

Introduction and background

1.1 Introduction

The quickly growing population of the world is putting a gradual pressure
on fresh water supplies. This is in addition to the pressure placed on water
supply due to the rainfall timing and climate change. The amount of rainfall,
climate change and other elements such as temperature and wind speed have
a threat to water supply and profitable agricultural production, meaning that
improvement in the management of water resources and efficient water use
are essential (Chami and Moujabber, 2016; Sule and Ajala, 2017). The need
to provide a growing population with enough fresh water is increasing water
scarcity and declining water quality. This has brought sustainability of water
resources management into consideration of the global development agenda
(Mekkonen and Hoekstra, 2010).

Water quality is a worldwide problem that affects the lives of human beings
fundamentally (Taheri et al., 2014). Water evaporation is a major contribu-
tion towards water scarcity. Evaporation plays an important role in water
resources planning, operation and management because a lot of water is lost
through evaporation especially in large reservoirs. Higher evaporation creates
more arid environment, while low trend of evaporation result in more humid
environment (Sule and Ajala, 2017). Since evaporation is a challenging factor
to the accessibility of quality water, its modelling using time series analysis
is needed for water resources management, irrigation scheduling, agricultural
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management and reservoir operation. There are several methods for mod-
elling hydrological variables such as computing techniques, physical-based
modelling and stochastic time series modelling (Dabral et al., 2017). Time
series is a pattern of data over time and there is an equal interval between all
data, whether is daily, weekly, monthly or yearly data. Time series analysis
is used for decision making in many hydrological processes and operation
systems. It aims to model the stochastic mechanism of hydrologic trends, as
well as to forecast the future values of the trends (Taheri et al., 2014).

1.2 Background

Worldwide, freshwater is an essential resource for all people and majority of
them rely on groundwater for water supply and irrigated agricultural pro-
duction. Globally energy production and industries are the largest water
consumers accounting for 80-90% of water consumption along with evapo-
ration loss from reservoirs. With a growing population and climate change,
pollution and insufficient water recharge lead to declining groundwater levels
(Salem et al., 2019; Yue et al., 2018). South Africa is a country situated at
the southern part of the African continent, covering about 1.2 million square
kilometers. South Africa consists of nine provinces namely: Eastern Cape,
Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West,
Northern Cape, Western Cape. South Africa with a population rate of 59.31
million and a 1.28 yearly change in 2020 shows that there is an increase in
the population growth rate, hence the demand for water supply is expected
to increase.

According to Chami and Moujabber (2016); Hensley et al. (2019), South
Africa is ranked as the 30" driest and a water-scarcity country in the world,
with unpredictable rainfall and a diverse range of climate change affecting
water infiltration rate and water security. Frequency of drought occurrence
is dominant in the semi-arid climate. South Africa has 22 water source ar-
eas situated in five provinces (Eastern Cape, KwaZulu Natala, Limpopo,
Mpumalanga, Western Cape), with mean annual rainfall of 490 mm which
is only half of the global average rainfall (Diamond and Jack, 2018). The
country’s water source areas are the sources of most major river streams and
dams. Agriculture in South Africa is a major source of income, and major-
ity of the population depends on agricultural activities. The water scarcity,
high level of temperature and low level of rainfall in parts of the country, is

a disaster threat to the peoples needs and the economy in general (Hensley
et al., 2019).
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Limpopo province is a province located in the northern part of South Africa
and is made up of five districts and 25 municipalities. Limpopo province is
a semi-arid region with low unreliable rainfall. The low rainfall has negative
impact on the agricultural sector, water accessibility and industrial produc-
tion (LDARD, 2015). The climate in the Limpopo province ranges from high
level of rainfall to high level of dryness and climate in the province is often
characterized by unavoidable change in extreme weather events (Musetha,
2016). According to Musetha (2016) and Machete (2019) climate change in
the Limpopo province lead to raising temperatures, reducing the occurrence
of rain and its timing. With raising temperatures, there is also a high prob-
ability of evaporation during that period.

Several rural communities in Limpopo province depend on agricultural pro-
duction and water supply as basic needs. However, adverse climate conditions
have a bearing on their needs for accessibility to food supply and water re-
source(Musetha, 2016). Agricultural production and water access remain as
the source of the livelihood for most of the rural communities. Industries and
agricultural production are sources of employment to more than 60% of the
people and also contributing about 30% of gross domestic product (GDP).
Therefore, low water accessibility due to high evaporation rate may affect
these sectors leading to high unemployment rate in agricultural production
and industries which might result in high level of poverty and health prob-
lems (Maponya, 2012; Nhemachena and Hassan, 2007).

Sekhukhune Ga-Rantho, Lephalale Mokolo, Sekhukhune Leeukraal DeHoop
and Thohoyandou Luphephe are some of the dams located in the different
districts of the Limpopo province. These dams are to be studied in the
present study. Dams play an important role in the rural communities by
providing water resource to the people, mining companies and agricultural
production. Since water is a precious natural resource which is often affected
by high temperature, humidity, wind speed, unreliable rainfall and evapora-
tion, modelling water evaporation is important towards better planning and
management of the water resource (Diamond and Jack, 2018; Hughes, 2019;
Mosase et al., 2019).

1.3 Problem statement

Water is a precious natural resource and one of the most vital substances for
sustainability in life. In many parts of the world, the shortage of water from
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dams due to evaporation existed in the past and is still existing in some coun-
tries such as Botswana, Mozambique, Namibia, South Africa and Zimbabwe.
Therefore, this problem must be managed to forestall its future adverse ef-
fects. Water resources are a major source of economic development for most
African countries (Naabil et al., 2017). The availability of fresh water is be-
coming an increasingly significant problem worldwide. This problem is much
more serious in arid regions that are faced with a severe shortage of fresh
water (El-Ghonemy, 2012; Gorjian S. and Ghobadian, 2015). In the recent
years, the water shortage problem has gained much attention due to climate
change and global warming Baydaronglu and Kocak (2014). Climate change
is one of the major factors attributed to the occurrence of water evaporation.
According to Behrouzil and Chini (2017) and Brutsaert (2013) evaporation
is the water loss from a liquid surface of a water body to the atmosphere.
Evaporation increases with high wind speed, high temperature, pressure and
low humidity. Water losses by evaporation in reservoirs reduce the efficient
use of water in agriculture by methods such as well-built water pipes or drip
irrigation and have an influence on the economy (Martinez-Granadose et al.,
2011).

According to Wine et al. (2019) and Martinez-Granadose et al. (2011), in
recent years agricultural, industrial and urban water demands have drasti-
cally increased in many countries, leading to shortage and fierce competition
for water resources. In arid and semi-arid climates, loss of water due to evap-
oration causes low agricultural production that can lead to financial stress
for farmers mostly in times of droughts (Gleick, 2014).

South Africa is one of the driest countries in the world due to extreme heat
caused by temperature rise, and with a low rainfall sequence that makes
managing the water resources a difficult task (Botai et al., 2018; Hensley et
al., 2019; Meissner et al., 2018). Uneven rainfall distribution pattern over
the country is an additional problem that worsens the access to availability
of water resources. As the population and the economy grow, the necessity
for fresh water will also increase (Kuun, 2009; Motoshita et al., 2018).

In most parts of the Limpopo province evapotranspiration exceeds rainfall
and annual average temperature. According to Koppen-Geiger climate clas-
sification system, Limpopo province is determined to be the hot semi-arid
region Mzezewa et al. (2010). Limpopo is a very dry region and rainfall is
highest in the high-lying areas in the south than in the north (Masupha and
Moeletsi, 2018; Shabalala et al., 2019). The short rainfall season and high
hot temperature in the province decreases the level of water access and lowers
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the agricultural standards (Mosase and Ahiablame , 2018; Shabalala et al.,
2019).

1.4 Motivation

Globally, water resources are experiencing pressure due to rising demand
from several social and economic driving forces. Water is an important source
for human survival and ecosystem health. In arid and semi-arid areas like
Limpopo River basin in South Africa, water is a precious product (Maponya,
2012). The limited accessibility of water has a negative impact towards the
livelihoods of people and animals in farms and Kruger National Parks in the
Limpopo province. Majority of people in the province depend on ground wa-
ter, water from rivers and dams. With high temperature and uneven rainfall
this makes it difficult for people to engage in agricultural production where
most people depend on agricultural production as their source of income and
for food consumption. The access of water for basic domestic use is also
affected and industries that use water are also affected in the areas, which
increases the rate of unemployment in the province (Mapholi, 2018; Ziervogel
et al., 2006). It is very important that water security is well maintained in
the province so that water supply can be more efficient. Mostly in previous
studies, water evaporation was estimated directly from water streams, rivers
and dams using traditional methods, hence modelling water evaporation from
dams using time series analysis will help in planning, securing and managing
the scarcity of water access by finding the best models to model and predict
the water evaporation from the dams (Hughes, 2019; Mosase et al., 2019).

1.4.1 Aim

The aim of the study is to perform time series modelling of water evaporation
from selected dams in the Limpopo province of South Africa.

1.4.2 Objectives
The objectives of the study are to:

i. Perform an autoregressive conditional heteroscedastcity (ARCH) and gen-
eralised autoregressive conditional heteroscedasticity (GARCH) times series
modelling of water evaporation from the selected dams.
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ii. Apply the vector autoregression (VAR) model to determine the relation-
ship between evaporation and the explanatory variables rainfall and temper-
ature.

iii. Apply hybrid linear (ARMAX) and multivariate GARCH (MGARCH)

in modelling water evaporation.

iv. Perform a comparative analysis of the various time series models used in
the study.

v. Forecast water evaporation in the Limpopo province from selected dams
using the best selected time series models.

1.5 Significance of the study

Modelling water evaporation loss from dams in the Limpopo province will
improve awareness in the water users leading to improved water security in
the province and increased agricultural production in the farming industry.
The time series techniques used in the data analysis will add to the body of
knowledge in the use of statistical techniques in water evaporation data.

1.6 Structure of the dissertation

This section presents the structure of the dissertation. The dissertation com-
prises five chapters as well as the reference list and appendices. The rest
of the dissertation is organised as follows: Chapter 1 presents the problem
statement, motivation, aim and objectives of the study. Chapter 2 presents
literature review. The literature review covers previous studies related to
time series modelling of water evaporation from other countries and in South
Africa. Chapter 3 gives the research methodology of the study. In this
chapter detailed approach on how the data was obtained and methods used
to analyse the data are outlined. Chapter 4 presents the data analysis, re-
sults and discussion. All the interpretations and discussions of the results are
made in this chapter. In Chapter 5, the conclusion, limitations, delimitation,
recommendations and areas for future research directions are provided.



Chapter 2

Literature review

2.1 Introduction

This chapter reviews previous studies on modelling time series of water evap-
oration, factors contributing to evaporation such as rainfall, temperature,
humidity and wind speed. The effects of climate change towards water ac-
cessibility are also reviewed. The chapter also presents related methods used
in time series with applications to water evaporation in South Africa, Africa
and other countries worldwide.

2.2 Evaporation worldwide

A study was conducted by Althoff et al. (2019) with the aim to evaluate
six different methods for estimating evaporation in order to select the most
suitable method to use in hydrological models for water balance in reser-
voirs in the state of Ceara. The methods tested were Penman, Priestley-
Taylor Deruim-Keijman, Kohler-Nordenson-Fox, Brutsaert-stricker and de-
Bruim. The methods presented good performance when tested for water
balance during the dry seasons. The Priestley-Taylor was found to be the
most accurate method, since the data from simulated water balance with
evaporation estimated by this method were the closest to the balance data
observed from measures of reservoir level.

Globally, evaporation loss from reservoirs are estimated to be greater than
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the combined consumption from industrial and domestic water uses. By fus-
ing remote sensing and modelling approach, Zhao and Gao (2019) conducted
a study to develop a novel method to accurately estimate the evaporation
losses from 721 reservoirs in the contiguous United States. Penman equation
was used to model the evaporation rate where the lake storage was consid-
ered. Validation results using in-situ observation suggest that this approach
can significantly improve the accuracy of the simulated monthly reservoir
evaporation rate. The results showed that the long term averaged annual
evaporation volume from these 721 reservoirs is equivalent to the annual pub-
lic water supply. An increasing trend of the evaporation rate and a slightly
decreasing trend of total surface area were both detected during the study
period. The total evaporation showed an insignificant trend, with significant
spatial heterogeneity.

Water is the most important substance for sustainability of life on earth.
The maximum amount of water loss from reservoirs occurs through evapora-
tion, hence it is very important to know the dynamical system that governs
the evaporation process. Baydaronglu and Kocak (2014) conducted a study
using trajectory method to obtain a differential equation from reconstructed
phase space of evaporation time series. The trajectory method was a success
after it was applied to obtain the dynamical system that represents the pe-
riodic pattern of evaporation process.

Evaporation of water from reservoirs, rivers and agricultural fields results in
major losses of critical water resources, especial in arid regions of the world.
Dawood et al. (2013) did an investigation to reduce evaporation losses from
water reservoirs. Trash of polyethylene with different densities was used as
floating cover to the water filling cylindrical container with 8 cm diameter
and led to reduction in the evaporation rate. With the method used, reduc-
ing the trash density it will reduce the evaporation rate, using trash density
of 800 kg/m? will reduce evaporation rate by 57%. In a separate research,
Craig and Hancock (2004) conducted a study to evaluate the effectiveness
of chemical monolayers floating covers and shade structure in reducing dam
evaporation. Evaporation was assessed using high precision pressure sensor
transducer to measure small changes in the dam height. The evaporation
rate was calculated as the residual in the dam water balance, taking into
consideration in-flaw and out-flow, and seepage which is assumed to be the
same as the night-time loss. In the warm semi-arid environments, night-time
evaporation is less than the daytime evaporation rate. This method proved a
successful and roust standard method for assessing the evaporation rate of
Australia farm dams.
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2.3 Evaporation in Africa

The impact of climatic conditions in predicting evaporation was explored
from a reservoir. Allawi et al. (2019) conducted a study aimed at investigat-
ing the ability of radial basis function neural network (RBF-NN) and support
vector regression (SRV) methods to develop an evaporation rate prediction
model for a tropical area at the Laying Reservoir, Johor River, Malaysia.

Egypt is one of the countries that is experiencing limitation of water re-
sources. Hassan (2018) investigated the use of remote sensing (RS) and
geographic information system (GIS) techniques to calculate monthly evap-
oration rates. Surface energy balance system (SEBS) method using terra
moderate resolution imaging spectroradiometer (MODIS) satellite earth ob-
servation data was used in the study. Atmospheric parameters predicted
from weather research and forecasting (WRF') model were also used to esti-
mate monthly evaporation rate using harbeck equation which is used by high
aswan dam authority (HADA). The estimated evaporation rate by HADA
is slightly higher than SEBS and MOD16ET. A high correlation was found
between SEBS and MODI16ET which showed a good indication that only
one method can be used to estimate the monthly evaporation rate.

Lake Victoria in state country is the largest fresh water lack in Africa. The
water level of Lake Victoria is determined by its water balance, consisting of
precipitation on the lake, evaporation from the lake, inflow from tributary
rivers and lake outflow controlled by two hydropower dams. Vanderkelen et
al. (2018) contacted a study to present a water balanced model for Lack Vic-
toria using state of the art remote sensing observation and high-resolution
reanalysis downscaling. Precipitation is the main cause of seasonal and in-
terannual Lake Victoria level fluctuations. The results showed that the 2004-
2005 drop in lack level can be about half attributed to a drought in the Lack
Victoria Basin and about half to an enhanced outflow, highlighting the sen-
sitivity of the lack level to human operations at the outflow dam.

In the Lake Nasser, state country evaporation is considered an important
factor of the water balance system that causes a huge loss of lake’s waters.
Hassan (2013) estimated evaporation rate for Lake Nasser using the sur-
face balance approach on remote sensing technology. With the method, the
evaporation rate estimated during satellite overpass over the lake is instan-
taneous. Evaporation friction method was also used to estimate the daily
rate from the instantaneous evaporation rate. The surface energy balance
combined with remote sensing data showed a promising evaporation rate es-
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timation for large water bodies, that could lead to more accurate monitoring
of evaporation rate in the lake area.

2.4 Evaporation in South Africa

Accurate estimation of evaporation losses is important to manage the river
resources efficiently. McKenzie and Craig (2001) conducted a study to initi-
ate the improved estimation of river losses downstream of Vanderkloof Dam
in South Africa and to develop a methodology for estimating evaporation
losses from South African rivers. Theoretical losses were estimated from a
measured evaporation rate, multiplied by the water surface area and an ap-
propriate riparian vegetation area. Hydraulic modelling was used to perform
a dynamic water balance to verify the initial loss estimate. Evaporation rate
from a flowing river were found to be in the same order of magnitude as a
pan evaporation data. The variation in evaporation losses was due to the
changes in surface area with flow.

Gwate (2018) conducted a study comparing the performance of the Penman-
Monteith-Launing (PML) and Penman-Monteith-Palmer (PMP) evapotran-
spiration (ET) models, over mesic grasslands in two study sites. Routine
meteorological data from scientific-grade automatic weather station (AWS)
was used. The two models were validated using ET derived from large aper-
ture scintillometer (LAS). The PML model, performed well at both sites
with root mean square error (RMSE) within 20% of the mean daily observed
ET. The PML model was better to simulate observed ET compared to PMP
model. Model prediction in the grassland could be improved by integrating
the soil evaporation component in the PMP model, while PML model could
be improved by careful choice of the number of days to be used in the deter-
mination of the fraction soil evaporation.

Droughts and global warming have raised major concerns for the agricul-
tural sector, especially to farmers who rely on rain-fed farming. Masupha
and Moeletsi (2018) conducted a study calculating the standardised precip-
itation evaporation index (SPEI) and water requirement satisfaction index
(WRSI) to assess drought on a 120-day maturing maize crop. The results
showed that 40-54% SPEI of the agricultural seasons, a mild drought con-
dition was experienced. However, WRSI results indicated that stations in
the driest regions of the catchment experienced mild drought corresponding
with satisfactory crop performance every season. The results further showed
an overall mild moderate drought in the near-future with SPEI decreasing
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below -1.5. In the far-future the conditions are expected to change, whereby
the crop performance predicted significantly in drier conditions (p<0.05).

Jovanovic et al. (2011) conducted a study comparing evaporation from en-
demic vegetation-Renosterveld and a dryland wheat/fallow cropping system.
The study was carried out in the mid-reaches of the Berg River catchment,
South Africa. Total evaporation was measured to be higher in Renosterveld
than in wheat during the rainy winter season and in the dry summer sea-
son total evaporation from Renosterveld was limited soil water supply and
vegetation was under water stress. Spatial variability of total evaporation
from both wheat/fallow land and Renosterveld was estimated using surface
energy balance algorithm for land (SEBAL) model. Scintillometer measure-
ments were used to determine basal crop coefficients for long term (20 years)
simulation with HYDRUS-1D model to assess temporal variability in total
evaporation.

2.5 Evaporation and time series worldwide

Machekposhti et al. (2018) conducted a study that was to simulate and model
the climatic variable, evaporation, using stochastic methods. Based on au-
togressive integrated moving average (ARIMA) model, the auto-correlation
and partial auto-correlation methods, assessment of the parameters and type
of models, the appropriate models to forecast evaporation were obtained.
The results of the 10 years mean annual evaporation forecasts showed an in-
crease in evaporation rate. In a separate study, Qasem et al. (2019) modelled
monthly evaporation data using wavelet support vector regression (SVR)
and wavelet artificial neural networks (ANN) in Tabriz (Iran) and Antalya
(Turkey) stations. The results from the study showed that ANN provided
reasonable trends for evaporation modelling at both Tabriz and Antalya sta-
tions.

Sun et al. (2015) conducted a study about time series models that are useful
in estimating and forecasting of reference evapotranspiration series and their
changes. The time series models considered were the generalised autore-
gressive conditional heteroscedasticity (GARCH) and seasonal autoregres-
sive moving average (SARMA). The Akaike’s information criterion (AIC)
was used in selecting the final SARMA model and the results showed that it
was efficient for modelling the monthly mean total daily evaporation series.
According to Engle test, heteroscedasticity was present in the residuals of

the SARMA model. Hence GARCH model was used for modelling reference
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evaporation series. The GARCH model showed the ability to remove the
heteroscedasticity from the reference evaporation residuals.

Fathian (2019) conducted a study aiming to demonstrate the ability of non-
linear time series approaches to provide adequate modelling of streamflow. In
the study, first two and three-regime (SETAR) models were used to model
the mean behaviour of daily streamflow. The results showed that the hy-
brid SETRA- GARCH models performed better than the models without
GARCH component. The results also showed that the use of non-linear SE-
TAR and GARCH improves streamflow modelling efficiency by capturing
the heteroscedasticity in the residuals of nonlinear threshold time series. In
a separate study, Fathian (2019) used a hybrid of linear (ARMAX) variables
and nonlinear GARCH, as well as the multivariate GARCH (MGARCH)
time series models to model water level time varying and variance. The
fitted models identified streamflow, temperature, precipitation, wind speed,
relative humidity and day length as the factors affecting water level’s time
varying mean and variance.

Dabral et al. (2017) conducted a study aiming to estimate reference evap-
ospiration using the Penman-Moetheith FAO-56 method. Cube root trans-
formation was applied to smooth the data and stabilise the variance in the
monthly ETy data. The collected data from year 1961-2005 was used for
time series modelling, and data from 2001-2005 was used for model valida-
tion. Turning point and Mann-kendall test were used at 5% significance level
for identifying trend component. The time series data was made station-
ary by removing the periodic component, and autoregressive (AR), moving
average (MA), autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) were investigated for modelling a de-
pendent stochastic component. ARIMA (12,1,1) model was found to be the
best fit model based on the minimum value Bayesian information criterion
(BIC) statistic and correlation coefficient and Nash-Suttclift coefficient indi-
cated high degree of model fitness. Portmanteau test and Box-cox transfor-
mation were applied to series, (a;) of independent stochastic component for
independence and normalisation checking. The monthly ET, was validated
with a time series of 5 years and forecasted for the years 2006 to 2050.

A study was conducted by Tezel and Buyukyildiz (2016) aiming to use Arti-
ficial neural network method (ANNs), multi-layer perception (MLP), radial
basis function network (RBFN) and e-support vector regression (SVR) to
estimate monthly pan evaporation. Temperature, relative humidity, wind
speed and precipitation data from 1972 to 2005 were used as input variables,



Literature review 13

while pan evaporation data was used as an output. Romanenko and Meyer
methods were considered for comparison. The algorithm performance was as-
sessed via mean absolute error (MAE), root mean square error (RMSE) and
coefficient of determination, R2. The results showed that ANN algorithms
and e-SVR had similar results and both methods were found to perform bet-
ter than the Romanenko and Meyer methods.

Quantum-behaved particle swarm optimisation algorithm embedded into a
multi-layer perception technique was developed to estimate evaporation rates
over a daily forecast horizon. Evaporation data from years 2012-2014 for
Thlesh meteorological station in Northern Iran was used. The predictive
accuracy of the MLP-QPSO model was evaluated with existing hybrid MLP-
PSO and standalone MLP model. The results were evaluated with respect
to statistical performance criterion: the mean absolute error (MAE), root
mean square error (RMSR), Willmott’s index and Nash-Sutcliffe coefficient.
Taylor diagrams were used to assess the level agreement between the forecast
and observed evaporation data. The results showed that the hybrid MPL-
QPSL model was an optimal forecasting tool applied for estimating daily pan
evaporation than the MLP-PSO and the standalone model (Ali et al., 2018).

2.6 Evaporation and time series in Africa

Sule and Ajala (2017) conducted a study to use ARIMA models to forecast
pan-evaporation data from Osogbo, southwest Nigeria. Regression analysis
was done on the data and the autocorrelation indicated non-stationarity on
the data. The AIC, BIC, as well as diagnostics of residuals confirmed that
ARIMA (3, 4, 3) was a good fit for both short-term data forecast and data
generated for pan-evaporation. Evaporation series was estimated from 2013
till 2062, and the results showed that with increasing evaporation trend the
reservoir will not be able to serve the various benefiting towns after the year
2038.

Water level forecasting is important for the water catchment management
specifically for flood warning systems. Arbain and Wibowo (2012) conducted
a study in malaysia to predict water level with input variables monthly rain-
fall and rate of evaporation taken from Dungun River, Terengganu Malaysia.
ARIMA and ANN models were used to predict the water level. Since the
rainfall data contained imperfect characteristic data, the pre-processing data
was made to the original data. After some experiment the results showed
that the ANN with cleansing rainfall data gives better performance than
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ARIMA and ANN models without cleansing the data.

Issaka (2015) used the vector autoregression (VAR) model to examine the
dynamic relationship between rainfall and temperature time series data in
Kassena-Nankana Municipality. A univariate ARCH-LM test and Ljung-Box
test showed that the model is free from conditional heteroscedasticity and
serial correlation. The study concluded that there is a bi-directional rela-
tionship between rainfall and temperature, showing that rainfall is helpful in
explaining a considerable amount of the forecast uncertainty in temperature
and vice versa.

Sebbar et al. (2020) conducted a study aiming to estimate daily evapora-
tion from ELL AGRAM Dam reservoir Jijel, East of Algeria using generalized
regression neural network (GRNN) model. Four measured climatic variables
data for a period of 13 years from 2003 to 2015 were used. For developing
the models, four input variables measured at daily namely: daily maximum
air temperature, daily minimum air temperature, daily wind speed and daily
relative humidity were used. The performance of the models were analysed
using the RMSE, MAE, Willmott’s Index (WI), and correlation coefficient
(R) statistics. The GRNN model was compared to multiple linear regression
(MLR) with respect to their capability for modelling daily evaporation. The
results obtained showed evaporation could successfully be estimated using
the GRNN model. The GRNN model which used all the four input variables
was the best model among all other tested models.

2.7 Evaporation and time series in South Africa

Makungo and Odiyo (2017) tested the ability of coupled linear and non-linear
system identification model in estimating groundwater level. Daily ground-
water levels for four boreholes, rainfall and evaporation data covering the
period 2005-2014 were used. Correlation coefficient R, coefficient of determi-
nation R?, RMSE, percent bias (PBIAS), Nash Sutcliffe coefficient of Effi-
ciency (NSE) and graphical fits were used to evaluate the model performance.
The results indicated that the model was able to estimate groundwater levels.

Forecasting extreme hydrological events is critical for drought risk and effi-
cient water resource management in semi-arid environment. Mathivha et al.
(2020) conducted a study aimed to forecast drought conditions in semi-arid
region. The standardised precipitation evaporation index (SPEI) was used
as a drought-quantifying parameter. Forecasting of the SPEI was achieved
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by using generalized additive model (GAMs) at 1, 6, and 12-month time
scale. To reduce time series complexities, time series composition was done
and variable selection was done using Lasso. Four models where developed
to forecast drought namely: GAM, Ensemble empirical mode decomposi-
tion (EEMD)-GAM, ARIMA-GAM and forecast quantile regression average
(fQRA). The results showed that the first two time scales FQRA, forecasted
the data better than the other models, while GMAs were the best at 12-month
time scale. Root mean square error values of 0,0599, 0.2609 and 0.1809 were
presented by FQRA and GAM at the 1,6, 12-month time scales. The results
demonstrated the strength of GAM in short- term and medium-term drought
forecasting.



Chapter 3

Research Methodology

3.1 Introduction

In this study time series models are used, and this chapter aims to give a
detailed description of time series methods and its models. The description
for testing stationarity and unit root are described. Test for auto-correlation
and heteroscedasticity are described. Time series models and methods such
as ARIMA, ARCH, GARCH and VAR models are to be defined. Description
of Box-Jenkins and residual analysis, model selection and forecasting are to
be discussed.

3.2 Data source and study area

The study will utilise secondary data for analysis of water evaporation from
selected dams in the Limpopo province, obtained from Agro Climatology
(AC). The data recorded is a daily data and consist of variables such as max-
imum temperature, minimum temperature, rainfall and evaporation. The
selected dams and data record period are as follows: Lephalale: Mokolo dam
(2008-2018), Sekhukhune: Leeukraal DeHoop dam (2008-2018), Sekhukune:
Ga-Rantho (2008-2018) and Thohoyandou: Luphephe dam (2008-2018).
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3.3 Time series

Time series is a set of observations arranged chronologically, a sequence of ob-
servations usually ordered in time. The time series sequence of data points or
observations { X7, Xs, X3, ..., X, } is being recorded at a specific time, where
the random variable X represent the value taken by the series at first time
point, variable X5 represent the value series at second time point and so on.
A common notation specifying a time series X that is indexed by natural
numbers is written as:

Xt:Xl,XQ, ,Xn

Time series is denoted by X={Xj, t €T} where T is the index and is ref-
ereed as a stochastic process.

If T is continuous, then there is a continuous time series.

If T is discrete then there is a discrete time series and T= R that vary
over a set of integers. The time series is written as ...,xz—1, Zg, 1, T2, ... (Ad-
hikari and Agrawal, 2013; Shumway et al., 2000 ).

The purpose of using time series is to find the occurring patterns which
might be advantageous in estimating future values of the time series. Time
series it is applied in many areas such as in the financial and economy sectors.

3.4 Time series analysis

Time series analysis is a pattern of well-defined data points measured at
consistent time interval period, it examines the changing data often with
the objective of predicting the future occurrences. Time series analysis is to
describe the history of movements in time of some variable at a particular
site. Time series analysis uses statistical methods to analyse time series data
and extract meaningful statistics and characteristics about the data (Velicer
and Velicer, 2003).

3.5 Time series plot

A time series plot is a graphical illustration of time series data, where on the
x-axis the time-increments or date are plotted and on the y-axis the corre-
sponding value that are going to be measured are plotted. Time series plots
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are very useful in illustrating how the value of the thing that are interested
to be measured changes over time. On the time series plot patterns of time
series can be identified, (Adhikari and Agrawal, 2013; Montgomery et al.,
2015) .

3.6 Time series components

The trend is the compound of a time series that shows variation of low
occurrence in a time series, the high and medium frequency fluctuation have
been sifted. A time series is affected by four main components which can be
separated from the observed data. The four components of time series are as
follows: Trend variation (T), Seasonal variation (S), Cyclical variation (C)
and Irregular (I) (Adhikari and Agrawal, 2013).

3.6.1 Trend variation

Trend variation is a long term movement in a time series data, it is a time
series that increases, decreases or stagnate over a long period of time. A
trend can be positive or negative reliant on whether the time series shows an
increasing long-term pattern or a decreasing long-term pattern. It shows ir-
regular effects and is a reflection of the underlying level, it present influences
such as population growth, price inflation and general economic changes (Ad-
hikari and Agrawal, 2013).

3.6.2 Seasonal variation

Seasonal variation in a time series in which the data experiences consistent
and predictable fluctuations within a year during the season. The important
factors causing seasonal variation are climate, weather conditions, customs

and traditional habits etc (Adhikari and Agrawal, 2013).

3.6.3 Cyclical variation

The cyclical variation in a time series describes the medium-term changes
in the series, caused by outcomes which repeat in cycle, it is a pattern that
exist when data display a rise and a fall that are not of a stable interval. The
period of a cycle extend over a longer period of time, normally two or more
years. Most of the economic and financial time series show some cyclical
variation (Adhikari and Agrawal, 2013).
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3.6.4 Irregular

Irregular component is what remains after the seasonal and trend components
of a time series have been predicted and removed.The fluctuation in a time
series that exist after considering the consistent effects random variations
in data or due to unforeseen events such as strikes, earthquake, floods and
revolution (Adhikari and Agrawal, 2013).

3.7 Time series decomposition

Time seris decomposition is presented and illustrated in a constructive result,
is used in forecasting business and economic data. Decomposition is useful
in analysis of an observed time series through inference about underlying,
latent components that may have physical interpretations. The aim of time
series analysis is to isolate the influence of each of the four components of
the actual series. The multiplicative time series model is used to analyse the
influence of these four components. The multipicative model is based on the
idea that the actual values of time series X can be found by multiplying all
four components. The multiplicative time series is defined as:

Xt = ,_Tt X St X Ct X -[t- (3].)
Another model that can be used is the additive model given by:

Xt :E—Fst—i—ct—i—[t (32)

Where X, is the observation and X, S;, C; and I; are respectively the trend,
seasonal, cyclical and irregular variation at time t, (Adhikari and Agrawal,
2013; Hipel and McLeod, 1994).

3.8 Stationary and non-stationary time series

3.8.1 Stationary time series

A stationary time series is the procedure where statistical properties such
as mean, variance and autocorrelation are all constant and does not depend
on time, and if strictly periodic variations have been removed. For the time
series data to be stationary, the observed plot should be a horizontal straight
line, (Adhikari and Agrawal, 2013; Montgomery et al., 2015). There are two
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types of stationary process namely: strictly stationary and weakly stationary
time series.

Time series has a constant mean defined as:

= B(X) = [ af(a)da (3.3)
and a constant variance defined as:
ol =Var(X,) = / (x — ) f (z)d. (3.4)

Strictly stationary time series

A process x(t), t=0,1,2, ... is said to be strictly stationary if the joint dis-
tribution of x;_s, x4 i1, ..., T4..., Ty1s_1, Ters 1S independent of t for all s. For
a strictly stationary process the joint distribution of any possible set of ran-
dom variables from the process is independent of time (Adhikari and Agrawal,
2013; Cochrane, 2005; Hipel and McLeod, 1994).

Weak stationary time series

A stochastic process is said to be weakly stationary of order k if the statistical
moments of the process up to that order depend only on time difference
and not upon the time of occurrences of the data being used to estimate
the moments. Weakly stationary x(t),t=0,1,2,... is second order stationary
if it has time independent mean and variance and the corvariance values
Cov(xy, zy — s) depends only on s, (Adhikari and Agrawal, 2013; Shumway
et al., 2000 ).

White noise

A generated series collected of uncorrelated random variables, w;, with mean
0 and finite variance o2. White noise is a time series generated from uncor-
related variables is used as a model for noise in engineering applications, this
process is denoted as w, ~ wn(0,07) (Shumway et al., 2000 ).
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3.8.2 Non-stationary time series

A time series is said to be non-stationary when the time series depends on
time, when time changes also the time series change. When a time series
data is non-stationary, firstly the data should be transformed into stationary
data so that further statistical analysis can be completed on the de-trend sta-
tionary data. There are different transformation methods that can be used
to make a time series data stationary. The transformation methods such
as: Differencing, Log transformation, Square root transformation, Arcsine
transformation and Power transformation (Ihaka, 2005; Manuca and Savit,
1996; Zhang, 2016).

The reason for making transformation is to stabilise the variance, to make
the seasonal effect additive and to make the data normally distributed. The
transformation method to be used is differencing, it stabilises the mean and
it gives reliable results.

3.8.3 Stationary through differencing

Differencing is a method of transforming a time series dataset, it can be used
to remove the series dependence on time. This method is used when a time
series model is not stationary so that it can be stationary (Brownlee, 2017;
Reinert, 2010). Differencing a time series data is denoted by:

Vi =V(VF1X),. (3.5)

The operator V represent difference operation. The procedure can be applied
several times until a time series is stationary, the first difference can be found,
second difference and it continues till stationary conditions are satisfied.

The first difference of a time series can be written as follows:

Vr, =2 — x4_1. (3.6)

The second difference of a time series can be written as follows:

VSCt =Tt — Tt—1 — Tt—2. (37)

The pattern may continue until the time series is stationary.
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3.9 Autocorrelation Function (ACF) and Par-
tial Autocorrelation Function (PACF)

ACF and PACF are measure of relationship among present and previous
series values and shows which previous series value are most convenient in
predicting future values.

3.9.1 Autocorrelation Function (ACF)

The autocorrelation function (ACF) for a time series Xy, t=1,2,..., T, is the
sequence p., k=0,1,2,....N-1. ACF refers to the correlation of time series
with past and future values. Autocorrelaation function is also called ”lagged
correlation” or ”serial correlation”. which refers to the correlation between
members of a time series of numbers arranged in time. Autocorrelation func-
tion is used to determine the moving average for an autoregressive integrated
moving average (ARIMA) model, (Ihaka, 2005; Montgomery et al., 2015).

Let X, be stationary time series with mean p, variance o2 and autocovariance
v, then the autocorrelation function is given by:

cov(x, To—p) T
Pk = = —
Vovar(zvar(ze—g) Yo

where 7, is the variance of the series and py=1.

, (3-8)

i.The autocorrelation function is an even function of the lag such that:
Pk=P—k-

i pr|<1.

3.9.2 Partial Autocorelation Function (PACF)

Partial autocorrelation function is a conditional correlation, it is a correlation
between two variable X; and X;_j after removing any linear independence on
X1, Xo, ..., Xi_—1 (Adhikari and Agrawal, 2013; Thaka, 2005; Montgomery et
al., 2015). The partial lag-k autocorrelation is denoted by ®x, k=1,2,..., n-1.

Let X; be a stationary time series with E(X;)=0. The partial autocorre-
lation coefficient is defined as:
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(I)kk == COTT(Xt, Xt—k:|Xt—17 Xt_g, civy Xt—k—&-l)‘ (39)

3.10 Time series models

To be able to analyse or make smooth inference about the data generating
progress it is important to draw simple and reasonable statements about
the procedure. A characteristic feature of time series data which differen-
tiate the type of data is that the observations are generally correlated or
depended. These are some technique that are to be used to model the sta-
tionary time series model such as: Autoregressive (AR) process and Moving
average (MA)process models.

3.10.1 Autoregressive process

Autoregressive (AR) process is a statistical forecasting model in which pre-
dicted values are calculated only based on previous values of a time series
letting z; be a purely random process, then x; is said to be AR process
(model) of order p, which denotes the AR(p) model and it is given by:

X, = 01X+ 0o Xoo+ 4 0, Xo—p + Z, (3.10)

where X, is the time series and Z; is white noise with mean zero and variance
o2, (Thaka, 2005).

3.10.2 Moving Average process

The time series X; is a moving average process of order q or MA (q) process

if,
Xt - Zt -+ 91Zt_1 + ...+ GpZt_q, (311)

where Z; ~ WN(0,0%) and 61,6, ..., 0,.

Hence WN-means white noise is a very important example of a stationary
process.

The MA(q) process can also be written in the following equal form,
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Xt — Q(B)Zt,
where moving average operator 6(B)=1+6,B + 6,B* + ... + 0,8

defines a linear combination of values in the shift operator B¥Z, = Z,_,.

3.10.3 Autoregresssive Moving Average process

Autoregressive Moving Average (p,q) process is a time series model of order
p and q denoted by ARMA (p,q) is the combination of AR (p) and MA (q)
model. In an AR (p) process the future value of a variable is assumed to
be a linear combination of p past observations with a random error and a
constant term. The mathematical formula of ARMA (p,q) model is defined
as:

Xi= 0 Xir 4t 0, Xep+ 2= 0 2o — o = 0,70y, (3.12)

where X, represent the time dependent series, ¢, i=1,2,...,p are nonseasonal
AR parameters, 0, i=1,2,...,q are the nonseasonal MA parameters. An au-
toregressive model estimates values for the dependent variables, Z;, as a re-
gression function of previous values X;_1, X;_o, ..., X;_,, autoregressive model
has been applied extensively in hydrology for annual and periodic hydrologic
time series. A moving average model is conceptually a linear regression of
the current value of the series against the white noise or random shocks of
one or more prior values of the series(Taheri et al., 2014).

3.10.4 Seasonal Autoregressive Moving Average progress

The Seasonal Autoregressive Moving Average (SARMA) of order (p,q) and
(P,Q) is denoted by SARMA (p, q) x (P, Q) is defined by :

®p(B%)¢p(B)x = Oq(B%)0y(B)2, (3.13)

where S is the seasonality,
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Op(B%) =1—0,B% — ®,B% — ... — ©pBFS,
¢p(B) =1 —¢1B' — g2 B> — ... — ¢, B,

Oo(BS) =1—0,B' — 0,B% — ... — ©oB9 and
0,(B) =1 —0,B' — B2 — ... — 0,B7.

3.10.5 Autoregressive Integrated Moving Average pro-
cess

The autoregressive integrated moving average (ARIMA) process is a fore-
casting technique that predicts the future values of time series histrorical
data and a series of errors’ linear combination. The ARIMA model is given
by:

Xt - ¢1Xt_1 e T ¢pXt—p - Zt + QIZt—l —|— —|— qut—q‘ (314)

The left-hand side of the equation represent Autoregressive AR (p), and
the right-hand side represent the Moving Average MA (q), (Delima, 2019).

3.10.6 Seasonal Autoregressive Integrated Moving Av-
erage process

The Seasonal Autoregressive Integrated Moving Average (SARIMA) process
is an extension of ARIMA that explicitly supports univariate time series data
with seasonal component. The SARIMA model attempts to capture the sea-
sonal and nonseasonal relationship among the successive observations in a
time series through sequences of ordinary as well as seasonal differencing of
the series. The model is denoted by SARIMA (p,d,q) x (P, D,Q)* model.
The parameter (p,P), (q,Q) represent the autoregressive and moving average
proessess while (d,D) specify the degrees of ordinary and seasonal differenc-
ing (Adhikari and Agrawal, 2013; Arbain and Wibowo, 2012).

SARIMA model is defined by:

@P(BS)@O(B)Xt = @Q<Bs)eq(B)Zta (3-15)
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where B is the lag defined byBz; = 21, ®p, ¢p, 04, O are the lagged poly-
nomials in B of order p, P, q and Q.

Zy is a series of purely random error and X; is the stationary nonseasonal
series which is obtained after the differencing process.

3.10.7 Vector Autoregressive process

The vector autoregressive (VAR) model is a multivariate regression technique
in which each dependent variable is regressed on lags of itself and on lags of
all other dependent variables in the model. The VAR model will be used to
detect the statistical relationship between water evaporation and tempera-
ture also water evaporation and rainfall. The VAR model is defined by:

My =K+ AM_y + AsMy_ o+ .4+ AgMy_p + 64, t = 0,+1,+2..., (3.16)

where M; = [mt,...,myt] is (n x 1) random vector, the A; are fixed (n x n)
coefficient matrices, K is a n x 1 vector of constants allowing for the non-zero
mean E(u), (Issaka, 2015; Shahidi et al., 2020).

3.10.8 Autoregressive Conditional Heteroscedasticity

The autoregressive conditional heteroscedasticity (ARCH) model is a statis-
tical model for time series data that describes the variance of current error
terms, this model was first presented in economic studies by Engle (1982).
The ARCH model is a good fit when the error variance in a time series follows
an autoregressive (AR) model; if an autorgressive moving average (ARMA)
model is assumed for error variance, the model is a generalized autoregressive
conditional heteroscedasticity (GARCH) model (Zhao et al., 2021).

The ARCH model is defined by:

b
2 — €2 = 3.17
oy =ap+ Qi€;_;, €t = Oty (3.17)
i=1
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where o2 is the conditional variance, ¢; is the error term of the model with

mean ;=0 and variance o7=1.

3.10.9 Generalized Autoregressive Conditional Heteroscedas-
ticity
The generalized autoregressive conditional heteroscedasticity (GARCH) model

is a privileged approach for modelling volatility. The GARCH model will be
used to determine the degree of variation of water evaporation over time.

The GARCH model for a process (¢;) is defined as :

ol = var(e;/eq,u <t) =w+ Z el |+ Zﬁjaf_j, (3.18)

i=1 j=1

e = oey, eg ~ Normal(0, 1),
i/ pi—1 ~ Normal(0,0?),

where o2 (var/e;/e,, uet) is the conditional time-variate variance of the resid-
ual series, ¢ is a constant, aq, s, ..., a, and By, Bs, ..., B, are the coefficient
of the GARCH (u,m) and u and m are the orders of the coefficients, (Francq
et al., 2011; Montgomery et al., 2015).

3.11 Testing for non-stationary time serie pro-
cess

There are three tests used to test for non-stationarity namely: unit root test,
Dickey-Fuller test and Augmented Dickey Fuller.

3.11.1 Unit root test

The unit root test is mainly a descriptive tool performed to classify if a series
is stationary or non-stationary. If a data series appears to be non-stationary,
think as the maintained hypothesis that it is non-stationary and integrated.
The hypothesis will be rejected only and only if there is a clear evidence for
rejection. An AR model will be used where AR(1): X;=¢X; — +Z; to apply
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the unit root test.

The hypotheses are:

Hy: ¢=1 (Test has unit root)
Hy :|¢| <1 (Test is stationary)

The test statistic is given by:

t— stat — 21 : (3.19)
SE(¢)

~

where (5) is the estimate of the least square and SE(¢) is the standard
error of the estimate. We reject the hypothesis if ¢t — stat > t.ritical -

3.11.2 Dickey-Fuller test

Dickey Fuller test is a test that determines whether a process has a unit root
test or not. The AR (1) model will be used.

Xy =oxi 1+ 2

VX, =2 — a1

=> VX, =¢1xy 1+ 2 — 144

=> VX, = (1 — Dxy1+ 2

Let 3 =¢ — 1, then VX, = Bx;_1 + 2.
The hypotheses are:

Hy : 8 =0 (This is equivalent to ¢ = 1)
H, : p <0 (This is equivalent to ¢ < 1)

Test statistic is given by:
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= (3.20)

~

where SE() will be the standard error of the coefficient estimate. The null
hypothesis is rejected if the test statistic is more negative than the critical
value(Mushtaq, 2011).

3.11.3 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller(ADF) test is developed by David Dickey and
Wayne Fullr in 1979. The ADF test allows testing the presence of a unit
root test in intended time series based on considering an autoregressive AR
(1) model. If the autoregressive parameter of the AR (1) model is equal
to one the intended time series is considered a non-stationary process (null
hypothesis), otherwise it is considered stationary (Fathian, 2019; Mushtaq,
2011).

The hypotheses are:
HQ - 6 = O
H1 - 6 < O

The test statistic is given by:

(3.21)

The test statistic of ADF is compared with the critical value of the ADF
test, if the test statistic is less than the critical value, the test rejects the null
hypotheses and conclude that there is no unit root test.

3.12 Box-Jenkins technique

Box-Jenkins technique is a systematic method of identifying, fitting, check-
ing and using integrated autoregressive moving average (ARIMA) time series
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models, it modifies the time series to make it stationary by using deference
between data points. The Box-Jenkins technique is applied to find the ap-
propriate model for time series to be used, the model can also make forecasts
of future economic activity based on the past activities, (Babazadeh and
Shamsn, 2014).

Box-Jenkins technique is also known as ARIMA. This is the most impor-
tant method to evaluate the stationary of time series. There are three steps
in the Box-Jenkins technique process, the main steps can be used as many
times as possible.

The Box-Jenkins technique steps are as follows:
i. Model specification
ii. Model fitting

iii. Model diagnostic

3.12.1 Model specification

Model specification is the process of developing a regression model. The
process of model specification consists of selecting an appropriate functional
form for the model and choosing which variable to include. A good model
identification has a selected model that is statistically sound and practically
meaningful. A parsimonious model is frequently preferred when two appli-
cant models seem to be equally good. Parsimonious model is a model that
accomplishes an anticipated level of clarification or perdition with several
predictor variables as possible, (Lancsar et al., 2017; Perera and Silvapulle,
2018).

3.12.2 Model fitting

Model fitting consists of finding the best possible estimates of those unknown
parameters within a given model. After identifying the model and estimating
the unknown parameters, the model needs to be checked for goodness of fit,
this is done through model diagnostics, .
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3.12.3 Model diagnostic

The main aim of model diagnostics is to analyse the quality of the model
that has been identified and estimated, model diagnostic is concerned with
testing the goodness of fit of a tentative model. In this section some standard
methods for model diagnostics are outlined. The most frequently used tech-
niques are residual derived from fitted model behave like white noise process,
(Bernal et al., 2018) .

3.12.4 Residual analysis

Residual analysis is the difference between observed value of the dependent

A~

variable (X) and the predicted value (X), before the model should be as-
sessed using residuals, (Martin et al., 2017). Residuals are given by:
Residual=Actual value-predicted value.

A good model is the one with residuals that satisfy the following proper-
ties:

i. Independent (uncorrelated error)
ii. Normality distribution

iii. Constant variance.

Test for normality

Normality test can be used to determine if a data set is well-modelled by a
normal distribution and to estimate how possible it is for a random variable
causing the data set to be normally distributed, (Ghasemi and Zahediasl,
2012) .

Test of normality can be performed by:

Constructing a histogram: Gross normality can be assessed by plotting his-
togram of residuals. Histogram of normally distributed residuals should be
symmetric and bell shape.

Test of constant variance

Test of constant variance can be inspected by plotting the residuals over
time. If the model is adequate the plot suggest a regular scatter around a
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zero-horizontal level with no trends.

Test of independence

A test of independence can be performed by:
1. Examining the ACF of the residuals

To compute the sample ACF (autocorrelation function) of the residuals, a
time series data must be used to determin a pattern of ACF residual plot. If
the residual do not form any pattern and are also statistically insignificant
there are independent, that means they are within Ze standard deviation.

2. Using run test

A run-test is a statistical technique that look at a string of data that is
occurring randomly from a definite distribution. The run test examines the
occurrence of related events that are divided by events that are different. Dif-
ferent procedure to test the independence in residuals can be used. The runs
test examines the residuals sequence to look for patterns. If the residuals are
correlated, the pattern will occur.

Residual ACF and PACF plots

A residual plot is a graph that represent the residuals on the vertical axis and
the independent variable is on the horizontal axis. ACF plots are commonly
used tool checking randomness in s time series data. These plots are used
in the model identification stage for Box-Jenkins autoregressive and moving
average time series process. Data that have the significant autocorrelation
is not random.PACF plot a are useful in identifying the order of an Autore-
gressive process. The PACF of an AR (p) process is zero at lag k+1 and
greater, (Mohanasundaram et al., 2013).

3.12.5 Ljung-Box Statistics

The Ljung-Box (1978) test is used to test the lack of fit of a time series
model. The test is applied to the residuals of a time series after fitting an
ARMA (p,q) process. The Ljung-Box test is based on the autocorrelation
plot, instead of testing randomness at each distinct lag, it test the overall
randomness based on number of lags,(Brownlee, 2017; Burns, 2002).
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Hypotheses are:
Hy : the process is white noise
H, : the process is not white noise

Test statistic is given by:

~

k
Q=nn+2)y" p (3.22)
=1

n —

where py is the ith PACF. The null hypothesis is rejected if @ > X7__ ().

3.12.6 Quantile-Quantile Plots

The quantile-quantile (Q-Q) plot is a graphical method that is used for deter-
mining if two data sets comes from the same distribution. It is a scatter plot
created by plotting a set of quantiles of the first dataset against quantiles of
the second data set. If the two graphs comes from the same distribution the
Q-Q plots should fall along the straight line, (Lai, 2017).

3.13 Model selection

Model selection is the process of selecting a statistical model from a set of
candidate models. Several appropriate models may be used to select a model
to analyse time series to present a given set of data. Numerous criteria are
introduces to compare model which are different from methods for model
recognition. The study will look at Principle of Parsimony, Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion (BIC). The model
with the smallest AIC and BIC value will be selected as the appropriate
model, (Montgomery et al., 2015).

3.13.1 Principle of Parsimony

The principle of parsimony is a model that achieves a level of goodness of
fit using as few variables as possible, this means the simplest model should
be chosen. Parsimony is one of the principle of reasoning in science. Parsi-
mony principle was named by William of Ockham, a 14th century logician
and Franciscan monk who used this principle in his philosophial reasoning.



Research Methodology 34

Principle of parsimony is also defined as the problem of statistical modelling
that has an objective function which minimize the complexity subject to
constraint of the model suitability (Vandekerckhove et al., 2014).

3.13.2 Akaike Information Criterion

Akaike Information Criterion (AIC) was first developed by Akaike (1973) as a
way to compare different models on a given outcome. AIC is a fined method
based on in-sample fit to evaluate the likelihood of a model to predict or
estimate the future value. The AIC rewards goodeness of fit and includes
penalty that is an increasing function of the number of estimated parameters.
The penalty does not encourage ovrerfitting of the model, because increas-
ing the number of parameters in the model almost improves the goodness of
fit,the AIC estimates water evaporation, then the model with the lowest AIC
is selected to be the best model, (Dabral et al., 2017). The AIC is defined
by:

AIC = =2InL + 2 x k, (3.23)
where k=(p+q+P+Q) is the number of terms estimated in the model,

L= denotes the likelihood, the measure of model fit.

3.13.3 Bayesian Information Criterion

Gideon E. Schwarz in (1978) developed a Baysian extension of minimum
AIC. Bayesian Information Criterion (BIC) is another model selection that
measures the trade off between model fit complexity of the model (Mont-
gomery et al., 2015). BIC is defined by:

BIC = =2InL + k x In(n), (3.24)

where L is the likelihood, n is te number of recorded measurement and k are
the number of estimated parameters.

k= number of model parameter,
n = the number of data points in x, the number of observation (evaporation),

L= likelihoods a measure of model fit.
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3.14 Parameter estimation

The parameter estimation is the process of using sample data to estimate
the parameter of the selected distribution. There several parameter estima-
tion methods such as the methods o moments, maximum likelihood, least
squares that is to be used to estimate the parameters in the identified model,
(Montgomery et al., 2015).

3.14.1 Methods of Moments

The method of moments is a technique for estimating the parameters of a
statistical model. The methods of moments it finds the values of the parame-
ters that result in a match between the sample moments and the population
moments. Moments method consists of equating sample moments such as
the sample mean X, sample variance and sample autocorrelation function to
the theoretical counters and solving the resultant equation, (Hazelton, 2011),

Estimating F(X;)

The natural estimator for the mean p = F(X;) of the stationarity process is
the sample mean given by:

X =

S|

i X,. (3.25)

3.14.2 Least squares estimator

The least square estimator is a statistical method of estimating values from
a set of observations by minimizing the sum of the square of the different
among the observation and the values to be found, (Everitt and Howell, 2021).

The method of least square estimator (LSE) is an estimation procedure devel-

oped for standard regression models. For simple linear regression the model
is given by:

Xt:Oé—FﬁWt,t: 1,2,...,”. (326)
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The least squares estimate is given by:

§_ XX = (W= W) (3.27)
> (W = W)2

and@:?—gw.

3.14.3 Maximum likelihood methood

The maximum likelihood method (MLE) is a technique of estimating the
parameters of a model. This estimation method is widely used method. The
maximum likelihood selects the set of values of the model parameters that
maximize the likelihood function, it gives a unified approach to estimation,
(Hurlin, 2013).

Let X; = (X1, Xs, ..., X,) be a vector of stationary time series and X7, X, ..., X,
be a vector of original observation.

The ARIMA (p,d,q) model can be expressed as:

Wt — QSth_l + + ¢th_q ‘I— Zt + let_l + + QpZt—p‘ (328)

The MLE is also the procedure of estimating the value of one or more pa-
rameters for a given statistic. The MLE of parameter 6 can be written as 6:

L(0]X) = f(x]0),

where 0e© and X = (21,29, ..., x,).

3.15 Time series forecasting

Time series forecasting is a technique for prediction of events through a se-
quence of time, the technique predicts future events by analysing the trend of
the past. Time series forecasting is an integral part of decision making, as it
can play a key role in many areas. Modern organization requires short-term,
medium-term and long-term forecasting depending on the specific applica-
tion, (Montgomery, 2008).
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3.15.1 Short-term forecasting

Short-term forecasting is the prediction of events for only a few time periods
(days, weeks, and months) into the future. For example, forecasting price
change in business and weather, (Montgomery et al., 2015).

3.15.2 Medium-term forecasting

Medium-term forecasting extend beyond from one to two years into the fu-
ture. In most cases the medium forecasting is more convenient to determine
and identify the patterns that are found in the historical data, (Montgomery
et al., 2015).

3.15.3 Long-term forecasting

Long-term forecasting is the prediction of the future values that extend to
more than two perhaps 5 five years and above. Since the historical data does
not change quickly, the more profound forecasting method is short-term and
medium-term. Short-term and medium-term forecasting are used to predict
the future values and to model the patterns that are found in the historical
data, (Montgomery et al., 2015).

3.16 Time series forecasting methods

There are different methods that can be used to model time series forecasting.
These forecasting methods are appropriate for forecasting data with no trends
or seasonal pattern. The time series forecasting methods to be used are:
ARIMA, MA, weighted moving average (WMA) and exponential smoothing.

3.16.1 ARIMA forecasting

An (ARIMA) model is a class of statistical models for analysing and forescat-
ing time series data. ARIMA is usally superior to exponential smoothing
techniques when the data is reasonably long and the correlation between
past observations is stable. The AR (p) model takes the p lags of the fore-
casting errors to improve the forecast, an AR (p) model is defind as:

Xi =01 Xo 1+ G Xo o+ .+ 0 Xip + 4, (3.29)

where X; and &; are the actual values and the random error at time t,(Bakar

and Rosbi, 2017).



Research Methodology 38

3.16.2 Moving average

Moving average (MA) is a technique to get an overall idea of the trend in a
data set. The MA method is the forecasting method that discards all obser-
vation that are more than k units by using the average of the most recent
k data values in the time series as the forecast for the next period, and the
weight to each of the k most recent observations is equal and constant over
time.

To begin forecasting the future values, k observations are needed to compute
the new forecasts, all k of the most recent observations must be retained from
step to step.

The MA of the length k is given by:

Xy = =L 0L (3.30)

where XtH is the forecasting of the time series for period t+1.

3.16.3 Weighted Moving Average

The weighted moving average (WMA) is a technical indicator that assigns
a greater weighting to the most recent data points and less weighting on
past data points. This is used for smoothing irregular fluctuations in a time
series to permit the data analyst to better reveal trend/ cycle pattern over
time. Most of the time WMA is used to compute short-term forecasts of
time series, (Perry, 2010). The average of the observations used to compute
the forecast is found by multiplying each data by weighting factor k. The
WMA length k is given by:

k—1

X =) WiXiy, (3.31)

1=0

where W;=weight to the (¢t — 1) observation i= 0, 1, 2,..., (k-1).
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3.16.4 Exponential Smoothing

Exponential smoothing is the statistical procedure for identifying significant
changes in data by ignoring the variations unrelated to the purpose at hand.
Exponential smoothing is one of the forecasting method that used weighted
average of a past time series values as a forecast. This method is known to be
the method used for several reasons; including appeal, ease in updating small
amount of information that must be carried from one person to the next. In
the exponential smoothing old data is given less relative weight than the new
data which is given more relative weight, (Ostertagova and Ostertag, 2011).
The exponential method is given by:

X = BX, + (1 - B)X,, (3.32)

where

)A(tH is the forecast value for time period X, is the actual value of the time
series in period t,

)?t is the forecast of the time series for period t and

[ is the smoothing constant 0 < 3 > 1.

3.17 Measuring forecasting accuracy

The accuracy of forecasting is the degree of closeness of the statement of
quantity to that quantity’s true value. Mostly the true value cannot be de-
termined at the time, the forecast is made because the statement relates to
the future. Measuring forecasting accuracy is one greatest concerns of fore-
casting the future values of the time series. It is important to evaluate the
aspect of any recommended forecast techniques. The accuracy when is made
it provides a quantitative estimate of the expected quality of the forecasts,
(Chaussonnet et al., 2013).

The standard measure of the forecast accuracy is the mean forecast error
(MFE), the mean absolute deviation (MAD), the mean square error (MSE)
and the mean absolute percent error (MAPE), will be used to the accuracy
of the model.
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3.17.1 Mean forecast error

Mean forecast error (MFE) is a measure of how accurate the forecast is in
a given period. The forecast error is calculated by taking the diffrence be-
tween the real value and the predicted values of the time series and is given
as follows:

e() =X, — X, t =1,2,3,...,n. (3.33)

Mean forecast error in one-time period does not show much information, the
accumulation of error over time should be taken into consideration. The ac-
cumulation of the forecast error e; value is not always revealing, for some of
them will be positive errors and some will be negative. The average forecast
error or mean forecast is given by:

"X - X
mFE = 2= X=X (3.34)
n

3.17.2 Mean absolute deviation

The absolute deviation is the deviation in which only the size of the error
is considered regardless of the sign of the error. Mean Absolute Deviation
(MDA) measures is used to measure the accuracy of the prediction by aver-
aging the alleged error (the absolute value of each error). If these absolute
deviation are accumulated over time and find the average of these absolute
deviation, (Khair et al., 2017; Swanson et al. , 2011), the measure of accu-
racy is referred to as the MAD and is given by:

MAD — Zt:l(

o . .

3.17.3 Mean square error

Mean square error (MSE) is another way to eliminate the problem of positive
errors cancelling the negative errors is to square the forecst error. Regard-
less of wheather the forecast error has a positive or negative sign, the square
error will always be positive sign, (Khair et al., 2017; Swanson et al. , 2011).
When the squared errors are accumulated over time and find the average of
these errors,this is called MSE and is given by:
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E?:l (Xt B Xt)2 .
n

MSE =

(3.36)

3.17.4 Mean absolute percent error

The mean absolute percent error (MAPE) is computed as average of the
absolute difference between the forecast and actual values, expressed as a
percentage of the actual value. The MAPE indicates how much error in pre-
dicting compared with the real value. The problem with both MAD and the
MSE is that their values depend on the magnitude of the item being forecast.
If the forecast item is measured in thousands or millions, the MAD and MSE
values can be very large. To avoid this problem, MAPE can be used, (Khair
et al., 2017; Swanson et al. |, 2011).

The MAPE is given by:

MAPE = 2=l

X, — X
X=X 00, (3.37)
n



Chapter 4

Results and discussion

4.1 Introduction

This chapter describes the analysis of water evaporation rate using tech-
niques discussed in chapter 3 and the techniques are: time series plots
(trend, stationarity and auto-correlation functions), fitting the (ARIMA,
ARH, GARCH and VAR) model residuals analysis and forecasting of the
water evaporation rate from the selected dams in Limpopo province South
Africa. A statistical packages used for analysis is SPSS, R softwear and
Eviews.

4.2 Data Analysis

In this section the data presented in chapter 3 under the section of data
source will be analysed. The time series plots pattern will be identified and
discussed. If the pattern is non-stationary, differencing method is applied to
make the time series pattern to be stationary.
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4.2.1 Descriptive Statistics

Table 4.1: Summary descriptive statistics of water evaporation rate data.

Descriptive Statistics

Names of Dams N Minimum | Maximum | Mean | Std. Devi-
(mm) (mm) (mm) | ation
Mokolo Dam 399 0.48 67.43 416 | 1.91
Evaporation | Ga-Rantho Dam 4092 | 0.18 29.97 3.76 | 1.99
Leerkraal DeHoop | 4085 | 0.33 16.19 3.76 | 1.88
Dam
Luphephe Dam 4089 | 0.14 33.91 3.17 1.92
Valid ~ N(list 16265
wise)

Table 4.1 presents the summary descriptive for evaporation rate data. The
results reveal the minimum, maximum, average and the standard deviation
values for evaporation rate for the selected dams and they read as: Mokolo
dam (min = 0.48, max = 67.43, mean = 4..16 and Sd = 1.91), Ga-Rantho
dam (min = 0.18, max = 29.97, mean = 3.76 and Sd = 1.99), Leeukraal De-
Hoop (min = 0.33, max = 16.19, mean = 3.76 and Sd = 1.88) and Luphephe
dam (min = 0.14, max = 33.91, mean = 3.17 and Sd = 1.92). The standard
deviation shows how spread the data is from the mean. The standard devi-
ation of the selected dams are small this indicates that the sample mean is
more accurate of the evaporation mean.

4.2.2 Time series Analysis

Figure 4.1 presents a partial of non-stationary time series plot of water evapo-
ration rate for Mokolo dam since the mean changes over time and the variance
is not constant. It shows a slight increasing trend of water evaporation rate.
The highest water evaporation rate is around the 25" of every month of each
year recorded and the lowest water evaporation rate was around the 17" of
every month of each year recorded. The time series plot of water evaporation
increases due to its factors temperature and rainfall. The time series needs
to be differenced to be perfectly stationary, since the mean and variance are
slightly not constant. This implies that there is seasonality change effect
(Shumway et al., 2000 ).
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6000

Figure 4.1: Time series plot of water evaporation rate (Mokolo Dam).

Figure 4.2 presents a non-stationary time series plot of water evaporation
rate for Ga-Rantho dam since the mean changes over time and the variance
is not constant. It shows an increase and a slight constant trend of water
evaporation rate. The highest water evaporation rate is around the end of
every month of each year recorded and the lowest water evaporation rate was
around the 17" of every month of each year recorded. The time series plot
of water evaporation increases and decreases due to its factors temperature
and rainfall. The time series needs to be differenced to be make it stationary,
since the mean and variance are not constant. This suggests that there is
seasonality change effect (Shumway et al., 2000 ).

6000

Figure 4.2: Time series plot of water evaporation rate (Ga-Rantho Dam).
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Figure 4.3 presents a non-stationary time series plot of water evaporation
rate for Leeukraal DeHoop dam since the mean changes over time and the
variance is not constant. It shows an increasing and a decreasing trend of
water evaporation rate. The highest water evaporation rate is around the
26" of every month of each year recorded and the lowest water evaporation
rate was around the 7" of every month of each year recorded. The time
series plot of water evaporation increases and decreases due to its factors
temperature and rainfall. The time series needs to be differenced to make it
stationary, since the mean and variance are not constant. This suggests that
there is seasonality change effect (Shumway et al., 2000 ).

2000

15.00

E 10.00

Day

Figure 4.3: Time series plot of water evaporation rate (Leeukraal DeHoop
Dam).

Figure 4.4 presents a non-stationary time series plot of water evaporation rate
for Luphephe dam since the mean changes over time and the variance is not
constant. It shows an increasing and decrease trend of water evaporation rate.
The highest water evaporation rate is around the 26" of every month of each
year recorded and the low est water evaporation rate was around the 7" of
every month of each year recorded. The time series plot of water evaporation
increases and decreases due to its factors temperature and rainfall. The time
series needs to be differenced to be make it stationary, since the mean and
variance are not constant. This present that there is seasonality change effect
(Shumway et al., 2000 ).
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2000

Figure 4.4: Time series plot of water evaporation rate (Luphephe Dam).

Figure 4.5 presents the autocorrelation function plot of water evaporation
rate where the process is non-stationary. The peak of the plot starts from a
high point and constantly decreases, all the peaks are significant. The ACF
plot hence present an ARIMA model. The ACF plot suggested MA (1), MA
(2), MA (3) and SMA (0) models (Nau, 2014).
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Figure 4.5: Autocorrelation Function of water evaporation rate (Mokolo
Dam).
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Figure 4.6 presents the autocorrelation function plot of water evaporation
rate where the process is non-stationary. The peak of the plot starts from a
high point and constantly decreases, all the peaks are significant. The ACF
plot hence present an ARIMA model. The ACF plot suggested MA (1), MA
(2), MA (3) and SMA (0) models (Nau, 2014).
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Figure 4.6: Autocorrelation Function of water evaporation rate (Ga-Rantho
Dam).

Figure 4.7 presents the autocorrelation function plot of water evaporation
rate where the process is non-stationary. The peak of the plot starts from a
high point and constantly decreases, all the peaks are significant. The ACF
plot hence present an ARIMA model. The ACF plot suggested MA (1), MA
(2), MA (3) and SMA (0) models (Nau, 2014).
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Figure 4.7: Autocorrelation Function of water evaporation rate (Leeukraal
DeHoop Dam).
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Figure 4.8 presents the autocorrelation function plot of water evaporation
rate where the process is non-stationary. The peak of the plot starts from a
high point and constantly decreases, all the peaks are significant. The ACF
plot hence present an ARIMA model. The ACF plot suggested MA (1), MA
(2), MA (3) and SMA (0) models (Nau, 2014).
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Figure 4.8: Autocorrelation Function of water evaporation rate (Luphephe
Dam).

Figure 4.9 presents the partial autocorrelation function plot from lag 1 to lag
16 and it consist of non-stationary process. The PACF plot shows that from
lag 1 to lag 6 the peaks are significant, hence the is no seasonality since the
other peaks are insignificant. The PACF plot suggests AR(1), AR(2) and
AR(3) mode (Nau, 2014).
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Figure 4.9: Partial Autocorrelation Function of water evaporation rate
(Mokolo Dam).
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Figure 4.10 presents the partial autocorrelation function plot from lag 1 to
lag 16 and it consist of non-stationary process. The PACF plot shows that
from lag 1 to lag 7 the peaks are significant, hence the is no seasonality since
the other peaks are insignificant. The PACF plot suggests AR(1), AR(2) and
AR(3) model (Nau, 2014).
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Figure 4.10: Partial Autocorrelation Function of water evaporation rate (Ga-
Rantho Dam).

Figure 4.11 presents the partial autocorrelation function plot from lag 1 to
lag 16 and it consist of non-stationary process. The PACF plot shows that
from lag 1 to lag 10 the peaks are significant, hence the is no seasonality since
the other peaks are insignificant. The PACF plot suggests AR(1), AR(2) and
AR(3) model (Nau, 2014).
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Figure 4.11: Partial Autocorrelation Function of water evaporation rate
(Leeukraal DeHoop Dam).
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Figure 4.12 presents the partial autocorrelation function plot from lag 1 to
lag 16 and it consist of non-stationary process. The PACF plot shows that
from lag 1 to lag 6 the peaks are significant, hence the is no seasonality since
the other peaks are insignificant. The PACF plot suggests AR(1), AR(2) and
AR(3) model (Nau, 2014).
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Figure 4.12: Partial Autocorrelation Function of water evaporation rate
(Luphephe Dam).

Figure 13 presents that the first differenced time series plot resulted to be
stationary after differencing. The water evaporation rate trend shows an
accurate pattern, where the mean and the variance of the water evaporation
rate time series is constant, hence there is no need for second differencing
(Adhikari and Agrawal, 2013; Shumway et al., 2000 ).
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Figure 4.13: First difference time series plot of water evaporation rate
(Mokolo Dam).
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Figure 4.14 presents that the first differenced time series plot resulted to
be stationary after differencing. The water evaporation rate trend shows an
accurate pattern, where the mean and the variance of the water evaporation
rate time series is constant, hence there is no need for second differencing
(Adhikari and Agrawal, 2013; Shumway et al., 2000 ).
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Figure 4.14: First difference time series plot of water evaporation rate (Ga-
Rantho Dam).

Figure 4.15 presents that the first differenced time series plot resulted to
be stationary after differencing. The water evaporation rate trend shows an
accurate pattern, where the mean and the variance of the water evaporation
rate time series is constant, hence there is no need for second differencing
(Adhikari and Agrawal, 2013; Shumway et al., 2000 ).
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Figure 4.15: First difference time series plot of water evaporation rate
(Leeukraal DeHoop Dam).
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Figure 4.16 presents that the first differenced time series plot resulted to
be stationary after differencing. The water evaporation rate trend shows an
accurate pattern, where the mean and the variance of the water evaporation
rate time series is constant, hence there is no need for second differencing
(Adhikari and Agrawal, 2013; Shumway et al., 2000 ).
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Figure 4.16: First difference time series plot of water evaporation rate
(Luphephe Dam).

Figure 4.17 presents the first differenced Autocorrelation Function plot of
water evaporation rate in Mokolo dam where by from lag 1 to lag 16 the plot
is stationary. The plot shows that at lag 1 and 2 the peaks are significant
whereas the rest of the peaks are insignificant. The ACF of the series declared
that the suggested model can be MA(1) and MA(2) (Nau, 2014).
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Figure 4.17: First difference autocorrelation function of water evaporation
rate (Mokolo Dam)
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Figure 4.18 presents the first differenced partial autocorrelation function plot
of water evaporation rate in Mokolo dam where by from lag 1 to lag 16 the
plot is stationary. The plot shows that from lag 1 to lag 14 the peaks are
significant where as the rest of th of the peaks are insignificant. The ACF
of the series declared that the suggested model can be MA (1), MA (2) and
MA (3) (Nau, 2014).
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Figure 4.18: First difference Partial Autocorrelation Function of water evap-
oration rate (Mokolo Dam).

Figure 4.19 presents the first differenced autocorrelation function plot of
water evaporation rate in Ga-Rantho dam where by from lag 1 to lag 16
the plot is stationary. The plot shows that at lag 1 and 2 the peaks are
significant whereas the rest of the peaks are insignificant. The ACF of the
series declared that the suggested model can be MA(1) and MA(2) (Nau,
2014).
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Figure 4.19: First difference Autocorrelation Function of water evaporation
rate (Ga-Rantho Dam).
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Figure 4.20 presents the first differenced partial autocorrelation function plot
of water evaporation rate in Mokolo dam from lag 1 to lag 16 is stationary.
The plot shows that at from 1 to lag 14 the peaks are significant whereas the
rest of the peaks are insignificant. The ACF of the series declared that the
suggested model can be MA (1), MA (2) and MA (3) (Nau, 2014).
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Figure 4.20: First difference Partial Autocorrelation Function of water evap-
oration rate (Ga-Rantho Dam).

Figure 4.21 presents the first differenced autocorrelation function plot of
water evaporation rate in Leeukraal DeHoop where by from lag 1 to lag 16
the plot is stationary. The plot shows that at lag 1 and 2 the peaks are
significant whereas the rest of the of the peaks are insignificant. The ACF
of the series showed that the suggested model can be MA(1), MA(2) and
MA(3) (Nau, 2014).
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Figure 4.21: First difference Autocorrelation Function of water evaporation
rate (Leeukraal DeHoop Dam).

Figure 4.22 presents the first differenced partial autocorrelation func-
tion plot of water evaporation rate in Leeukraal DeHoop dam where
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Figure 23 presents the first differenced autocorrelation function plot of water
evaporation rate in Luphephe dam where by from lag 1 to lag 16 the plot
is stationary. The plot shows that at lag 1 and 2 the peaks are significant
whereas the rest of the peaks are insignificant. The ACF of the series revealed
that the suggested model can be MA (1) and MA (2) (Nau, 2014).
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Figure 4.23: First difference Autocorrelation Function of water evaporation
rate (Luphephe Dam).

Figure 4.24 presents the first differenced partial autocorrelation func-
tion plot of water evaporation rate in Luphephe dam where by from
lag 1 to lag 16 the plot is stationary. The plot shows that from
lag 1 to lag 14 the peaks are significant whereas the rest of the
peaks are insignificant. The ACF of the series revealed that the
suggested model can be MA(1), MA(2) and MA (3) (Nau, 2014).
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Figure 4.24: First difference Partial Autocorrelation Function of water evap-
oration rate (Luphephe Dam).
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4.2.3 Testing for stationary Augmented Dikey Fuller
test of water evaporation rate from the selected
dams

Table 4.2: Agumented Dicky Fuller test for water evaporation rate Mokolo
dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics  -2.923 216
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.2 presents the Agumented Dickey fuller (ADF) test for water evap-
oration rate in Mokolo dam. The water evaporation rate time series have
non-stationary process since ADF test statistic of -2.923 is greather than the

critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian, 2019).

Table 4.3: Agumented Dicky Fuller test for water evaporation rate Ga-Ranth
dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics  -1.9057 0.609
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.3 presents the Agumented Dickey fuller (ADF) test for water evapo-
ration rate in Ga-Rantho dam. The water evaporation rate time series have
non-stationary process since, ADF test statistic of -1.9057 is greather than
the critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian, 2019).
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Table 4.4: Agumented Dicky Fuller test for water evaporation rate Leeukraal
DeHoop dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics  -1.6941 210
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.4 presents the Agumented Dickey fuller (ADF) test for water evapora-
tion rate in Leeukraal DeHoop dam. The water evaporation rate time series
have non-stationary process since, ADF test statistic of -1.6941 is greater
than the critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian,
2019).

Table 4.5: Agumented Dicky Fuller test for water evaporation rate Luphephe
dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics ~ -3.115 2e10
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.5 presents the Agumented Dickey fuller (ADF) test for water evap-
oration rate in Luphephe dam. The water evaporation rate time series have

non-stationary process since, ADF test statistic of -3.115 is greater than the
critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian, 2019).
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Table 4.6: First differenced Agumented Dicky Fuller test for water evapora-
tion rate Mokolo dam.

t-statistic = Prob.*

Agumented Dicky-Fuller test statistics -11.855  1.28¢ 12
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.6 presents the first differenced Agumented Dickey fuller (ADF) test
for water evaporation rate in Mokolo dam. The water evaporation rate time
series have a stationary process since, ADF test statistic of -11.855 is less
than the critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian,
2019).

Table 4.7: First differenced Agumented Dicky Fuller test for water evapora-
tion rate Ga-Rantho dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics ~ -7.118 2e~10
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.7 presents the first differenced Agumented Dickey fuller (ADF) test
for water evaporation rate in Ga-Rantho dam. The water evaporation rate
time series have stationary process since, ADF test statistic of -7.118 is
greater than the critical value at 1%, 5% and 10% (Dwivedi et al., 2017;
Fathian, 2019).
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Table 4.8: First differenced Agumented Dicky Fuller test for water evapora-
tion rate Leeukraal DeHoop dam.

t-statistic  Prob.*

Agumented Dicky-Fuller test statistics -14.392  2¢~16
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.8 presents the first differenced Agumented Dickey fuller (ADF) test
for water evaporation rate in Mokolo dam. The water evaporation rate time
series have a stationary process since, ADF test statistic of -14.398 is greater
than the critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian,
2019).

Table 4.9: First differenced Agumented Dicky Fuller test for water evapora-
tion rate Luphephe dam.

t-statistic Prob.*

Agumented Dicky-Fuller test statistics  -7.118 1. 28e~12
Test critical values

1% level -3.96
5% level -3.41
10% level -3.12

Table 4.9 presents the first differenced Agumented Dickey fuller (ADF) test
for water evaporation rate in Mokolo dam. The water evaporation rate time
series have a stationary process since ADF test statistic of -7.118 is greater
than the critical value at 1%, 5% and 10% (Dwivedi et al., 2017; Fathian,
2019).

4.2.4 Model identification

In this section, the models are to be identified and the best model will be
drawn from the selected models. The models identified are suggested from
Figure 17 to Figure 24 of the first non-seasonal ACF and PACF. The models
that are suggested from figure 17 to figure 24 are AR (1), AR (2), AR (3)
AND MA(1), MA (2), MA (3).
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4.2.5 Model estimation

Table 4.10: ARIMA (p,d,q) model summary of water evaporation rate Mokolo

dam.
Models ARIMA(p,d,q)
1 ARIMA(1,1,1)
2 ARIMA(L,1,2)
3 ARIMA (2,1,3)

Table 4.11: ARIMA(p,d,q) model summary of water evaporation rate Ga-

Rantho dam.
Models ARIMA(p,d,q)
1 ARIMA(L,1,2)
2 ARIMA(L,1,3)
3 ARIMA(2,1,2)
Table 4.12: ARIMA(p,d,q) model summary of water evaporation rate

Lueekraal DeHoop dam.

Models ARIMA(p,d,q)
1 ARIMA(L,1,1)
2 ARIMA(L,1,3)
3 ARIMA(2,1,1)
Table 4.13: ARIMA(p,d,q) model summary of water evaporation rate

Luphephe dam.

Models ARIMA(p,d,q)
1 ARIMA(L,1,3)
2 ARIMA(2,1,2)
3 ARIMA (2,1,3)

Table 4.10, table 4.11, table 4.12 and table 4.13 present the summarised
selected ARIMA models among other models using the principle of parsimony
from the selected dams.
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Table 4.14: Model fit for ARIM(1,1,1) of water evaporation rate Mokolo dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.380

R-squared 0.233

RMSE 1.674

MAPE 22.941

MAE 0.778

Normalised BIC 1.039

Table 4.15: Model statistic for ARIMA (1,1,1) model for water evaporation
Mokolo dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 13.315 16 0.65

Table 4.14 and 4.15 shows the model fit and model statistics for ARIMA
(1,1,1). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 22.941, RMSE
is equal to 1.674, MAE is equal to 0.778 and BIC is equal to 1.039. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.65
which indicates that it is insignificant at 5% level of significant (Dabral et
al., 2017; Issaka, 2015).

Table 4.16: Parameter estimation for ARIMA(1,1,1) model for water evapo-
ration Mokolo dam.

Model AR(1) MA(1)
Estimate 0.143 0.918
SE 0.018 0.007

t 8.165 130.315
P-value 0.000 0.000

Table 4.16 presents the parameter estimation for ARIMA (1,1,1) model, the
two models AR and MA are significant. The AR (1) and MA (1) model are
significant since the p-value is less than 5% with parameter estimate of AR
(1) =0.143 and MA (1) = 0.918. This results indicate that water evaporation
rate at Mokolo dam increases.
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Table 4.17: Model fit for ARIM(1,1,2) of water evaporation rate Ga-Ranth
dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.793

R-squared 0.893

RMSE 0.543

MAPE 20.283

MAE 1.733

Normalised BIC 0.139

Table 4.18: Model statistic for ARIMA (1,1,2) model for water evaporation
Ga-Rantho dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 1.930 15 0.010

Table 4.17 and 4.18 shows the model fit and model statistics for ARIMA
(1,1,2). The value of RMSE, MAPE, MAE and BIC are presented where
the value of RMSE shows a fit for the model, hence the model can relatively
predict the data accurately. The MAPE is equal to 20.283, RMSE is equal
to 0.543, MAE is equal to 1.733 and BIC is equal to 0.139. The value of BIC
cannot be compared with anything since there is no BIC value to compared
it with from the model. The Ljung-Box p-value is equal to 0.010 which
indicates that it is significant at 5% level of significant(Dabral et al., 2017;
Issaka, 2015).

Table 4.19: Parameter estimation for ARIMA(1,1,2) model for water evapo-
ration Ga-Rantho dam.

Model AR (1) MA (2)
Estimate 0.319 -0.178
SE 0.129 0.001

t 2.474 -1.480
P-value 0.013 0.139

Table 4.19 presents the parameter estimation for ARIMA (1,1,2) model, the
two models AR and MA are significant. The AR (1) model is significant is
less than 5% and MA (2) model is insignificant since the p-value is more than
5% with parameter estimate of AR (1)= 0.319 and MA (2)= -0.178. This
results indicate that water evaporation rate at Ga-Rantho dam inconclusive
whether it decreases or increases.
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Table 4.20: Model fit for ARIM(1,1,1) of water evaporation rate Leeukraal
DeHoop dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.193

R-squared 0.668

RMSE 0.385

MAPE 18.027

MAE 0.706

Normalised BIC 0.171

Table 4.21: Model statistic for ARIMA (1,1,1) model for water evaporation
Leeukraaal DeHoop dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 17.394 16 0.361

Table 4.20 and 4.21 shows the model fit and model statistics for ARIMA
(1,1,1). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 24.039, RMSE
is equal to 1.085, MAE is equal to 0.706 and BIC is equal to 0.171. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.361
which indicates that it is insignificant at 5% level of significant (Dabral et
al., 2017; Issaka, 2015).

Table 4.22: Parameter estimation for ARIMA(1,1,1) model for water evapo-
ration Leeukraal DeHoop dam.

Model AR (1) MA (1)
Estimate 0.327 0.790
SE 0.024 0.001

t 13.743 51.020
P-value 0.000 0.000

Table 4.22 presents the parameter estimation for ARIMA (1,1,1) model, the
two models AR and MA are significant. The AR (1) model is significant is
less than 5% and MA (1) model is significant since the p-value is less than 5%
with parameter estimate of AR (1)= 0.327 and MA (1)= 0.790. This results
indicate that water evaporation rate at Leeukraal DeHoop dam increases.



Results and discussion 64

Table 4.23: Model fit for ARIM(1,1,3) of water evaporation rate Luphephe
dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.350

R-squared 0.186

RMSE 1.728

MAPE 55.961

MAE 1.016

Normalised BIC 1.107

Table 4.24: Model statistic for ARIMA (1,1,3) model for water evaporation
Luphephe dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 10.792 14 0.702

Table 4.23 and 4.24 shows the model fit and model statistics for ARIMA
(1,1,3). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 55.961, RMSE
is equal to 1.728, MAE is equal to 1.016 and BIC is equal to 1.107. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.702
which indicates that it is insignificant at 5% level of significant (Dabral et
al., 2017; Issaka, 2015).

Table 4.25: Parameter estimation for ARIMA(1,1,3) model for water evapo-
ration Luphephe dam.

Model AR (1) MA (3)
Estimate 0.938 -0.159
SE 0.023 0.019

t 40.936 -8.326
P-value 0.000 0.000

Table 4.25 presents the parameter estimation for ARIMA (1,1,3) model, the
two models AR and MA are significant. The AR (1) model is significant is
less than 5% and MA (3) model is significant since the p-value is less than
5% with parameter estimate of AR (1)= 0.938 and MA (3)= -0.159. This
results indicate that water evaporation rate at Luphephe dam increases.
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Table 4.26: Model fit for ARIM(1,1,2) of water evaporation rate Mokolo dam.

Stationary R-squared 0.381
R-squared 0.734
RMSE 0.524
MAPE 19.023
MAE 0.730
Normalised BIC 0.872

Table 4.27: Model statistic for ARIMA (1,1,2) model for water evaporation
Mokolo dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 11.654 15 0.705

Table 4.26 and 4.27 shows the model fit and model statistics for ARIMA
(1,1,2). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE shows a fit for the model, hence the model cannot relatively
predict the data accurately. The MAPE is equal to 19.023, RMSE is equal
to 0.524, MAE is equal to 0.730 and BIC is equal to 0.872. The value of BIC
cannot be compared with anything since there is no BIC value to compared
it with from the model. The Ljung-Box p-value is equal to 0.705 which
indicates that it is insignificant at 5% level of significant (Dabral et al., 2017;
Issaka, 2015)

Table 4.28: Parameter estimation for ARIMA(1,1,2) model for water evapo-
ration Mokolo dam.

Model AR(1) MA(2)
Estimate 0.469 -0.298
SE 0.099 0.095
t 4.730 -3.149
P-value 0.000 0.002

Table 4.28 presents the parameter estimation for ARIMA (1,1,2) model, the
two models AR and MA are significant. The AR (1) model is significant is
less than 5% and MA (2) model is significant since the p-value is less than
5% with parameter estimate of AR (1)= 0.469 and MA (2)= -0.298. This
results indicate that water evaporation rate at Mokolo dam increases.
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Table 4.29: Model fit for ARIM(1,1,3) of water evaporation rate Ga-Ranth
dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.393

R-squared 0.293

RMSE 1.673

MAPE 25.280

MAE 0.733

Normalised BIC 1.041

Table 4.30: Model statistic for ARIMA (1,1,3) model for water evaporation
Ga-Rantho dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 1.896 14 1.000

Table 4.29 and 4.30 shows the model fit and model statistics for ARIMA
(1,1,3). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 25.280, RMSE
is equal to 1.673, MAE is equal to 0.733 and BIC is equal to 1.041. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 1.000
which indicates that it is insignificant at 5% level of significant (Dabral et
al., 2017; Issaka, 2015).

Table 4.31: Parameter estimation for ARIMA(1,1,3) model for water evapo-
ration Ga-Rantho dam.

Model AR (1) MA (3)
Estimate 0.263 0.007
SE 0.419 0.050
t 0.626 0.149
P-value 0.531 0.882

Table 4.31 presents the parameter estimation for ARIMA (1,1,3) model, the
two models AR and MA are significant. The AR (1) model is insignificant
is more than 5% and MA (3) model is insignificant since the p-value is more
than 5% with parameter estimate of AR (1)= 0.263 and MA (3)= 0.007. This
results indicates that water evaporation rate at Ga-Rantho dam decreases.
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Table 4.32: Model fit for ARIM(1,1,3) of water evaporation rate Leeukraal
DeHoop dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.194

R-squared 0.668

RMSE 1.085

MAPE 24.014

MAE 0.706

Normalised BIC 0.175

Table 4.33: Model statistic for ARIMA (1,1,3) model for water evaporation
Leeukraaal DeHoop dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 15.273 14 0.360

Table 4.32 and 4.33 shows the model fit and model statistics for ARIMA
(1,1,3). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 24.014, RMSE
is equal to 1.085, MAE is equal to 0.706 and BIC is equal to 0.175. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.360
which indicate that it is insignificant at 5% level of significant (Dabral et al.,
2017; Issaka, 2015).

Table 4.34: Parameter estimation for ARIMA(1,1,3) model for water evapo-
ration Leeukraal DeHoop dam.

Model AR(1) MA(3)
Estimate -0.031 0.072
SE 0.237 0.046
t -0.131 1.552
P-value 0.896 0.121

Table 4.34 presents the parameter estimation for ARIMA (1,1,3) model, the
two models AR and MA are significant. The AR (1) model is insignificant
is more than 5% and MA (3) model is insignificant since the p-value is more
than 5% with parameter estimate of AR (1)= -0.031 and MA (3)= 0.072.
This results indicate that water evaporation rate at Leeukraal DeHoop dam
decreases.
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Table 4.35: Model statistic for ARIMA (2,1,2) model for water evaporation
Luphephe dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.348

R-squared 0.184

RMSE 1.731

MAPE 55.843

MAE 1.010

Normalised BIC 1.109

Table 4.36: Model statistic for ARIMA (2,1,3) model for water evaporation
Mokolo dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 5.122 14 0.984

Table 4.35 and 4.36 shows the model fit and model statistics for ARIMA
(2,1,2). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 55.843, RMSE
is equal to 1.731, MAE is equal to 1.010 and BIC is equal to 1.109. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.984
this indicates that it is insignificant at 5% level of significant (Dabral et al.,
2017; Issaka, 2015).

Table 4.37: Parameter estimation for ARIMA(2,1,2) model for water evapo-
ration Luphephe dam.

Model AR (2) MA (2)
Estimate 0.204 0.863
SE 0.059 0.207
t 3.480 4.168
P-value 0.001 0.000

Table 4.37 presents the parameter estimation for ARIMA (2,1,2) model, the
two models AR and MA are significant. The AR (2) model is significant is
less than 5% and MA (2) model is significant since the p-value is less than
5% with parameter estimate of AR (2)= 0.204 and MA (2)= 0.863. This
results indicate that water evaporation rate at Luphephe dam increases.
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Table 4.38: Model fit for ARIM(2,1,3) of water evaporation rate Mokolo dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.382

R-squared 0.236

RMSE 1.672

MAPE 23.019

MAE 0.782

Normalised BIC 1.042

Table 4.39: Model statistic for ARIMA (2,1,3) model for water evaporation
Mokolo dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 5.094 13 0.973

Table 4.38 and 4.39 shows the model fit and model statistics for ARIMA
(2,1,3). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 23.019, RMSE
is equal to 1.672, MAE is equal to 0.782 and BIC is equal to 1.042. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 0.973
which indicates that it is insignificant at 5% level of significant (Dabral et
al., 2017; Issaka, 2015).

Table 4.40: Parameter estimation for ARIMA (2,1,3) model for water evap-
oration Mokolo dam.

Model AR(2) MA(3)
Estimate 0.127 -0.172
SE 0.130 0.096
t 0.974 -1.802
P-value 0.330 0.072

Table 4.40 presents the parameter estimation for ARIMA (2,1,2) model, the
two models AR and MA are significant. The AR (2) model is insignificant
is more than 5% and MA (3) model is insignificant since the p-value is more
than 5% with parameter estimate of AR (2)= 0.127 and MA (3)= -0.172.
This results indicate that water evaporation rate at Mokolo dam decreases.
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Table 4.41: Model fit for ARIM(2,1,2) of water evaporation rate Ga-Ranth
dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.393

R-squared 0.293

RMSE 1.673

MAPE 25.282

MAE 0.733

Normalised BIC 1.041

Table 4.42: Model statistic for ARIMA (2,1,2) model for water evaporation
Ga-Rantho dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 1.898 14 1.000

Table 4.41 and 4.42 shows the model fit and model statistics for ARIMA
(2,1,2). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE does not shows a fit for the model, hence the model cannot
relatively predict the data accurately. The MAPE is equal to 25.282, RMSE
is equal to 1.673, MAE is equal to 0.733 and BIC is equal to 1.041. The
value of BIC cannot be compared with anything since there is no BIC value
to compared it with from the model. The Ljung-Box p-value is equal to 1.000
which indicate that it is insignificant at 5% level of significant (Dabral et al.,
2017; Issaka, 2015).

Table 4.43: Parameter estimation for ARIMA (2,1,2) model for water evap-
oration Ga-Rantho dam.

Model AR (2) MA (2)
Estimate 0.014 -0.079
SE 0.091 0.653

t 0.158 -0.121
P-value 0.874 0.904

Table 4.43 presents the parameter estimation for ARIMA (2,1,2) model, the
two models AR and MA are significant. The AR (2) model is insignifi-
cant is more than 5% and MA (2) model is insignificant since the p-value
is more than 5% with parameter estimate of AR (2)= 0.014 and MA (2)=
-0.079. This results indicate that water evaporation rate at Ga-Rantho dam
decreases.
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Table 4.44: Model fit for ARIM(2,1,1) of water evaporation rate Leeukraal
DeHoop dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.193

R-squared 0.668

RMSE 1.085

MAPE 24.039

MAE 0.506

Normalised BIC 0.173

Table 4.45: Model statistic for ARIMA (2,1,1) model for water evaporation
Leeukraaal DeHoop dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 17.216 15 0.036

Table 4.44 and 4.45 shows the model fit and model statistics for ARIMA
(2,1,1). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE shows a fit for the model, hence the model cannot relatively
predict the data accurately. The MAPE is equal to 18.027, RMSE is equal
to 0.385, MAE is equal to 0.506 and BIC is equal to 0.173. The value of BIC
cannot be compared with anything since there is no BIC value to compared
it with from the model. The Ljung-Box p-value is equal to 0.036 which
indicates that it is significant at 5% level of significant (Dabral et al., 2017;
Issaka, 2015).

Table 4.46: Parameter estimation for ARIMA (2,1,1) model for water evap-
oration Leeukraal DeHoop dam.

Model AR (2) MA (1)
Estimate -0.011 0.784
SE 0.020 0.020

t -0..562 39.563
P-value 0.574 0.788

Table 4.46 presents the parameter estimation for ARIMA (2,1,1) model, the
two models AR and MA are significant. The AR (2) model is insignificant
is less than 5% and MA (1) model is insignificant since the p-value is more
than 5% with parameter estimate of AR (2)= -0.011 and MA (1)= 0.784.
This results indicate that water evaporation rate at Leeukraal DeHoop dam
decreases.
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Table 4.47: Model fit for ARIM(2,1,3) of water evaporation rate Luphephe
dam.

Fit statistic Water evaporation rate
Stationary R-squared 0.350

R-squared 0.886

RMSE 0.479

MAPE 50.966

MAE 0.416

Normalised BIC 0.113

Table 4.48: Model statistic for ARIMA (2,1,3) model for water evaporation
Luphephe dam.

Model LJUNG-Box
Statistic DF p-value
ARIMA 11.203 13 0.054

Table 4.47 and 4.48 shows the model fit and model statistics for ARIMA
(2,1,3). The value of RMSE, MAPE, MAE and BIC are presented where the
value of RMSE shows a fit for the model, hence the model cannot relatively
predict the data accurately. The MAPE is equal to 55.966, RMSE is equal
to 0.479, MAE is equal to 0.416 and BIC is equal to 0.117. The value of BIC
cannot be compared with anything since there is no BIC value to compared
it with from the model. The Ljung-Box p-value is equal to 0.054 which
indicates that it insignificant at 5% level of significant (Dabral et al., 2017;
Issaka, 2015).

Table 4.49: Parameter estimation for ARIMA (2,1,3) model for water evap-
oration Luphephe dam.

Model AR (2) MA (3)
Estimate 0.016 -0.167
SE 0.025 0.030

t 0.648 -5.659
P-value 0.517 0.000

Table 4.49 presents the parameter estimation for ARIMA (2,1,3) model, the
two models AR and MA are significant. The AR (2) model is insignificant is
more than 5% and MA (3) model is significant since the p-value is less than
5% with parameter estimate of AR (2)= 0.016 and MA (3)= -0.167. This
results indicate that water evaporation rate at Luphephe dam inconclusive
whether it decreases or increases.
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4.2.6 VAR model Coefficients and Correlation residu-
als relationship between water evaporation and
explanatory variables from the selected dams

Table 4.50: VAR model Coefficients Mokolo dam.

| Cocfficients | Estimate  Std.Error  t value Pr| > ¢| |
Evaporation 0.233883 0.005329 43.89 2(e16)
Temperature 0.117747  0.004558  25.84 2.2(e~19)
Rain 0.001131 0.00168 0.67 0.503

Table 4.50 presents coefficients with estimation of evaporation (0.23322),
temperature (0.11774) and rain (0.00113). The p-values of evaporation and
temperature are significant, the p-value is less than 5% level of significant.
Rain is insignificant for Mokolo dam with p-value grater than 5% level of
significant (Issaka, 2015).

Table 4.51: VAR correlation residual relationship of water evaporation and
(temperature and rainfall) for Mokolo dam.

Correlation of residuals
EVAPO MAX MIN RAIN
TEMP TEMP

EVAPORATION| 1.0000000  0.395562 0.011703 0.0005259
MAX TEMP 0.3955617  1.000000 0.087236 0.0023128
MIN TEMP 0.0117027  0.087236 1.000000 -0.0066775
RAIN 0.0005259  0.002313 -0.006677  1.0000000

Table 4.51 presents the relationship between evaporation with tempera-
ture and rainfall. The value of evaporation and minimum temperature
(0.0117027), evaporation and maximum temperature (0.3955617), and evapo-
ration and rainfall (0.0005259) indicates a weak positive relationship (Issaka,
2015).

Table 4.52: VAR model Coefficients Ga-Rantho dam.

| Cocfficients | Estimate  Std.Error  t value Pr(t) |
Evaporation 0.324215 0.005739 38.6589 2(e~19)
Temperature 0.155789 0.004813 32.37 2(e~10)
Rain 0.004489 0.004387 1.527 0.07523

Table 4.52 presents coefficients with estimation of evaporation (0.32422),
temperature (0.15573) and rain (0.004489). The p-values of evaporation and
temperature are significant with (p < 0.05). Rain variable is insignificant for
Ga-Rantho dam with (p > 0.05) (Issaka, 2015).
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Table 4.53: VAR correlation residual relationship of water evaporation and
(temperature and rainfall) for Ga-Rantho dam.

Correlation of residuals
EVAPO MAX MIN RAIN
TEMP TEMP
EVAPO 1.00000 0.308436 -0.01711 -0.11641
MAX TEMP 0.30836 1.0000 0.14174 -0.11009
MIN TEMP -0.01711 0.1417 1.00000 -0.01023
RAIN -0.11641 -0.1101 -0.01023 1.00000

Table 4.53 presents the relationship between evaporation with temperature
and rainfall. The value of evaporation and maximum temperature (0.30836)
indicates a weak positive relationship, evaporation and minimum tempera-
ture (-0.01711) indicates a weak negative relationship, and evaporation and
rainfall (-0.11641) indicates a weak negative relationship.

Table 4.54: VAR model Coefficients Leeukraal DeHoop dam.

| Cocfficients | Estimate  Std.Error  t value Pr(t) |
Evaporation 0.278691  0.004753  47.48 2(e16)
Temperature 0.162389 0.004813 32.37 2.2(e~ 1)
Rain 0.008719 0.005419 1.652 0.08655

Table 4.54 presents coefficients with estimation of evaporation (0.27869),
temperature (0.162389) and rain (0.00872). The p-values of evaporation
and temperature are significant with (p < 0.05). Only the rain variable is
insignificant with (p < 0.05) (Issaka, 2015).

Table 4.55: VAR correlation residual relationship of water evaporation and
(temperature and rainfall) for Leeukraal DeHoop dam.

] Correlation of residuals ‘

EVAPO MAX MIN RAIN
TEMP TEMP
EVAPO 1.00000 0.53557 -0.05324 -0.15583
MAX TEMP 0.53557 1.00000 0.14532 -0.06993
MIN TEMP -0.05324 0.14532 1.00000 0.07376
RAIN -0.15583 -0.06993 0.07376 1.00000

Table 4.55 present the relationship between evaporation with temperature
and rainfall. The value of evaporation and maximum temperature (0.53557)
indicates a positive relationship, evaporation and minimum temperature (-
0.05324) indicates a weak negative relationship, and evaporation and rainfall
(-0.15583) indicates a weak negative relationship (Issaka, 2015).



Results and discussion 75

Table 4.56: VAR model Coefficients Luphephe dam.

| Coefficients | Estimate  Std.Error  t value Pr(t) |
Evaporation 0.238215  0.004454  53.48 2(e~10)
Temperature | 0.155789  0.004813  32.37 2.2(e19)
Rain 0.007591 0.004569 1.661 0.0967

Table 4.56 presents coefficients with estimation of evaporation (0.23821),
temperature (0.15579) and rain (0.00457). The p-values of evaporation and
temperature are significant with (p < 0.05). The p-value for rain is insignifi-
cant with (p > 0.05) (Issaka, 2015).

Table 4.57: VAR correlation residual relationship of water evaporation and
(temperature and rainfall) for Luphephe dam.

’ Correlation of residuals ‘

EVAPO MAX MIN RAIN
TEMP TEMP
EVAPORATION | 1.00000 0.99951 0.04727 0.01289
MAX TEMP 0.99951 1.00000 0.66025 0.10619
MIN TEMP 0.04727 0.66025 1.00000 -0.24497
RAIN 0.01289 0.10619 -0.24497 1.00000

Table 4.57 presents the relationship between evaporation with temperature
and rainfall. The value of evaporation and maximum temperature (0.99951)
indicates a strong positive relationship, evaporation and minimum temper-
ature (0.04727) indicates a weak positive relationship, and evaporation and
rainfall (0.01289) indicates weak positive relationship (Issaka, 2015).

4.2.7 ARCH and model of water evaporation from the
selected dams.

Table 4.58: ARCH model of water evaporation for Mokolo dam.

Weighted ARCH LM Tests
Statistic Shape Scale P-Value
ARCH Lag|3| 0.00599 0.500 2.000 0.9383
ARCH Lag]5] 0.01301 1.440 1.667 0.9993
ARCH Lag|7] 0.02004 2.315 1.543 1.0000

Table 4.58 represents the lags of ARCH model with stastistic of ARCH
lag (3)=0.0599, ARCH lag (5)= 0.01301 and ARCH lag (7)=0.02004. The
weighted ARCH LM test showed that the p-values for the ARCH lags are
insignificant, p-vale is greater than 5% level of significant.
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Table 4.59: ARCH model of water evaporation for Ga-Rantho dam.
Weighted ARCH LM Tests
Statistic Shape Scale P-Value
ARCH Lag|3] 0.00599 0.500 2.000 0.9383
ARCH Lag[5] 0.01301 1.440 1.667 0.9993
ARCH Lag|7] 0.02004 2.315 1.543 1.0000

Table 4.59 represents the lags of ARCH model with stastistic of ARCH
lag (3)=0.0599, ARCH lag (5)= 0.01301 and ARCH lag (7)=0.02004. The
weighted ARCH LM test showed that the p-values for the ARCH lags are
insignificant, p-vale is greater than 5% level of significant.

Table 4.60: ARCH model of water evaporation for Leeukraal DeHoop dam.

Weighted ARCH LM Tests
Statistic Shape Scale P-Value
ARCH Lag[3] 0.02441 0.500 2.000 0.8758
ARCH Lag[5] 0.05861 1.440 1.667 0.9938
ARCH Lag|7] 0.08724 2.315 1.543 0.9995

Table 4.60 represents the lags of ARCH model with stastistic of ARCH
lag (3)=0.0244, ARCH lag (5)= 0.05861 and ARCH lag (7)=0.08724. The
weighted ARCH LM test showed that the p-values for the ARCH lags are
insignificant, p-vale is greater than 5% level of significant.

Table 4.61: ARCH model of water evaporation for Luphephe dam.

Weighted ARCH LM Tests
Statistic Shape Scale P-Value
ARCH Lag|3] 0.00599 0.500 2.000 0.9383
ARCH Lag]5] 0.01301 1.440 1.667 0.9993
ARCH Lag|7] 0.02004 2.315 1.543 1.0000

Table 4.61 represents the lags of ARCH model with stastistic of ARCH
lag (3)=0.0599, ARCH lag (5)= 0.01301 and ARCH lag (7)=0.02004. The
weighted ARCH LM test showed that the p-values for the ARCH lags are
insignificant, p-vale is greater than 5% level of significant.
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Table 4.62: ARCH model standardised residuals of water evaporation for
Mokolo dam.

Standardised Residuals Tests

Statistic p-value
Ljung-Box Test | R Q(10) 1.471601 0.9990211
Ljung-Box Test | R Q(15) 2.306023 0.9999245
Ljung-Box Test | R Q(20) 2.984228 0.9999961
Ljung-Box Test | R? Q(10) 0.01039123 1
Ljung-Box Test | R? Q(15) 0.01497463 1
Ljung-Box Test | R? Q(20) 0.01940608 1

LM Arch Test R TR? 0.01249917 1

Table 4.62 present standardised residual for ARCH model using Ljung-Box
test with results of an insignificant residual p-value and a squared residual
p-value, the p-values are higher than 5% level of significant and the LM-
ARCH test failed to reject the null hypothesis. The residual values are (1.472,
2.306, 2.984) and squared residual value are (0.0104, 1.0149,0.01941, 0.0125)
(Bollerslev, 1987; Fathian, 2019).

Table 4.63: ARCH model standardised of water evaporation for Ga-Rantho
dam.

Standardised Residuals Tests
Statistic P-value
Ljung-Box Test | R Q(10) 0.6367242
Ljung-Box Test | R Q(15) 1.4867
Ljung-Box Test | R Q(20) 1.940654
Ljung-Box Test | R? Q(10) 0.01145807
Ljung-Box Test | R? Q(15) 0.01654399
Ljung-Box Test | R? Q(20) 0.02166026
LM Arch Test R TR? 0.01380413

Table 4.63 present standardised residual for ARCH model using Ljung-Box
test with results of an insignificant residual p-value and a squared residual p-
value, the p-values are higher than 5% level of significant and the LM- ARCH
test failed to reject the null hypothesis. The residual values are (0.637, 1.487,
1.941) and squared residual value are (0.0115, 0.0217, 0.0138) (Bollerslev,
1987; Fathian, 2019).
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Table 4.64: ARCH model standardised residuals of water evaporation for
Leeukraal DeHoop dam.

Standardised Residuals Tests
Statistic p-value
Ljung-Box Test | R Q(10) 1.493252 0.9989562
Ljung-Box Test | R Q(15) 2.190411 0.999946
Ljung-Box Test | R Q(20) 2.360534 0.9999995
Ljung-Box Test | R? Q(10) 0.007298613 1
Ljung-Box Test | R? Q(15) 0.01051426 1
Ljung-Box Test | R? Q(20) 0.01399903 1
LM Arch Test R TR? 0.008768596 1

Table 4.64 present standardised residual for ARCH model using Ljung-Box
test with results of an insignificant residual p-value and a squared residual p-
value, the p-values are higher than 5% level of significant and the LM- ARCH
test failed to reject the null hypothesis. The residual values are (1.493, 2.190,
2.361) and squared residual values are (0.0073, 0.0105, 0.0139) (Bollerslev,
1987; Fathian, 2019).

Table 4.65: ARCH model standardised residuals of water evaporation for
Luphephe dam.

Standardised Residuals Tests
Statistic p-value
Ljung-Box Test | R Q(10) 2.1627 1.409201e—
09
Ljung-Box Test | R Q(15) 2.332259 2.999659e—
08
Ljung-Box Test | R Q(20) 3.17977 3.600325e—
07
Ljung-Box Test | R? Q(10) 0.051627 0.9906365
Ljung-Box Test | R? Q(15) 0.031274 0.9997197
Ljung-Box Test | R*Q) (20) 0.0490861  0.9947361
LM Arch Test R TR? 2.77636 0.9969275

Table 4.65 present standardised residual for ARCH model using Ljung-Box
test with results of an insignificant residual p-value and a squared residual p-
value, the p-values are higher than 5% level of significant and the LM- ARCH
test failed to reject the null hypothesis. The residual values are (2.163, 2.332,
3.179) and squared residual values are (0.0516, 0.0313, 0.0491) (Bollerslev,
1987; Fathian, 2019).
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4.2.8 GARCH model of water evaporation from the
selected dams

Table 4.66: GARCH model of water evaporation for Mokolo dam.

Parameters
Estimate Std. Error t value Pr(> |t|)
mu 4.940159 0.668295 7.3922 0
AR1 0.993163 0.002409 412.2411 0
MA1 -0.459469 0.024506 -18.7495 0
omega 0.057577 0.010845 5.3093 0
alphal 0.439953 0.033397 13.1733 0
betal 0.559047 0.033248 16.8146 0
shape 3.179263 0.101054 31.4610 0

Table 4.66 present parameter estimations for GARCH model, the mean es-
timate value is 4.940159 , autoregressive (1) estimate value of 0.993163 and
a moving avrage (1) estimate value of -0.459469. The p-value of the mean,
autoregressive and moving average estimates are significant, the p-values are
less than 5% level of significant (Matringe and Guida, 2004; Stehlikova, 2005).

Table 4.67: GARCH model parameter estimation for Ga-Rantho dam.

Parameters
Estimate Std. Error t value Pr(> |t|)
mu 4.940159 0.668295 7.3922 0
AR1 0.993163 0.002409 412.2411 0
MA1 -0.459469 0.024506 -18.7495 0
omega 0.057577 0.010845 5.3093 0
alphal 0.439953 0.033397 13.1733 0
betal 0.559047 0.033248 16.8146 0
shape 3.179263 0.101054 31.4610 0

Table 4.67 presents parameter estimations for GARCH model, the mean
estimate value is 4.940159 , autoregressive (1) estimate value of 0.993163 and
a moving avrage (1) estimate value of -0.459469. The p-value of the mean,
autoregressive and moving average estimates are significant, the p-values are
less than 5% level of significant (Matringe and Guida, 2004; Stehlikova, 2005).
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Table 4.68: GARCH model parameters of water evaporation for Leeukraal

DeHoop dam.
Parameters

Estimate Std. Error t value Pr(> |t|)
mu 4.940159 0.408996 12.0787 0.000000
AR1 0.993163 0.002921 339.9869 0.000000
MA1 -0.459469 0.041834 -10.9832 0.000000
omega 0.057577 0.041235 1.3963 0.162615
alphal 0.439953 0.078834 5.5807 0.000000
betal 0.559047 0.131352 4.2561 0.000021
shape 3.179263 0.102410 31.0443 0.000000

Table 4.68 presents parameter estimations for GARCH model, the mean
estimate value is 4.940159 , autoregressive (1) estimate value of 0.993163 and
a moving avrage (1) estimate value of -0.459469. The p-value of the mean,
autoregressive and moving average estimates are significant, the p-values are
less than 5% level of significant (Matringe and Guida, 2004; Stehlikova, 2005).

Table 4.69: GARCH model parameter of water evaporation for Luphephe

dam.
Parameters
Estimate Std. Error t value Pr(> [t])
mu 2.0151et93 0.124368 1.6203¢04 0.00000
AR1 1.0000e+00 0.000038 2.6368¢104 0.00000
MA1 3.6613e~%1 0.009029 4.0551e*0t 0.00000
omega 0.0000e* 0.000000 1.4872¢702 0.98813
alphal 3.6635e~01 0.023271 1.5743e01 0.00000
betal 9.7965¢ 92 0.013215 7.4129¢7%0 0.00000
shape 2.1156e*% 0.003459 6.1159¢ 702 0.00000

Table 4.69 presents parameter estimations for GARCH model, the mean
estimate value is 2.0151 e + 03, autoregressive (1) estimate value of 1.00000
e + 00and a moving avrage (1) estimate value of 3.6613¢ — 01. The p-value
of the mean, autoregressive and moving average estimates are significant,
the p-values are less than 5% level of significant (Matringe and Guida, 2004;
Stehlikova, 2005).
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4.2.9 GARCH (1,1) volatility plot for the selected
dams

Figure 4.25 presents the volatility plot for GARCH model, the plot shows

a low constant water evaporation variation pattern in the plot for several

years, then years 2016 and 2017 the water evaporation rate plot pattern had
a high water evaporatuion variation (Stehlikova, 2005).

Evaporation rate volatility GARCH[1,1].
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Figure 4.25: Volatility plot Mokolo dam

Figure 4.26 presents the volatility plot for GARCH model, the pattern of the
plot has low variation of water evaporation rate for several years. The water
evaporation rate highly varies in the year 2014 (Stehlikova, 2005).
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Figure 4.26: Volatility plot Ga-Rantho dam.
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Figure 4.27 presents the volatility plot for GARCH model, the pattern of the
plot have low variation of water evaporation rate in the other years of the

plot, where as the water evaporation rate highly varies in the year 2017 and
2018 (Stehlikova, 2005).
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Figure 4.27: Volatility plot Leeukraal DeHoop dam.

Figure 4.28 presents the volatility plot for GARCH model, the pattern of
the plot have low variation of water evaporation rate in other year of the

plot, where water evaporation rate highly varies in the year 2014 (Stehlikova,
2005).
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Figure 4.28: Volatility plot Luphephe dam.
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4.2.10 Dignostic checking

Figure 4.29 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.29: Residual plot for ACF and PACF for ARIMA (1,1,1) model for
water evaporation Mokolo dam.

Figure 4.30 presents the Q-Q plot for ARIMA (1,1,1) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are a couple of outliers on the far right and
a couple of outliers on the far left (Stine, 2017).
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Figure 4.30: Q-Q plot for ARIMA(1,1,1) model for water evaporation Mokolo
damv
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Figure 4.31 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.31: Residual plot for ACF and PACF for ARIMA (1,1,2) model for
water evaporation Ga-Rantho dam.

Figure 4.32 presents the Q-Q plot for ARIMA (1,1,2) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are a couple of outliers on the far right and
a couple of outliers on the far left (Stine, 2017).
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Figure 4.32: Q-Q plot for ARIMA (1,1,2) model for water evaporation Ga-
Rantho dam.
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Figure 4.33 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.33: Residual plot for ACF and PACF for ARIMA (1,1,1) model for
water evaporation Leeukraal DeHoop dam.

Figure 4.34 presents the Q-Q plot for ARIMA (1,1,3) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are a couple of outliers on the far right and
a couple of outliers on the far left (Stine, 2017).
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Figure 4.34: Q-Q plot for ARIMA (1,1,3) model for water evaporation
Leeukraal DeHoop dam.
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Figure 4.35 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.35: Residual plot for ACF and PACF for ARIMA (1,1,3) model for
water evaporation Luphephe dam.

Figure 4.36 presents the Q-Q plot for ARIMA (1,1,3) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are a couple of outliers on the far right and
a couple of outliers on the far left (Stine, 2017).
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Figure 4.36: Q-Q plot for ARIMA (1,1,3) model for water evaporation
Luphephe dam.
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Figure 4.37 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.37: Residual plot for ACF and PACF for ARIMA (1,1,2) model for
water evaporation Mokolo dam.

Figure 4.38 presents the Q-Q plot for ARIMA (1,1,2) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are two outliers on the far left and a couple
of outliers on the very far right (Stine, 2017).
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Figure 4.38: Q-Q plot for ARIMA (1,1,2) model for water evaporation
Mokolo dam.
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Figure 4.39 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.39: Residual plot for ACF and PACF for ARIMA (1,1,3) model for
water evaporation Ga-Rantho dam.

Figure 4.40 presents the Q-Q plot for ARIMA (1,1,3) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are two outliers on the far left and a couple
of outliers on the very far right (Stine, 2017).
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Figure 4.40: Q-Q plot for ARIMA (1,1,3) model for water evaporation Ga-
Rantho dam.
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Figure 4.41 presents that most of the peaks are insignificant from lag 1 to
lag 21 and on lag 23 the peaks is significant on the residual ACF and also on
the residual PACF plot . The plots show that the residuals are white noise
since most of the peaks are insignificant.
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Figure 4.41: Residual plot for ACF and PACF for ARIMA (1,1,3) model for
water evaporation Leeukraal DeHoop dam.

Figure 4.42 presents the Q-Q plot for ARIMA (1,1,3) model, some of the
points on the plot fall on the line and there is a curve pattern, hence it is not
a normal distribution. There are a couple of outliers on the far right and a
couple of outliers on the far left (Stine, 2017).
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Figure 4.42: Q-Q plot for ARIMA (1,1,3) model for water evaporation
Leeukraal DeHoop dam.



Results and discussion 90

Figure 4.43 presents that there are no significant peaks on the residual ACF
and also on the residual PACF plot. The plots show that the residuals are
white noise since the peaks are insignificant.
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Figure 4.43: Residual plot for ACF and PACF for ARIMA (2,1,2) model for
water evaporation Luphephe dam.

Figure 4.44 presents the Q-Q plot for ARIMA (2,1,2) model, most of the
points on the plot fall on the line and there is a linear pattern, hence there
is a normal distribution. There are a couple of outliers on the far right and
a couple of outliers on the far left (Stine, 2017).
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Figure 4.44: Q-Q plot for ARIMA (2,1,2) model for water evaporation
Luphephe dam.
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4.2.11 Model varification of ARIMA (p,d,q) model of
the selected dams

Table 4.70, table 4.71, table 4.72 and table 4.73 presents selected models with

results from the selected dams. The best model will be selected from each

selected dams, which will be used to forecast and predict water evaporation
from each selected dams.

Table 4.70: Model verification of ARIMA (p,d,q) models Mokolo dam.

Model BIC RMSE MAPE MAE Fit statistics
ARIMA (1,1,1) | 1.039 1.674 22.941 0.778 13.315
ARIMA (1,1,2) | 0.872 0.524 19.023 0.730 11.654
ARIMA (2,1,3) | 1.042 1.672 23.019 0.782 5.094

Table 4.71: Model verification of ARIMA (p,d,q) models Ga-Rantho dam.

Model BIC RMSE MAPE MAE Fit statistics
ARIMA (1,1,2) | 0.139 0.543 20.283 1.733 1.930
ARIMA (1,1,3) | 1.041 1.673 25.280 0.733 1.896
ARIMA (2,1,2) | 1.041 1.673 25.282 0.733 1.898

Table 4.72: Model verification of ARIMA (p,d,q) models Leeukraal DeHoop
dam.

Model BIC RMSE MAPE MAE Fit statistics
ARIMA (1,1,1) | 0.171 0.385 18.027 0.706 17.394
ARIMA (1,1,3) | 0.175 1.085 24.014 0.706 15.273
ARIMA (2,1,1) | 0.173 1.085 24.039 0.506 17.216

Table 4.73: Model verification of ARIMA (p,d,q) models Luphephe dam.

Model BIC RMSE MAPE MAE Fit statistics
ARIMA (1,1,3) | 1.107 1.728 55.961 1.016 10.792
ARIMA (2,1,2) | 1.109 1.731 55.843 1.010 5.122
ARIMA (2,1,3) | 0.113 0.479 50.966 0.416 11.203
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4.2.12 ARIMA forecasting of water evaporation rate
for the selected dam

Figure 4.45 presents the forecasting of water evaporation rate in Mokolo
dam. The black pattern of the plot represent the original time series plot
from year 2008 to 2018, the blue line of the plot represents the forecasting
of water evaporation for a period of 3 years. The results show a constant
pattern of water evaporation rate (Bari et al., 2015).
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Figure 4.45: Water evaporation rate Mokolo dam.

Figure 4.46 presents the forecasting of water evaporation rate in Ga-Rantho
dam. The black pattern of the plot represent the original time series plot
from year 2008 to 2018, the blue line of the plot represents the forecasting
of water evaporation for a period of 3 years. The results show a constant
increase pattern of water evaporation rate (Bari et al., 2015).
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Figure 4.46: Water evaporation rate Ga-Rantho dam.
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Figure 4.47 presents the forecasting of water evaporation rate in Leeukraal
DeHoop dam. The black pattern of the plot represent the original time
series plot from year 2008 to 2018, the blue line of the plot represents the
forecasting of water evaporation for a period of 3 years. The results show a
constant increase pattern of water evaporation rate (Bari et al., 2015).
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Figure 4.47: Water evaporation rate Leeukraal DeHoop dam.

Figure 4.48 presents the forecasting of water evaporation rate in Luphephe
dam. The black pattern of the plot represent the original time series plot
from year 2008 to 2018, the blue line of the plot represents the forecasting
of water evaporation for a period of 3 years. The results show a constant
increase pattern of water evaporation rate (Bari et al., 2015).
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Figure 4.48: Water evaporation rate Luphephe dam.
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Figure 4.49 presents a forecasting time series plot of water evaporation rate
in Mokolo dam. The plot shows the original time series plot in black pattern
line, where the blue line indicates the forecast of the best selected ARIMA
model for the period of 3 years, from year 2019 to 2021. The best selected
model used to forecast the water evaporation rate is ARIMA (1,1,2). The
forecasted water evaporation rate for the period of five years has indicated a
constant increase of water evaporation rate (Bari et al., 2015).
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Figure 4.49: Forcating time series plot of water evaporation rate Mokolo
dam.

Figure 4.50 presents a forecasting time series plot of water evaporation rate in
Garrantho dam. The plot shows the original time series plot in black pattern
line, where the blue line indicates the forecast of the best selected ARIMA
model for the period of 3 years, from year 2019 to 2021. The best selected
model used to forecast the water evaporation rate is ARIMA (1,1,2). The
forecast water evaporation rate for the period of five years has indicated a
constant rate of water evaporation rate (Bari et al., 2015).

20-

-20-

2010 2013 2016 2019
Time

Figure 4.50: Forcating time series plot of water evaporation rate Ga-Rantho
dam.
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Figure 4.51 presents a forecasting time series plot of water evaporation rate
in Leeukraal DeHoop dam. The plot shows the original time series plot in
black pattern line, where the blue pattern line indicates the forecast of the
best selected ARIMA model for the period of 3 years, from year 2019 to
2021. The best selected model used to forecast the water evaporation rate
is ARIMA (1,1,1). The forecast water evaporation rate for the period of five
years has indicated a constant increase of water evaporation rate with zero
mean rate(Bari et al., 2015).
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Figure 4.51: Forcating time series plot of water evaporation rate Leeukraal
DeHoop dam.

Figure 4.52 presents a forecasting time series plot of water evaporation rate in
Luphephe dam. The plot shows the original time series plot in black pattern
line, where the blue pattern line indicates the forecast of the best selected
ARIMA model for the period of 3 years, from year 2019 to 2021. The best
selected model used to forecast the water evaporation rate is ARIMA (2,1,3).
The forecast water evaporation rate for the period of five years has indicated
a constant increase of water evaporation rate (Bari et al., 2015).
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Figure 4.52: Forecasting time series plot of water evaporation rate Luphephe
dam.



Chapter 5

Conclusion and
Recommendations

5.1 Introduction

This chapter presents the conclusion and recommendations on the statistical
analysis of water evaporation from the selected dams in the Limpopo province
South Africa. The conclusion is presented in the first part of the chapter
with concluding outcomes based on chapter 4. The second part presents
recommendations based on the results in the study.

5.2 Conclusion

The study sets out to perform time series modelling of evaporation from se-
lected dams in the Limpopo province of South Africa. The five objectives
mentioned in chapter 1 were mentioned, which were looked into. Using the
daily water evaporation rate time series data from the selected dams in the
Limpopo province of South Africa from year 2008 to year 2018, the time series
models such as ARIMA model to forecast, ARCH, GARCH and VAR models
were investigated. In the study a time series plot was done for checking if
there was a trend variation, seasonal variation, irregular or cyclical varia-
tion. The time series plots revealed that the time series data has a trend ,
hence a test was carried out to investigate if the time series data used was a
stationary or non-stationary time series data. The augmented Dickey-Fuller
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test was used, and it revealed that the time series is non-stationary for all
the selected dams at 5% level of significance. Since the time series data was
non-stationary a method called differencing was used to convert the data into
a stationary time series data, hence after the method was applied the time
series data was then stationary. The augmented Dicky-Fuller test was used
to check the stationarity of the differenced time series data. The ADF results
showed that the time series data was stationary at 5% level of significant for
all the dams in the study.

The autocorrelation function and partial autocorrelation function plots were
used to construct an ARIMA(p, d, q) model, whereby the plots revealed
that few lags where significant to construct an ARIMA (p, d, q) model of
water evaporation for the selected dams. The model fit and model statistics
revealed that ARIMA model of order (1,1,2) for Mokolo dam with a RMSE
of 0.524 JARIMA mode of order (1, 1, 2) for Ga-Rantho with RMSE of 0.543
, Leeukraal DeHoop dam ARIMA model of order (1, 1, 1) with RMSE of
0.385 and Luphephe dam of ARIMA of order (2, 1, 3) with RMSE of 0.479
showed that the model can relatively predict water evaporation time series
data accuracy. The BIC value of the ARIMA models from the selected dams
reveals that the ARIMA (1, 1, 2), ARIMA (1, 1, 2), ARIMA (1, 1, 1) and
ARIMA (2, 1 3) are the best models of all the models selected from the dams,
since the value of BIC was small.

The Ljung-Box test reveals that the statistic for Mokolo dam ARIMA(1,
1, 2) , Leeukraal DeHoop dam ARIMA (1, 1, 1) are insignificant at 5% level
of significant and Ga-Rantho dam ARIMA (1, 1, 2), Luphephe dam ARIMA
(2, 1, 3) are significant at 5% level of significant, this means there is an
increase or decrease of water evaporation rate from the selected dams.The
parameter estimation reveals that water evaporation from the selected dams
in Limpopo province of South Africa is to increase or decrease due to the
contributing factors such as rain, temperature, and humidity. The estimated
parameters of the selected damns showed significance and insignificance of
the models at 5% level of significant.

The VAR model was used to determine the relationship between evapora-
tion, temperature, and Rainfall. The VAR(10) model provides an adequate
representation of evaporation, rainfall, and temperature, the coefficients es-
timates and p-value of less than 5% level of significant shows that the model
is significant , hence there is an existing relationship between Evaporation
and the explanatory variables. The VAR (10) correlation residuals revealed
positive relationship between evaporation and temperature. There is a weak
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positive relationship between evaporation and rain, hence there is a high
chance that evaporation rate is to increase.

The standardised residuals of the selected dams (Mokolo dam, Leeukraal
DeHoop dam and Luphephe dam) reveals that the p-values are higher than
5% level of significant of the LjungBox test residual and square residuals ,
therefore the null hypothesis cannot be rejected neither in residual nor in
squared residuals. The insignificant p-values does not gives a good way to
obtain autocorrelation and time-vary volatility in the water evaporation time
series data. The LM-ARCH test failed to reject the null hypothesis of ab-
sence of ARCH effects. The standardised residual for Ga-Rantho dam reveals
insignificant residual p-values greater than 5% level of significant and a sig-
nificant squared residual, the null hypothesis was rejected for the squared
residual.

The GARCH (1,1) model reveals that there was no heteroscedasticity , Ljung
Box test presented weak evidence of ARCH effect in the residuals water evap-
oration time series, this recommend that the GARCH (1,1) modelling volatil-
ity cannot be used.The parameter revealed that GARCH model is significant
with a p-value less than 5% level of significant. The volatility plot for the
selected dams showed that the GARCH (1,1) model have low ability to model
water evaporation rate values, under the influence of the contributing fac-
tors such as temperature, rainfall, and humidity. The GARCH (1,1) model
is not able to influence and predict water evaporation rate. The volatility
results revealed that in the year 2016 and 2017 there was high variation of
water evaporation rate in Mokolo dam, Ga-Rantho dam showed that wa-
ter evaporation rate had a high variation in 2014, Leeukraal DeHoop dam
showed that water evaporation rate has a high variation in 2017 and 2018
and Luphephe dam showed that water evaporation rate had a high variation
in 2014. Where water evaporation rate varies indicates that tempeature is
very hight and there is minimum rainfall.

The ACF and PACF revealed that the selected ARIMA models have no
significant peaks on the ACF and PACF residuals the models are insignifi-
cant from the selected dam, the Q-Q plot showed that the water evaporation
time series data does not have outliers and is normally distributed. The
best models from each dam were selected by taking the smallest value of
BIC. The best ARIMA models selected from each dam were used to forecast
the water evaporation rate from the selected dam. The forecast revealed
that water evaporation rate Mokolo dam after 3 years will be constant, Ga-
Rantho dam after 3 years showed that there will be a hyperbolically decrease
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in water evaporation rate, Leeukraal DeHoop dam showed that after 3 years
there will be a constant value of water evaporation rate and Luphephe dam
showed a bit of increase then a constant value of water evaporation rate in
the next 3 years. The forecasting results shows that there will not be much
of an impact to the dams and the communities, where water can be impacted
by the rate at which evaporation might occur. Modelling and forecasting of
water evaporation rate in the selected dams will improve the process taken
to control the rate of water evaporation.
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5.3 Recommendations

Based on the findings of the study of time series modelling of water evapora-
tion from the selected dams in the Limpopo province of South Africa. More
dams can be constructed for the future to prevent the chance of experiencing
shortage of water. The water evaporation rate might not look like a threat
now, but as the temperature increases and having less rainfall this can cause
a major problem in the Limpopo province communities and South Africa as
a whole. The South African Weather Service should take into consideration
the regular data capturing of water evaporation rate and implementing fu-
ture dams constructions for water security.

This research suggests future research that can help into managing the possi-
bility of a future increase in water evaporation rate. The study revealed that
there will be a constant positive rate of evaporation rate from the selected
dams in the Limpopo province of South Africa in the future based on the
forecasted models. The study recommends that factors contributing towards
the occurrence of water evaporation to be modelled using time series models,

more especial SARIMA model.
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Appendix

Tables and plots for Chapter 4

Table 1 Descriptive statistics

Station names Latitude | Longitude | Altitude
Lephalale MolokoDam -23,76571 | 27,74091 826
Sekhukhune Ga-RanthoDam -24.87423 | 29,96795 1152
Sekhukhune Leeukraal DeHoopDam | -24,491585 | 29,83511 1446
Thohoyando LephepheDam -22,73461 | 30,52188 550

Table 2 ARCH model of water evaporation for Mokolo dam

Coefficients
AR1 MA1 MA2
0.5748 -1.3619 0.3973
s.e. 0.1575 0.1708 0.1550

Table 3 ARCH model of water evaporation for Ga-Rantho dam

Coefficients
AR1 MA1 MA2
0.3571 -1.1564 0.2115
s.e. 0.1193 0.1233 0.1120

Table 4 ARCH model of water evaporation for Leeukraal DeHoop dam

Coefficients
AR1 MA1 MA2 MA3
-0.0304 -0.4305 -0.1688 -0.0692
s.c. 0.2821 0.2816 0.1342 0.0542

Table 5ARCH model of water evaporation for Luphephe dam

Coefficients
AR1 MA1 MA2 MA3
2.289946 0.498327 -0.020096  0.197179
s.e. 1.306119 0.566913 0.427403 0.365485
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