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Abstract 
 
In Software Defined Cognitive Radio Network (SDCRN), network security is a 

significant issue. This issue arises when Software Defined Network (SDN) architecture 

integrates with the Cognitive Radio Network (CRN) technology. SDN is designed to 

improve network resource management, while CRN technology is meant at improving 

spectrum management. These technologies are vulnerable to several malicious 

attacks. These attacks include Distributed Denial of Service (DDoS) and Primary User 

Emulation (PUE). Both the DDoS and PUE can be disrupt services in the SDCRN. To 

curb these attacks, schemes which hardens the security of SDCRN need to be 

designed. Thus, in this study we propose a security mechanism called 

Extreme_Controller_Mechanism (XCM) that reduce the effects of DDoS and PUE. The 

proposed XCM scheme was designed and evaluated in three simulation environment, 

the OMNeT++, Octave, and MATLAB simulators. The SDCRN data set was generated 

using the Neural Network back propagation algorithms. The data set was then used 

in Matlab to evaluate the effectiveness of the prosed XCM scheme. XCM proved to be 

effective and efficient at detection and prevention of DDoS and PUE attacks in 

SDCRN. In terms of memory and processor utilisation, XCM proved to the best when 

compared to other schemes such as the Advanced Support Vector Machine (ASVM) 

and deep learning convolution network (CDLN). But in terms of detection time, the 

ASVM was found to be the best performing scheme. Regarding our test for detection 

rate, false positive and false negative, the XCM, ASVM and CDLM performed the 

same.  The results of the XCM were therefore the best and superior to the ASVM and 

CDLM.  This can be attributed to the fact that the XCM scheme is optimised for DDoS 

and PUE attacks. We can therefore conclude that our XCM scheme is the best 

performing scheme compared to the ASVM and CDLN schemes. 

 

Keywords: Software Defined Cognitive Radio Network ⋅	Distributed Denial of Service 

⋅	Primary User Emulation 
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1. CHAPTER 1: INTRODUCTION AND BACKGROUND 
1.1. Introduction 
 

The Internet has created a digital world where communication can be done from any 

place [1]. The communication data is transferred from one user to the other using 

packets [2]. The authors in [2] described packets as the scrambled data bundled 

together and sent over a data network. However, these data networks are susceptible 

to different kinds of security attacks [3]. These different kinds of security attacks can 

harm any network, either a traditional or current network. However, both networks 

have the data and control plane bundled together inside the networking devices [1], 

[4]. This bundling together has made it difficult for the network personnel to configure 

or reconfigure the device to respond to faults, load and changes [1], [4], [5]. This 

eventually led to the emergence of Software Defined Networking (SDN) that separates 

the data and control plane (See Figure 1.1). The decoupling of the data and control 

plane makes it easier to manage and monitor the network [6-8]. 

 

 
Figure 1.1: Software Defined Network Architecture 

Source: Extracted from [6] 
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On the other hand, [9] reported that there had been a significant increase in the 

number of devices connected to the wireless networks each year. This has resulted in 

spectrum scarcity or shortage. According to [9], all the users of the wireless networks 

are classified into two categories, namely the primary users (PUs) and Secondary 

Users (SUs). PUs are referred to as licensed users in the wireless network, whilst the 

SUs are unlicensed users [10]. Authors of [10] went further in mentioning that the SUs 

are sometimes called Cognitive Users (CUs). However, both these two users use the 

spectrum differently and PUs have a higher priority over SUs. The PUs makes use of 

the licensed spectrum whilst the SUs makes use of the unlicensed spectrum [9-11]. 

The licensed spectrum is a reserved portion for the PUs alone and can only be 

opportunistically used by the SUs when it is not used by the PUs [11], [12]. However, 

the authors of [9] claimed that the licensed spectrum is not fully utilised by its sole 

owners, the PUs, as it is sometimes left being vacant. This finally led to the 

development of a technology called CRN that makes it possible for SUs to 

opportunistically sense and use the licensed spectrum if it becomes vacant [9], [10] 

(See Figure 1.2). 

 

 
Figure 1.2: A Typical Cognitive Radio Network Architecture 

Source: Extracted from [10] 
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Nonetheless, [6] and [9] mentioned that SDN and CRN bring in greater functionality 

for network resource management and dynamic spectrum management, respectively. 

Hence, the integration of these two amalgamates to the above-mentioned individual 

advantages. However, these advantages are more likely to be challenging to realise 

as the SDN architecture and CRN technology are prone to security attacks such as 

Distributed Denial of Service (DDoS) and Primary User Emulation (PUE) respectively 

[13], [14]. 

 

The first study on the integration of SDN and CRN was undertaken in 2010 [15]. Since 

then, there has been growing research interest in SDCRN. The SDCRN integrated 

environment is likely to be more susceptible to security attacks because it integrates 

vulnerable network technology. Hence, this study designed an 

Extreme_Controller_Mechanism (XCM) scheme which addresses the effects of DDoS 

and PUE attacks in SDCRN. This was motivated by the reality that these two attacks 

have not been addressed in SDCRN integrated environment, even though reports by 

authors such as [13], [14], and [16-18] revealed that these two attacks are the most 

severe in SDN and CRN respectively. 

 

1.2. Prevention Mechanisms 
 

A reasonable number of studies were conducted to counter the effects of DDoS and 

PUE attacks in SDN and CRN respectively. Some of these studies were such as by 

[5], [19], [20-23] for SDN and [14], [24-27] for CRN. These prevention mechanisms for 

the DDoS and PUE attacks are classified into two categories: the signature and 

anomaly techniques [19], [28]. The signature techniques are used to detect attacks 

through comparison of incoming traffic with those of the stored attack samples. 

Therefore, they are deemed unsuitable for the detection of new attacks, whilst the 

anomaly techniques detect attacks through application of statistical analysis or 

machine learning methods and are deemed effective [28], [29]. 

 

In their study, [20] proposed a threshold-based method to prevent DDoS attacks in 

SDN. The results confirmed the method as being useful in preventing the DDoS 

attacks in SDN. A feasible method of source-based Internet Protocol (IP) filtering 

technique was used in [21] to mitigate DDoS attacks in SDN. This method was found 
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to be efficient only when the malicious traffic is low. In another different study, [5] 

proposed a filtering scheme to detect and reduce the effects of DDoS attacks on SDN. 

Using simulation, [5] proved this scheme as effective in reducing the effects of DDoS 

attacks on SDN. Similarly, a study by [22] showed that DDoS attacks can be prevented 

using an SDN-Oriented DDoS blocking scheme. Moreover, according to [19] machine 

learning-based techniques are also useful in reducing the effects of DDoS in SDN. In 

this regard [23] showed that lightweight method scheme is efficient in detecting DDoS 

attacks. The Self Organising Maps (SOM) technique, an unsupervised artificial NN, to 

prevent DDoS attacks on the network is used in this method. 

 

On the other hand, [24] proposed a scheme that utilise energy localisation and 

variance mechanisms to prevent PUE attacks. The proposed scheme results confirm 

that the PUE can be mitigated in CRN environment. In support of these results [14] 

noted that filter-based techniques address the effects of PUE attacks. The results of 

the filter-based techniques showed these techniques outperform the Received Signal 

Strength (RSS) which is a localisation-based technique for handling detection and 

miss detection probabilities. However, the filtering technique has a weakness in that 

the initial coordinates of the PU cannot be identified in this technique. That means an 

attacker, which may be close to the PU may not be identified. Also, [25] investigated 

the PUE in Cooperative Spectrum Sensing (CSS) in CRN and revealed that PUE 

harms the operation of CSS in CRN. Malicious nodes prevented SUs from using 

vacant spectrum bands thus causing low utilisation of spectrum bands. The nodes 

broadcast reports that the primary users are busy whilst they are idle. To deal with this 

problem [26] proposed a Probability Density Function (PDF) based scheme. In this 

study, it was observed that an increase in the number of malicious users increases 

the probability of false alarms. Other studies such as [27] are of the view that 

encryption-based schemes can be useful. To prove this, [27] used the Advanced 

Encryption Standard (AES) scheme and their results indicated that the AES scheme 

can detect PUE attacks in CRN. 

 

Given the various techniques designed to mitigate the effects of DDoS and PUE in 

SDN and CRN, the study designed an XCM scheme that incorporates the NN 

concepts to mitigate the effects of DDoS and PUE attacks in SDCRN environment. 
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1.3. Problem Statement 
 

The DDoS is the most severe attack in SDN [13], [19], while the CRN is susceptible to 

the PUE attacks [14], [24]. The DDoS compromises the control plane in SDN [30] and 

the PUE interferes with sensing in the CRN [31]. The two attacks cause the 

unavailability of service [24], [30], [31]. In SDCRN integrated environment, the effects 

of these two attacks are likely to be compounded since the architecture and the 

technology are already vulnerable to the two attacks [9], [30], [31]. To the best of our 

knowledge, little research has been conducted on these attacks in SDCRN despite 

numerous studies conducted in SDCRN. However, this study designed a security 

scheme called XCM that effectively addresses the effects of DDoS and PUE attacks 

in SDCRN. 

 

1.4. Research Aim 
 

The study aimed to design a security scheme to address the effects of the DDoS and 

PUE attacks in SDCRN integrated environment. 

 

1.5. Research Questions 
 

In order to provide the answers for the study, the researcher of this study formulated 

three primary research questions as follows: 

i. Which attributes of DDoS and PUE attacks can be detected and measured in 

SDCRN? 

ii. What is the most effective technique that which address the DDoS and PUE 

attacks in SDCRN? 

iii. What is the best strategy for optimising the most effective DDoS and PUE 

security scheme for efficient memory and Central Processing Unit (CPU)? 

 

1.6. Research Objectives 
 

In order to provide answers to our study and research questions, the following 

research objectives were formulated: 
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i. To investigate the network attributes of DDoS and PUE attacks which can be 

detected and measured. 

ii. To explore the most effective technique which can address the DDoS and PUE 

attacks. 

iii. To evaluate the efficiency of the XCM scheme in terms of memory and 

processor utilisation. 

iv. To perform a comparative analysis of the XCM scheme compared to the 

existing DDoS and PUE schemes designed for SDN and CRN, respectively. 

 

1.7. Research Hypothesis 
 

The XCM scheme will effectively detect and protect the SDCRN from the effects of 

DDoS and PUE attacks. 

 

1.8. Literature Review 
 

The data and control plane, responsible for consulting the forwarding table to make 

new packet decisions and providing information for building a forwarding table, are 

bundled inside the networking devices [32]. This has complicated the matters in 

responding to faults, loads and changes and led to the emergence of the SDN 

paradigm, making the whole network managed and controlled [33], [34]. 

 

However, every country has its legislation or regulations that address radio frequency 

spectrum usage and availability. In South Africa, the Independent Communications 

Authority of South Africa (ICASA) is responsible for that legislation [35]. In [35], most 

of its radio frequency spectrums are already allocated to various governmental, 

corporate and academic organisations that are licensed users, leaving the few radio 

frequency spectrums for the unlicensed users continuously increasing daily. This has 

resulted in radio frequencies scarcity, mainly for unlicensed users. In order to ease 

this spectrum situation, a technology called CRN based on the Dynamic Spectrum 

Access (DSA) approach was developed [36], [37]. The CRN technology allows the 

licensed and unlicensed users to co-exist together by sharing the spectrum [38-40]. 

The integration of SDN architecture with CRN technology provides better network 

resource and dynamic spectrum management [6], [9]. However, the SDN and CRN 
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are susceptible to security attacks such as the DDoS [13], [19] and PUE [14], [24], 

respectively. As noted in [8], security is a significant concern in any network. 

Therefore, security mechanisms that can provide maximum protection to any network 

from these attacks are ideal. 

 

Several studies such as [5], [19], [20-23] and [14], [24-27] described in the prevention 

mechanisms section above, have been proposed to detect and address the effects of 

the DDoS and PUE attacks in SDN and CRN respectively. These studies managed to 

successfully mitigate the DDoS and PUE attacks in SDN and CRN respectively. Unlike 

these studies, our study proposed a security prevention mechanism that detects and 

addresses these two attacks in SDCRN. Our proposed security mechanism 

incorporates NN concepts, which is an integral part of the machine learning 

techniques. This was mainly driven by the gaining of momentum in using machine 

learning techniques such as NN to prevent any security attacks in networking 

environments [19], [28]. 

 

1.9. Research Methodology 
 

The primary tool used for the study was Objective Modular Network Testbed in C++ 

(OMNeT++). The use of OMNeT++ was primarily centred on its strong support for 

SDNs [41]. Also, OMNeT++ is considered as one of the most popular simulators used 

to test distributed protocols in practical wireless channels, radio models and node 

behaviour associated with radio access [42]. Since the study involved the detection 

and prevention of the DDoS and PUE attacks in the SDCRN integrated environment, 

OMNeT++ was found to be the suitable simulator that could allow the researchers to 

simulate these two attacks in a real networking integrated environment. 

 

Moreover, the NN training and confirmation of results were evaluated in Octave and 

Matrix Laboratory (MATLAB), respectively. Both Octave and MATLAB were used as 

secondary simulators for the study. Octave is an open-source software which is readily 

available and can be used for simulation [43], whereas MATLAB is the most widely 

used simulator in network security [44]. 
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Furthermore, the following metrics were considered in the evaluation of the efficiency 

of the designed scheme: 

i. Detection time – the time taken for an attacker to be detected. 

ii. Detection rate – the positive detection of malicious traffic. 

iii. False positive – the amount of network traffics that are incorrectly detected and 

forwarded. 

iv. False negative – the amount of network traffics that are incorrectly detected 

and dropped. 

v. Memory Utilisation – the amount of memory used. 

vi. CPU Utilisation – the required CPU processing time. 

 

The comparative results were based on the metrics mentioned above. However, the 

XCM scheme was designed based on the NN concepts. This is because machine 

learning techniques such as NN are recently gaining momentum in detecting network 

attacks [19], [28]. Finally, the XCM scheme was optimised for high detection rate and 

low false alarm rate as per the recommendation in [23]. 

 

1.10. Significance and Outcomes 
 

A practical, efficient, effective and lightweight security scheme was designed that 

consumes less memory and processing time. The scheme improves the detection rate 

and reduces false alarms in SDCRN integrated environment. Also, as a contribution 

to the body of knowledge, the designed XCM scheme could serve as a benchmark for 

future studies in SDCRN integrated environment. 

 

1.11. Ethical Considerations 
 

The study does not involve the use of human beings, animals or plants, and hence the 

study did not require ethical clearance. 

 

1.12. Overview 
 

The study managed to produce five chapters in total. Chapter 1 focused on introducing 

the introduction and background of the design of a practical scheme for SDCRN. This 
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involved a summary of the introduction, background, problem statement, research 

aim, research questions, research objectives, research hypothesis, research 

methodology, study significance and ethical considerations. Chapter 2 necessitated 

the literature review of this research study, such as discussing the effects and 

prevention mechanism schemes of the DDoS and PUE attacks in SDCRN. 

Additionally, the conceptualised proposed framework for the SDCRN was presented. 

It was from this literature review discussion that the lacunae or gap of this study was 

established. Chapter 3 presented the research methodology describing the research 

design adopted and incorporated for the study. It also provided the simulation tools 

used, choice of selected network attributes, justification of NN concepts, and the study 

metrics. Chapter 4 offered trials and results, which analysed and reported on the 

findings of the study. Chapter 5 presented the study findings' discussion and 

conclusions and reported the significance of the study in terms of the contributions, 

recommendations, and areas of future studies. Finally, the research study also 

provided an appendix that shows other relevant and useful findings that complement 

this study results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10       
 

2. CHAPTER 2: LITERATURE REVIEW 
2.1. Introduction 
 

The growth of SDCRN has attracted significant research and development activities 

in academia and industry [8], [10]. The integration of SDN with CRN alleviates network 

management and spectrum scarcity [6], [9]. However, as the SDCRN integrated 

environment matures, security considerations rise [21], [32]. Like any other network 

environment, a design of security mechanisms that prevent SDCRN from security 

attacks such as the DDoS and PUE is a sought-after solution to ensure that the 

benefits of easier network management and spectrum scarcity are realised to their full 

potential. 

 

While several studies are starting to emerge on this topic in the literature, the fast pace 

of innovations in this domain mandates thorough, up-to-date designing of security 

mechanisms to prevent future security attacks on the SDCRN integrated environment 

[2]. Therefore, this chapter provided a thorough analysis of the existing security 

mechanisms designed to curb the DDoS and PUE attacks in SDN and CRN 

respectively. The conceptualised proposed framework which guided this study in the 

design of its security mechanism scheme. 

 

2.2. Effects of DDoS and PUE Attacks in SDCRN 
 

SDCRN was presented in the works such as [9], [45], [46]. SDCRN is an integration 

of SDN with CRN [9], [45], [46]. SDN is defined as a networking paradigm that 

decouples the data and control plane to make it easier to manage and control the 

network through programmability [2], [47-49]. Inversely, CRN is a technology used to 

alleviate spectrum scarcity in wireless networks [10], [50-52]. Hence, the integration 

of the SDN architecture with CRN technology provides a greater functionality in 

network management and efficient spectrum usage [6], [9], [45]. 

 

However, authors like [13] and [14] stated that the DDoS and PUE are the most severe 

SDN attacks and CRN attacks, respectively. Therefore, SDCRN will be susceptible to 

the DDoS and PUE attacks since the SDN architecture integrates on a vulnerable 

CRN technology. The DDoS attacks are reported in [13] and [53] as targeting the SDN 
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controller to disrupt the whole SDN network, whilst [14] reported the PUE attacks as 

focusing on paralysing the physical layers of the CRN. Overall, both the DDoS and 

PUE attacks will result in the denial of services to the legitimate users in SDCRN 

integrated environment [53], [54]. Hence, this study focused on designing an effective 

security scheme to prevent the SDCRN from the DDoS and PUE attacks. 

 

2.3. Prevention Mechanism Schemes for DDoS and PUE Attacks in SDCRN 
 

Preventive mechanisms to address DDoS and PUE attacks have been proposed by a 

number of scholars. Scholars such as [19], [28] and [55] classified these techniques 

into two main categories, namely signature and anomaly techniques. The signature 

techniques involve detecting attacks through comparison of incoming traffic with those 

of the stored attack samples, whilst anomaly techniques involve the analysis of traffic 

through application of statistical or machine learning methods [19], [55]. Between 

these two techniques, the anomaly technique is reported as the most appropriate 

countermeasure mechanism for security attacks [55]. Therefore, our designed XCM 

scheme belongs to the anomaly technique as it implements NN concepts, which allow 

the analysis of traffic by applying machine learning methods. 

 

Although numerous studies have been provided in the literature like our work, the 

effects of DDoS and PUE attacks in the SDCRN received little attention in literature. 

Therefore, for this study’s purpose in addressing our related work, we primarily 

focused on the prevention mechanism schemes of DDoS attacks in SDN and PUE 

attacks in CRN. This was the only notable difference or distinguishing feature with our 

work that designed a security scheme which simultaneously detects and prevents 

these two attacks in SDCRN, instead of separate environments. Hence, the next two 

subsections discussed the prevention mechanism schemes for DDoS and PUE 

attacks in SDN and CRN respectively. 

 

2.3.1. Prevention Mechanism Schemes for DDoS Attacks in SDN 
 

In the literature, various methods had been employed for detection and prevention 

purposes of DDoS attacks in SDN [16]. Some of these methods are such as in [5], 

[16], [17], [19-23], and [54-67]. In [5], in which a filtering scheme that detect and reduce 



 

12       
 

the effects of DDoS attacks in SDN was proposed and tested. The simulation results 

in this study proved the scheme to be effective. Then [19] used machine learning-

based techniques in analysing the effects of DDoS attacks in SDN and proved the 

scheme to be effective. Equally so, a threshold-based method scheme was proposed 

in [20] and was found to be effective in detecting and dropping off packets from the 

attackers, thereby preventing DDoS attacks in SDN. Similarly, [21] proposed a feasible 

source-based IP filtering technique scheme but the results of the feasible method 

scheme were only efficient when the malicious traffic was low. 

 

In their investigation, [22] proposed an SDN-Oriented DDoS blocking scheme and its 

results proved that the DDoS attacks could be prevented. Also, [23] weighed in by 

using a lightweight method scheme to detect DDoS attacks on the network. This 

method incorporated SOM technique which is an unsupervised artificial neural 

network. Results showed that the scheme was efficient in detecting the DDoS attacks. 

Likewise, a DDoS attack prevention mechanism scheme was designed in [55] and its 

results confirmed that the scheme could drop attack flows. Lately, the REsilient 

COntrol Network (RECON) scheme was used in [57] to mitigate DDoS attacks on the 

network. Its results illustrated that the scheme can lower DDoS attacks on the network. 

Also, [58] proposed an entropy method scheme for mitigating the DDoS attacks on 

SDN controllers. Their scheme was found to be effective, lightweight and yielding a 

very high detection rate. Moreover, [16] proposed an Advanced Support Vector 

Machine (ASVM) in the detection and mitigation of DDoS attack in SDN. It was found 

that their technique can detect the DDoS attack in SDN with a 97% and 3% of detection 

rate and false alarm rate, respectively. 

 

A Domain Name System (DNS) based DDoS solution was proposed in [59] to mitigate 

the DDoS attacks in SDN and its results confirmed to be effective. Likewise, [60] 

proposed an SDN based proactive DDoS Defence Framework. In as far as mitigating 

the DDoS attacks in SDN, the defence mechanism was found to be effective. Authors 

in [54] proposed a model based on a Support Vector Machine (SVM) algorithm to 

detect DDoS attacks in the SDN environment. The results of their algorithm confirmed 

the detection and mitigation of the DDoS attacks in SDN with high efficiency. 
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Additionally, an SDN framework based on a machine learning technique using the 

SVM method was proposed in [61] to identify and defend DDoS attacks in SDN. Their 

machine learning technique results showed the effectiveness in preventing the DDoS 

attacks in SDN. The authors in [62] proposed a machine learning-based DDoS 

mitigation technique for protecting SDN against DDoS attacks. Results showed that 

their scheme could successfully protect the SDN from DDoS attacks. In [17], a multi-

SDN based cooperation scheme was proposed to defend against DDoS attacks. Their 

scheme managed to attain a high detection accuracy and mitigate the DDoS attacks 

effectively. A security system that applies machine learning (ML) algorithms through 

periodic collection of network statistics from the forwarding elements was proposed in 

[63]. The proposed solution ensured that the SDN was secure against the DDoS 

attacks. 

 

Authors in [64] also proposed a time and space-efficient solution for detecting DDoS 

attacks in SDN. The results of their solution proved to be efficient with appreciably 

good true positive and negative rates. Then, authors in [65] proposed a collaborative 

DDoS attack mitigation scheme using SDN and their scheme was found to be fast and 

reliable in efficiently mitigating the DDoS attacks in SDN. Equivalently, authors in [66] 

offered a lightweight and effective solution based on entropy method to detect DDoS 

attack in SDN, and a 96% detection rate was reported. Finally, authors in [67] 

implemented four machine learning methods, namely K-Nearest Neighbours (KNN), 

Artificial Neural Network (ANN), Naïve Bayes (NB), and Support Vector Machine 

(SVM), in order to detect DDoS attacks in SDN. Their test results revealed that these 

four machine learning methods can yield better results in the detection of DDoS 

attacks in SDN. 

 

2.3.2. Prevention Mechanism Schemes for PUE Attacks in CRN 
 

Different studies related to the prevention mechanism schemes for PUE attacks in 

CRN are also employed in the literature. Some of these studies are such as by authors 

in [14], [18], [24-27], and [68-73]. Authors in [14] employed a filtering-based technique 

to prevent the PUE attacks in CRN. The filtering technique was found to perform better 

than the RSS-based localisation technique in terms of probabilities of detection and 

miss detection. This is also supported by the findings of [24] in which their results were 
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effective in detecting and controlling PUE attacks in a CRN environment. Equally, [25] 

proposed a protocol scheme to identify and eliminate the PUE attacks in CRN. The 

results proved that their protocol scheme indeed eliminates the PUE attacks in CRN. 

A PDF based scheme proposed by [26] however, revealed a positive correlation 

between the number of malicious users and the probability of false alarms. 

 

Besides, research has also shown that encryption-based schemes are effective. In 

[27], an AES scheme was tested and PUE attacks in CRN were effectively detected. 

Also, [68] used a filtering algorithm scheme to detect the PUE attacks in CRN. Their 

scheme simulation results showed that it was reasonable in the detection of PUE 

attacks. Moreover, [69] used a channel impulse response scheme to detect PUE 

attacks in CRN. In a process, a modified channel estimation method was incorporated 

for an SU that did not have prior knowledge about the structure and content of the PU. 

Experimental results proved that their scheme performs well in the detection of PUE 

attacks in CRN. 

 

Furthermore, [70] proposed the deep learning convolution network (CDLN) scheme, 

which incorporates semi-supervised machine learning techniques to detect PUE 

attacks in CRN. The scheme was found to lower the false alarm and improve the 

detection rate significantly. Then, [71] used an authentication mechanism scheme to 

mitigate the PUE attacks in CRN and its results confirmed the PUE attacks are 

mitigated successfully. Also, [72] used a radio frequency fingerprinting mechanism to 

mitigate the PUE attacks in CRN. Its results revealed that the PUE attacks could only 

be effectively mitigated in an ad-hoc CRN and not in the infrastructure-based CRN. 

Equivalently, [73] proposed a scheme based on the CR users' received power 

statistics and their scheme achieved a higher performance in the mitigation of PUE 

attacks in CRN. In conclusion, authors in [18] proposed an adaptive learning-based 

mechanism using cyclostationary features in mitigating the PUE attacks in CRN, and 

its results proved effective. 

 

The above-discussed prevention mechanism schemes were all effective in detecting 

and addressing DDoS and PUE attacks in SDN and CRN respectively. However, in 

our work, we contribute to previous works, by designing a scheme that simultaneously 

detect and prevent DDoS and PUE attacks in SDCRN. Therefore, this study designed 
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an effective security mechanism called XCM scheme which incorporated the NN 

concepts to detect and protect the SDCRN environment from the DDoS and PUE 

attacks as further presented in Chapter 3. 

 

2.4. Proposed Conceptual Framework for SDCRN 
 

The conceptualisation of our proposed SDCRN framework is based on the principle of 

commonalities of the SDN and CRN. In the past, the SDN and CRN were used as 

separate concepts but the advancements in technologies has created the opportunity 

for the SDN to integrate with CRN [9], [45], [46]. SDN is reported in [6] as having the 

aptitude to disaggregate traditional vertically integrated networking stacks with the 

purpose to tailor network operation for specialised environments. In other words, SDN 

allows the separation of the data and control plane in order to make it easier to manage 

and monitor the network. CRN, on the other hand, constitute the radio part that 

provides a promising solution for spectrum scarcity by using the DSA mechanisms 

[10]. This allows the PUs and SUs to co-exist together without interrupting each other. 

Therefore, for our study purpose and simplicity, we proposed a conceptualised 

SDCRN framework that merges the concepts of SDN easier network management 

and CRN efficient spectrum utilisation (See Figure 2.1). 
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Figure 2.1: Conceptualised SDCRN Framework 
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2.5. Conclusion 
 

The chapter managed to provide a comprehensive and insightful discussion on the 

literature review of designing security mechanism schemes for SDCRN against the 

DDoS and PUE attacks. This started with a discussion on the effects of the DDoS and 

PUE attacks in SDCRN integrated environment. This was followed by a well-detailed 

discussion on the security mechanism schemes that were deployed in the past to 

countermeasure the effects of the DDoS in SDN and PUE in CRN, respectively. This 

was because as per the researchers’ knowledge none of the studies were found to be 

addressing the effects of both these two attacks simultaneously in SDCRN integrated 

environment. Hence, our study aim was unearthed based on this identified gap from 

the literature. Also, the proposed conceptual framework of our study was constructed 

and presented based on the principle of SDN and CRN commonalities. In conclusion, 

the next chapter provides the research methodology of the study. 
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3. CHAPTER 3: RESEARCH METHODOLOGY 
3.1. Introduction 
 

This chapter discusses the research methodology of the study. It starts by discussing 

the research design opted for this study. Then, the simulation tools that were used in 

the study are presented. In this study, three simulation tools were used namely 

OMNeT++, Octave and MATLAB. In addition, the reasons for the use of each 

simulation tool were provided. Also, the proposed network model for this study is 

provided. Furthermore, the proposed XCM scheme that was designed for this study is 

fully discussed in detail. These include the choice of the selected network attributes, 

justification of NN concepts' use, and implementation of the NN. Equally, the 

performance metrics that were used in the evaluation of our proposed XCM scheme 

are provided. Finally, the chapter concludes by providing a synopsis of the next 

chapter that follows in this study. 

 

3.2. Research Design 
 

Authors in [74] defined research design as “the overall strategy used in a research 

study to integrate different components coherently and logically to effectively address 

the research problem”. Uniformly, the authors in [75] weighed in by providing a 

definition of research design as “the blueprint for collecting, measuring and analysing 

data”. This study implemented an experimental research design. In [76], an 

experimental research design is defined as “a blueprint of the procedure that allows 

the researcher to control all variables that could influence the situation”. Additionally, 

scholars in [77] weighed in by defining an experimental research design as a process 

that, when executed, results in one and only one many observations. However, these 

observations are known as the experiment's outcomes and the collection of all those 

outcomes is referred to as a sample space. Therefore, the implementation of an 

experimental research design was motivated by its nature, giving the researchers a 

proper control of confounding variables that could potentially introduce bias. In the 

end, an experimental research design necessitated the study researchers to carry out 

network simulations to simultaneously detect and prevent the DDoS and PUE attacks 

in SDCRN. 
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3.3. Simulation Tools 
 

In this study, simulation tools were used to help these study researchers design a 

network model, detecting attacks based on the network traffic attributes, training of the 

NN, and implementation of the designed XCM scheme. OMNeT++, Octave, and 

MATLAB were the three simulation tools used for this study. The subsections that 

follow provide the choice for each simulation tool use based on the study objectives. 

 

3.3.1. OMNeT++ 
 

OMNeT++ is an open-source software initially developed in 2006 by OpenSim Limited 

in Germany. OMNeT++ was used as this study’s primary simulator and its selection 

choice was solely centred on its ability to allow researchers create network simulations 

that are related to their studies [78]. OMNeT++ has also been reported as the most 

popular network simulator used in either wired or wireless areas, and as well as its 

robust support for SDN OpenFlow and other libraries [41]. Additionally, [42] weighed 

in by stating that OMNeT++ is one of the most renowned or widely acclaimed network 

simulators that can be used to test distributed protocols in practical wireless channels, 

radio models, and node behaviour associated with radio access. Since the study 

involved detection and prevention of the DDoS and PUE attacks in the SDCRN, 

OMNeT++ was the most suitable tool that allowed the researchers to simulate these 

two attacks real networking integrated environment. 

 

3.3.2. Octave 
 

OCTAVE is open-source software that is readily available and can be used for network 

simulations [43]. It was used as a supporting tool in this study specifically for the 

training of the NN. 

 

3.3.3. MATLAB 
 

MATLAB is reported in [44] as a widely used simulation tool in networking. In this 

study, MATLAB was used as a supporting tool. Its purpose was to confirm all the 

results of the study. 
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3.4. The SDCRN Model 
 

In the quest to design an effective security scheme which can detect and protect 

SDCRN from DDoS and PUE attacks, an SDCRN model was proposed (See Figure 

3.1). The SDCRN network model was used in the generation of traffic dataset. The 

traffic dataset is non-malicious traffic (normal) and malicious traffic (either DDoS or 

PUE or DDoS and PUE attacks). Algorithms 3.1 and 3.2 illustrate the DDoS and PUE 

attacks generation and detection in SDCRN, respectively. Additionally, the simulation 

parameters applied in the DDoS and PUE attacks generation and detection are also 

given in Tables 3.1 and 3.2, respectively. 
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Figure 3.1: The Proposed SDCRN Model 
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Algorithm 3.1: DDoS Attack Generation and Detection in SDCRN integrated 

environment. 

1. Supposedly there are three networks: Network 1, Network 2, and Network 3. A 

communication link is then established between these networks. 

2. Network 1 have only one user: Host 5; Network 2 has two users: Host 1 and 

Host 4; Network 3 has only one user: Host 6. 

3. Host 4 is a malicious user (DDoS attacker) while Hosts 1, 5 (Victim) and 6 are 

all non-malicious users. 

4. A DDoS attack is launched by Host 4 causing the controller to stop functioning. 

This results in Host 5 being unable to do any communication with the users in 

Networks 2 and 3. 

5. Hosts 1 and 4 were used to generate non-malicious traffic (normal traffic) and 

malicious traffic (DDoS attack), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

22       
 

 Table 3.1: Simulation Parameters for DDoS Attack in SDCRN 

Parameter/Specification Input/Value 
Simulation Tool OMNeT++ 

Name of Attack DDoS 

Protocol Applied OpenFlow 

Total Number of Nodes 4 

Time of Simulation (seconds) 60 

Simulation Area (m2) 1 000 x 1 000 

Transmission Distance (m) 300 

Simulated Network Attributes duration and src_bytes 

Number of Packets per Second 120 

Packet Size (bytes) 512 

Traffic Connections TCP 

Maximum Speed (m/s) 30 

Type of Node Movement  Random  

Speed of Mobile Node (m/s) 40 

Antenna Type Omni 

Queue Management Scheme Drop Tail 

Interface Queue Length (packets) 60  

Radio Propagation Mode 2 Ray Ground 

Height of Antenna (m) 1 

Sensing Distance (m) 600 

 

 

Algorithm 3.2: PUE Attack Generation and Detection in SDCRN integrated 

environment. 

1. Supposedly there are three channels: f1, f2 and f3 in a licensed band. 

2. We then assume the is no primary base station (BS) that is using any of the 

three channels to transmit to PU receivers. Thus, all the three channels are idle.  

3. This permits Hosts 2, 3 and 7 to make transmissions using any of these three 

idle channels {f1, f2 and f3). 
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4. However, the presence of Host 8 (PUE attacker) mimicking the primary signal 

of f1 channel results into misleading Hosts 2 and 7 into vacating that channel, 

thus invoking a PUE attack. 

5. Hosts 3 and 8 were used to generate non-malicious traffic (normal traffic) and 

malicious traffic (PUE attack), respectively. 

 

  Table 3.2: Simulation Parameters for PUE Attack in SDCRN 

Parameter/Specification Input/Value 
Simulation Tool OMNeT++ 

Name of Attack PUE 

Number of Channels 3 

Total Number of Nodes 4 

Time of Simulation (seconds) 60 

Simulation Area (m2) 2 000 x 2 000 

Packet Size (bytes) 6 250 

Bandwidth (Mbps) 2 

SU Sensing Range (m) 200 

Sensing Duration (ms) 1 

Simulated Network Attributes duration and src_bytes 

Type of Node Movement Random 

 

However, the following set of assumptions were made in our network model regarding 

the PUE attacker: 

i. The hardware and radio interference characteristics are similar for both our 

PUE attacker and the rest of the nodes. 

ii. Our network model does not have any information or its strategy regarding the 

position of our PUE attacker. 

iii. Our PU and PUE attacker do not have exactly the same radio behaviour. 

 

Finally, we generated our dataset by using the OMNeT++ simulation tool. Our dataset 

is available upon request from Brian Sibanda (bsib1234@gmail.com). 
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3.5. Proposed XCM Scheme 
 

The XCM scheme is a mechanism that was designed to effectively detect and prevent 

the DDoS and PUE in SDCRN. The XCM scheme was able to detect these two attacks 

based on the two network attributes selected for this study, which are the number of 

seconds of the connection (duration) and the number of data bytes from source to 

destination (src_bytes). The XCM scheme design was centred on multi-layer feed 

forward NN concepts. The dataset generated for non-malicious and malicious traffic 

in the SDCRN integrated environment was trained in Octave. This was done in order 

to pass intelligence to the XCM scheme so that it can be able in future to mitigate 

similar attacks on the same environment. Therefore, Figure 3.2 depicts the flowchart 

on the classification of attacks expected to be outputted by our XCM scheme, which 

are normal traffic (no attack), DDoS attack, PUE attack, and DDoS and PUE attacks. 

 

 
Figure 3.2: Flowchart on the Classification of Attacks 

 

Furthermore, a pseudocode on the classification of attacks is presented as another 

way of representing this flowchart. It demonstrates how these expected outcomes can 

be illustrated in an English-like form of steps.  
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Pseudocode on the classification of Attacks 

 
 

3.5.1. Justification of Network Attributes Selected 
 

In our study, network attributes, duration and src_bytes were selected to capture non-

malicious and malicious traffic measurements. Their selection was influenced by the 

works of authors in [79] and [80]. These authors regard these network attributes as 

the most effective attributes which can be used to capture any attack type in any 

networking environment. 

 

3.5.2. Justification of NN Concepts 
 

In this study, a scheme called an XCM was designed to detect and prevent DDoS and 

PUE attacks in SDCRN integrated environment. The XCM scheme was built centred 

on the multi-layer feed forward NN concepts. The NN concepts incorporation was 

mainly motivated by studies such as in [79], [81], [82]. In [81], NN has been used in 

network anomaly and misuse intrusion detection resulting in successful detection and 

security attacks. Also, [79] weighed in by affirming that the NN algorithms were 

reported as more effective in detecting attacks in different networking environments. 

Also, [82] confirmed that machine learning using NN concepts had been a powerful 

tool for modelling complex tasks, notably non-linear classifications. With all these 

mentioned, this made the NN concepts to be the best choice in this study. 
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This study involved detecting and preventing DDoS and PUE attacks, which are the 

most severe in SDCRN integrated environment. These two attacks are more difficult 

to detect and prevent in a real networking environment, and hence the suitability of 

NN concepts use as a mechanism for our XCM scheme. This allowed the researchers 

to design an effective XCM scheme to mitigate both DDoS and PUE attacks in 

SDCRN. 

 

3.5.3. Implementation of NN 
 

The NN implemented in this study is called the multi-layer feed forward NN (See Figure 

3.3). The selection choice of this type of NN in our study is based on authors such as 

in [83], who reported them as the most common type of NN that has been applied to 

numerous applications, yielding successful results. In our study, the multi-layer feed 

forward NN has two input nodes, one layer of two hidden nodes, and one output node. 

The choice to use one hidden layer was influenced by most literature studies which 

suggest that a single hidden layer will provide a good approximation for most NN 

problems, and that adding extra hidden layers will yield little benefit [83].  

 

 
Figure 3.3: Multi-Layer Feed Forward NN Structure 
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However, in our situation, this one output node represents four class categories, as 

depicted in Table 3.3. The classification categories are assigned arbitrarily, as there 

are no rules to be followed in the assignment classification. This was just done so that 

the researchers could distinguish one class of attack from the rest of the other classes. 

 

  Table 3.3: Expected Detection Attacks Outcome 

Multiclass Classification Category Detection Outcome 
1 Normal Traffic (no attack) 

2 DDoS attack 

3 PUE attack 

4 DDoS and PUE attacks 

 

 

In our case, class 1 represents neither DDoS nor PUE attacks (Normal Traffic), class 

2 represents DDoS attack, class 3 represents PUE attack and class 4 represents both 

DDoS and PUE attacks. Therefore, Figure 3.4 represents the complete structure of 

our NN with the four class categories symbolising the multiclass classification known 

as the one-vs-all (OvA) or one-vs-rest (OvR). According to [84-86], a multiclass 

classification is suitable for non-linear models such as the NN, which results in more 

than two class outputs, and each sample is assigned to one and only one class output. 

Hence, the suitability of multiclass classification to be adopted in our study. 
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Figure 3.4: The Complete Multi-Layer Feed Forward NN Structure 

 

Based on our NN structure in Figure 3.4, the following hypotheses were formulated: 

• Let y = {1, 2, 3, 4}, where y represents the output classes 1, 2, 3 and 4 

respectively. 

• Let x represents the inputs with attributes x1 = (I1) = duration and x2 = (I2) = 

src_bytes. 

h1(x) = P(y = 1|x) 

h2(x) = P(y = 2|x) 

h3(x) = P(y = 3|x) 

h4(x) = P(y = 4|x) 

Hence, our hypotheses formulation is: hi(x) = P(y = i|x), where (i = 1, 2, 3, 4) 

Note: To predict a new x, we pick the class that maximises hi(x). 
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Our XCM scheme based on the NN concepts was trained in Octave version 4.2.2 with 

the aid of duration and src_bytes as network attributes. Our XCM scheme's training 

was done to pass some intelligence into the network traffic data. A standard method 

known as the logistic regression classifier or sigmoid function was applied to NN to 

help the scheme in its learning [16], [83], [87]. The sigmoid function restricts the range 

of our detection outcomes to be within the limits of 0 and 1 [87], [88]. Equation 3.1, as 

taken in [83], shows the sigmoid function expression. 

f(x) = 𝟏
𝟏"	𝒆!𝒙

 

Equation 3.1: Sigmoid Function 

 

Additionally, Figure 3.5 depicts the sigmoid function in a graphical representational 

notation. 

 

 

 

 

 

 

 

 

Figure 3.5: Graphical Representation of the Sigmoid Function 

Source: Extracted from [87] 

 

In the training of our NN, an algorithm known as the back propagation algorithm was 

applied. This was supported by authors such as [83], who noted that using a sigmoid 

function provides an advantage to a NN trained by a back propagation algorithm. 

Moreover, the connections used initially for the weights and biases were randomly 

assigned and it was necessary to adjust them. As reported in [88], the connections' 

adjustment is vital to obtain NN modelling's correct output. Hence, the NN training in 

our study can be summarised in the following three sequential steps: 

i. Model Representation, 

ii. Hypothesis Formulation, and 

iii. Simulation Experiment - Multiclass Classification 

+
¥ 
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Finally, after our NN training, we generated a new dataset from a similar SDCRN. We 

implemented our XCM scheme in MATLAB simulator environment to evaluate its 

performance in respect of detection time, detection rate, false positive, false negative, 

memory and CPU utilisation. The next section that follows discusses these six-

evaluation metrics used for the study. 

 

3.6. Study Evaluation Metrics 
 

In our study, six metrics were considered to evaluate the performance of our proposed 

XCM scheme. These metrics were considered to evaluate our XCM scheme's 

performance because they are reported as the most widely used metrics in network 

attack detection [16], [89-93]. 

 

3.6.1. Detection Time 
 

Detection Time (DT) is used in the study to represent the time taken for an attacker to 

be detected by our XCM scheme. According to [90], a shorter DT is necessary for any 

security scheme to be considered as a better performing scheme. 

 

3.6.2. Detection Rate 
 

Detection Rate (DR) refers to the correct rate for detecting malicious traffics [16]. Also, 

[16], [94] and [95] provided the formula used to calculate the DR for any attack 

networking scheme (See Equation 3.2). The DR of any security scheme should be 

higher for it to be deemed a better performing scheme [16]. 

DR = 𝑻𝑷
𝑭𝑵"	𝑻𝑷

	x 100% 

Equation 3.2: Detection Rate 

where DR = Detection Rate, TP = True Positive and FN = false negative. 

 

3.6.3. False Positive 
 

False Positive (FP) is defined in [16] and [96] as the amount of network traffics that 

are incorrectly detected and forwarded. Moreover, in [91], a formula used in calculating 

the false positive rate for any security scheme has been provided (See Equation 3.3). 
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Lastly, [90] and [91] reported that any security mechanism scheme should produce a 

lower false positive rate for it to be considered as a better performing scheme. 

FPR = 𝑭𝑷
𝑭𝑷"	𝑻𝑵

	x 100% 

Equation 3.3: False Positive 

where FPR = False Positive Rate, FP = False Positive, TN = True Negative. 

 

3.6.4. False Negative 
 

In [16] and [96], a false negative (FN) is defined as the amount of network traffic that 

is incorrectly detected and dropped. It was also defined as the scheme's failure to 

report an attacker when it appears or present [90]. Lower FN is deemed if any security 

mechanism scheme needs to be considered as a better performing scheme [89], [90]. 

 

3.6.5. Memory Utilisation 
 

In the study, memory utilisation refers to space usage on the Random-Access Memory 

(RAM). Studies such as [92], [93], and [97] noted that the scheme should have a lower 

memory utilisation, since lower memory utilisation implies a lightweight scheme, i.e., 

utilises less space. 

 

3.6.6. CPU/Processor Utilisation 
 

In the study, CPU utilisation was used to refer to the computer processing time during 

programme execution. In [92] and [97], a lower CPU utilisation was reported as 

deemed appropriate for any security scheme to be considered as a better performing 

scheme. 

 

3.7. Conclusion 
 

The chapter managed to discuss the research methodology of the study. It provided a 

well-detailed analysis of the network simulators used and their choice of selection. It 

also furnished the network model designed and the algorithms used in the generation 

of attacks and non-attacks (normal traffics). Furthermore, it managed to provide the 

selection and justification of the network attributes incorporated in our XCM scheme. 
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The chapter also examined the justification for the inclusion of the NN concepts in our 

study. Finally, it discusses the evaluation performance metrics under consideration for 

the study. The next chapter is based on experimental results and analysis of this 

research study. 
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4. CHAPTER 4: EXPERIMENTS AND RESULTS 
4.1. Introduction 
 

This chapter presents the experimental results and analysis of our research. It 

discusses data availability and the determination of the ideal number of traffic data 

examples for our experimental simulations. Our experimental simulations were carried 

out in OMNeT++ and Octave environments. Results of our study were implemented 

and confirmed in the MATLAB simulator environment. Experimental results are 

presented in the form of the tables and graphs or charts. 

 

4.2. Data Availability 
 

There were no readily available datasets in our study, and the researchers generated 

their traffic dataset using OMNeT++ tool. Our dataset is available upon request from 

Brian Sibanda (bsib1234@gmail.com). 

 

4.3. Dataset Size 
 

A total of 300 traffic data examples, out of which 75 were genuine (normal traffic) and 

225 were malicious, were used in the experiment. Our study used 300 traffic data 

examples consistent with a study in [16] which used the same dataset size. The study 

in [16] proposed an ASVM to detect and mitigate the DDoS attacks in SDN. Therefore, 

the study in [16] was used as a benchmark for our study’s traffic dataset size. Table 

4.1 shows the Experiment Data Division, which illustrates the representational split of 

our dataset. Our dataset was partitioned into the ratio of 70%:15%:15% for train, 

validation, and test, respectively. The ratio of 70%:15%:15% for train, validation, and 

test was applied in the study as it is the most generally acceptable partitioning criteria 

or rule used in most of the NN modelling studies [98]. 
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Table 4.1: Experimental Dataset Division 

Dataset Examples Percent 
Normal 
traffic 

DDoS 
attacks 

PUE 
attacks 

DDoS and 
PUE attacks 

Total 

All 75 75 75 75 300 100 

Train 53 53 53 53 212 70 

Validation 11 11 11 11 44 15 

Test 11 11 11 11 44 15 

 

 

4.3.1. Train Dataset 
 

The train dataset is a dataset consisting of examples used during the learning process. 

The actual dataset is used to train the model by fitting the parameters such as the 

weights and biases in the NN modelling. Its primary purpose is to see and learn 

patterns from this data. 

 

4.3.2. Validation Dataset 
 

The validation data is a dataset consisting of examples used to tune the NN model's 

hyperparameters, or is the sample dataset used to provide an unbiased evaluation of 

the NN model fit on the training dataset whilst tuning model hyperparameters. It is 

sometimes known as the development set. Its main purpose is to understand model 

behaviour and generalizability on the unseen data and bring insights on how to tune 

the NN model based on the parameters. 

 

4.3.3. Test Dataset 
 

The test dataset is a dataset that is independent of the training dataset. It is a set of 

examples used only to assess the performance, i.e., a generalisation of the NN model 

or the sample of data used to provide an unbiased evaluation of the final NN model fit 

on the training dataset. Its primary purpose is to understand how the NN model can 

perform in a real-world scenario as it brings an entirely unbiased estimate of the NN 

model performance. 
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4.4. Experiments – Training, Validation and Testing 
 

Our entire dataset had a total of 300 traffic data examples that were split into the 

training, validation and testing datasets. The training dataset was used to train our NN 

model, and the validation dataset was used in tuning our NN model hyperparameters 

in order to avoid overfitting. Also, the testing dataset was used to provide an unbiased 

evaluation of our NN model fit, thus whether our NN model can be generalised in the 

detection and prevention of similar attacks. Overall, it is from this entire dataset that 

our XCM scheme was designed in order to effectively address the effects of the DDoS 

and PUE attacks in SDCRN integrated environment. 

 

In carrying out our experiments, the following two functions named as 

XCMDeepLearning and XCMSigmoid and as well as the two scripts named 

XCMTrainingNetwork and XCMTestingDeepLearning were developed. The 

subsections that follow discuss and present these functions and scripts in detail. 

 

4.4.1. The XCMDeepLearning Function 
 

The XCMDeepLearning function created was used to train the network of our research 

study. In training the network, the parameter values shown in Table 4.2 were applied. 

 

Table 4.2: Parameter Values of the NN 

Parameter Value 
Number of input layers 1 

Number of neurons in the input layers 2 

Number of hidden layers 1 

Number of neurons in the hidden layers 2 

Number of output layers 1 

Number of neurons in the output layers 4 

Activation function f(x) = 𝟏
𝟏"	𝒆!𝒙

 

Learning rate 0.01 

Epoch 10000 
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The following code (algorithm 4.1) referred to here as XCMDeepLearning, was 

implemented in addition to the parameter values applied. This code was used to train 

the model based on the inputs fed into it and the set or initialised weights. 

 

Algorithm 4.1: XCMDeepLearning Code 

function [W1, W2] = XCMDeepLearning(W1, W2, i, c_O) 

a = 0.01; 

 

N = 212; 

for j = 1:N 

  transposed_I = i(j,:)'; 

  

  i_O_H_L = W1 * transposed_I; 

  o_O_H_L = XCMSigmoid(i_O_H_L); 

  

  i_O_O_N = W2 * o_O_H_L; 

  f_O = XCMSigmoid(i_O_O_N); 

  

  c_O_transpose = c_O(j,:)'; 

  e = c_O_transpose - f_O; 

  

  d = e; 

  

  e_O_H_L = W2' * d; 

  d1 = (i_O_H_L > 0).*e_O_H_L; 

  

  a_O_W2 = a * d * o_O_H_L; 

  a_O_W1 = a * d1 * transposed_I; 

  

  W1 = W1 + a_O_W1; 

  W2 = W2 + a_O_W2; 

end 

end 
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4.4.2. The XCMSigmoid Function 
 

The XCMSigmoid function was used as an activation function. The activation function 

was used to introduce non-linearities into our NN modelling, which enabled us to 

approximate arbitrarily complex functions. Algorithm 4.2 is the illustration of the code 

implemented to assist with that purpose. 

 

Algorithm 4.2: XCMSigmoid Code 

function y = XCMSigmoid(x) 

  y = 1/(1+exp(-x)); 

end 

 

4.4.3. The XCMTrainingNetwork Script 
 

The XCMTrainingNetwork script was used to call the training function 

(XCMDeepLearning), train the network and save. Its implemented code is shown as 

algorithm 4.3. 

 

Algorithm 4.3: XCMTrainingNetwork Code 

i = [6.21 397; 

     2.22 44; 

     …; 

     …; 

     …; 

    2.31 289; 

    5.13 12716; 

    ]; 

 

c_O = [1 

            2 

           … 

           … 

           … 

           3 
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       4 

       ]; 

 

W1 = 2*rand(1,2)-1; 

W2 = 2*rand(1,2)-1; 

 

for epoch = 1:10000 

  [W1, W2] = Deep Learning(W1, W2, i, c_O); 

end 

 

save('XCMDeepNeuralNetwork.mat') 

 

4.4.4. The XCMTestingDeepLearning Script 
 

The XCMTestingDeepLearning script was used to load the trained network 

(XCMDeepNeuralNetwork.mat) and test our network's performance. Algorithm 4.4 

illustrates the implementation of the code applied in this particular case. 

 

Algorithm 4.4: XCMTestingDeepLearning Code 

load('XCMDeepNeuralNetwork.mat') 

 

i = [6.39 637; 

      2.70 61; 

      …; 

      …; 

      …; 

      2.40 445; 

      6.48 27145; 

      ]; 

 

N = 88; 

for j = 1:N 

  transposed_I = i(j,:)'; 
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  i_O_H_L = W1 * transposed_I; 

  o_O_H_L = XCMSigmoid(i_O_H_L); 

  

  i_O_O_N = W2 * o_O_H_L; 

  f_O = XCMSigmoid(i_O_O_N); 

end 

 

After the training, validation, and testing phases, our XCM scheme was evaluated 

based on the evaluation metrics presented in Chapter 3. These metrics are DT, DR, 

FP, FN, memory, and processor utilisation. The following section presents the 

experimental results based on these metrics represented in tables and graphs or 

charts. 

 

4.5. Experimental Results 
 

Our traffic dataset, which was extracted, has more than two categories of output. 

Instead of y = {0, 1}, which is a normal binary classification, our data definition is y = 

{1, 2, 3, 4}, where y = 1 represents a class category 1 (no attack/normal traffic), y = 2 

represents a class category 2 (DDoS attack), y = 3 represents a class category 3 (PUE 

attack) and y = 4 represents a class category 4 (both DDoS and PUE attacks). This 

categorisation is known as a multiclass classification or one-versus-all (O-v-A) or one-

versus-rest (O-v-R) classification. Hence, our study has four binary classifiers to 

classify the non-malicious (legitimate) effectively and malicious from each category 

(see Table 4.3). 

 

Table 4.3: Multiclass Classification Representation 

Class Category Classification Training 
1 = normal traffic 1-vs-rest = 1 vs 2, 3 and 4  

2 = DDoS attack 2-vs-rest = 2 vs 1, 3 and 4 

3 = PUE attack 3-vs-rest = 3 vs 1, 2 and 4 

4 = DDoS and PUE attacks 4-vs-rest = 4 vs 1, 2 and 3  
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We implemented the multiclass classification using the above-discussed functions and 

scripts until our NN had learned and outputted correct results. We then implemented 

our XCM scheme using a new dataset which we generated from the similar SDCRN 

integrated environment. Afterwards, we assessed our XCM scheme's performance in 

respect of DT, DR, FP, FN, memory, and CPU utilisation. These results are presented 

in the form of analytical calculations, tables such as frequency tables and confusion 

matrix, and graphs such as bar chart and Receiver Operating Characteristics (ROC). 

 

4.5.1. Results and Analysis on XCM Scheme Performance Metrics 
 

In this research study, six metrics were used to evaluate the effectiveness of the XCM 

scheme. These are DT, DR, FP, FN, memory, and processor utilisation. The following 

subsections present the results of these six-performance metrics. 

 

4.5.1.1. Detection time 
 

Detection Time (DT) is reported in [90] as “the time taken to detect a particular attack 

on a network”. In other words, it is the interval between the time of attack launch and 

the time at which it was detected. The time taken to detect the DDoS attack, PUE 

attack, and DDoS and PUE attacks was recorded and tabulated in Table 4.4. The 

frequency table results show that it took the XCM scheme at most 5 microseconds (5 

𝜇s) to detect any of the class categories under consideration. 

  

Table 4.4: Detection Times of Malicious Attacks 

Class Category Time (𝝁𝒔) 
DDoS Attack 4.36 

PUE Attack 4.71 

DDoS and PUE Attacks 4.93 

 

Furthermore, a bar chart (see Figure 4.1) was used to illustrate these malicious 

attacks' detection times. The results from this bar chart show that the detection time 

for a DDoS attack is lower than the PUE attack, and likewise, the detection time for 

PUE attack is also lower than the DDoS and PUE attacks. In essence, the detection 

time results for these attacks can be mathematically modelled as: 
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DTDDoS < DTPUE < DTDDoS and PUE 

where DTDDoS = Detection Time for DDoS attack, DTPUE = Detection Time for PUE 

attack and DTDDoS and PUE = Detection Time for DDoS and PUE attacks. 

 

 
Figure 4.1: Detection Times of Malicious Attacks 

 

On average, the DT of these attacks using the XCM scheme is approximately (4.36 + 

4.71 + 4.93)/3 = 4.67 microseconds = 4.67𝜇s (See table 4.4). However, to determine 

whether the XCM scheme has a shorter time in detecting these malicious attacks, a 

comparative analysis was carried out using two other related schemes that were also 

built through the incorporation of ML algorithms. These schemes are ASVM for DDoS 

[16] and deep learning convolution network (CDLN) for PUE [70]. Table 4.5 and Figure 

4.2 show the schemes’ comparative results on detection times recorded using ASVM 

for DDoS and CDLN for PUE against XCM for both DDoS and PUE. 
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Table 4.5: Schemes’ Comparative Results based on Detection Times 

Scheme Name Class Category Time (𝝁𝒔) 
XCM DDoS and PUE Attack 4.93 

ASVM DDoS Attack 4.42 

PUE PUE Attack 4.79 

 

 

 
Figure 4.2: Detection Time based on each scheme 

 

From the schemes’ comparative results in Table 4.5 and Figure 4.2, XCM is found to 

take longer to detect DDoS and PUE, followed by CDLN to detect PUE and finally 

ASVM to detect DDoS. As stated in the works of [90], a shorter DT is required if any 

security scheme is to be considered as a better performing scheme. Thus, in this case, 

we can conclude that ASVM is the best one as it can detect DDoS attack with shorter 

time than CDLN for PUE and XCM for both DDoS and PUE. Furthermore, we can 

conclude that the CDLN scheme also performs better in terms of detection time than 

the XCM scheme. 
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4.5.1.2. Detection rate 
 

Detection Rate (DR) is defined in [16] as “the correct rate for detecting malicious 

attacks/traffics”. To determine the DR based on our XCM scheme, a confusion matrix 

with all four cases for this research study was generated and is depicted as shown in 

Figure 4.3. A confusion matrix is reported in [99] as “a table with rows that show the 

true class and columns that show the predicted class”. The diagonal cells show where 

the true class and predicted class match. Thus, a confusion matrix presents off-

diagonal elements as the percentage of incorrectly classified observations while 

diagonal elements as the percentage of those observations correctly classified in 

simple terms. 

 

 
Figure 4.3: Confusion Matrix for Non-Malicious and Malicious Attacks 

 

Based on Figure 4.3, we can observe that the DR rate for each case is 100%. This is 

concurred by the intersection of true class and predicted class for each own case as 

100%. For example, the intersection of true class = 1 (normal traffic) versus predicted 

class = 1 (normal traffic) is 100%, and the intersection of true class = 2 (DDoS attack) 

versus predicted class = 2 (DDoS attack) is 100%. This is also similar for the 

intersection of true class = 3 (PUE attack) versus predicted class = 3 (PUE attack), 
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and the intersection of true class = 4 (DDoS and PUE attacks) versus predicted class 

= 4 (DDoS and PUE attacks) respectively. Overall, these results from Figure 4.3 show 

that the XCM scheme performs very well in detecting non-malicious and malicious 

attacks correctly. 

 

Furthermore, we also analytically calculated the DR for each case based on the DR 

formula (See Equation 4.1) as provided in studies such as [16], [94], and [95]. This DR 

formula can be used to calculate the DR for any security scheme, and the DR values 

should always be high for the scheme to be deemed the better performing one [16]. 

DR = 𝑻𝑷
𝑭𝑵"	𝑻𝑷

	x 100% 

Equation 4.1: Detection Rate 

where DR = Detection Rate, TP = True Positive and FN = false negative. 

 

Cases 4.1, 4.2, 4.3 and 4.4 show the analytical DR results based on our study’s 4 

cases: no attack, DDoS attack, PUE attack, and DDoS and PUE attacks, respectively. 

The values for each case, TP and FN, were obtained from Figure 4.3. 

 

Case 4.1: No Attack 

DR = )*
+,")*

 x 100% = -..
.	"-..

 x 100% = 100% 

 

Case 4.2: DDoS Attack 

DR = )*
+,")*

 x 100% = -..
.	"-..

 x 100% = 100% 

 

Case 4.3: PUE Attack 

DR = )*
+,")*

 x 100% = -..
.	"-..

 x 100% = 100% 

Case 4.4: DDoS and PUE Attacks 

DR = )*
+,")*

 x 100% = -..
.	"-..

 x 100% = 100% 

 

Overall, we can state that the DR based on our XCM scheme is very high (100%). As 

mentioned in [16], any security scheme that yields a high DR is deemed a better 

performing scheme. However, to determine whether our XCM scheme is the best 

performing scheme in terms of DR, the schemes’ DR comparative analysis was 
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performed as presented in section 4.5.2.1 through the use of Analysis of Variance 

(ANOVA) test (see Section 4.5.2.1). 

 

4.5.1.3. False positive 
 

FP is defined in [16] and [96] as “the amount of network traffic that is incorrectly 

detected and forwarded”. In our study, FP results are presented using a ROC curve 

(Figure 4.4). A ROC curve is “a technique for visualising, organising and selecting 

classifiers based on their performance” [99]. Ideally, when the ROC curve is closer to 

the top-left corner, the better the performance. Results show that our XCM scheme 

managed to yield an FPR and TPR of 0% and 100%, respectively. This is seen with 

the point (0.00,1.00) on the ROC curve meaning FPR of 0.00 x 100% = 0% and TPR 

of 1.00 x 100% = 100%. This demonstrates that our XCM scheme managed to yield a 

perfect classification in non-malicious and malicious attacks. Furthermore, these 

results are also supported by the performance metric, Area Under Curve (AUC), which 

resulted in 100% since the AUC = 1.00 (See Figure 4.4), meaning AUC of 1.00 x 100% 

= 100%. Studies such as [99] noted that AUC values range between 0 and 1 

(inclusive), and an AUC value that is closer to 100% illustrates the closeness to the 

perfection of a scheme. 

 

 
Figure 4.4: ROC Curve for Non-Malicious and Malicious Attacks 
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From Figure 4.4, based on the FPR and AUC results, we can conclude that our XCM 

scheme is consistent with the expected FPR and AUC results for any security scheme 

to be considered acceptable [90], [91]. Authors of [90] and [91] reported that any 

security scheme must produce low FPR and high AUC for it to be considered a good 

performing scheme. However, to determine whether our XCM scheme is performing 

well in terms of FP, an ANOVA test was carried out as presented in section 4.5.2.2 

amongst the three schemes, namely the XCM ASVM and CDLN. (see Section 4.5.2.2). 

 

4.5.1.4. False Negative 
 

In [16] and [96], FN is defined as “the amount of network traffic that is incorrectly 

detected and dropped”. It is also defined as a failure by the scheme to report an 

attacker when it appears or is present [90]. Low FN values are deemed appropriate 

on any security scheme to be considered a better performing scheme [89], [90]. In 

order to determine the FN results based on our XCM scheme, the FN formula given 

in [100] was used: 

FN + TP = 100%. 

Equation 4.2: False Negative 

where FN = false negative and TP = True Positive. 

 

Cases 4.5, 4.6, 4.7 and 4.8 provide the analytical FN results based on our study’s 4 

cases: no attack, DDoS attack, PUE attack, and DDoS and PUE attacks, respectively. 

The values for each case TP were obtained from Figure 4.3. 

 

Case 4.5: No Attack 

FN + TP = 100% 

FN = 100% - TP, but TP = 100% for class 1 = no attack 

FN = 100% - 100% 

FN = 0.00% 

 

Case 4.6: DDoS Attack 

FN + TP = 100% 

FN = 100% - TP, but TP = 100% for class 2 = DDoS attack 

FN = 100% - 100% 
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FN = 0.00% 

 

Case 4.7: PUE Attack 

FN + TP = 100% 

FN = 100% - TP, but TP = 100% for class 3 = PUE attack 

FN = 100% - 100% 

FN = 0.00% 

 

Case 4.8: DDoS and PUE Attacks 

FN + TP = 100% 

FN = 100% - TP, but TP = 100% for class 4 = DDoS and PUE attacks 

FN = 100% - 100% 

FN = 0.00% 

 

Overall, we can state that the FN based on our XCM scheme is low (0%). As 

mentioned in [89] and [90], any security scheme that yields a low FN is regarded as a 

good performing scheme. However, to determine whether our XCM scheme is the 

best performing scheme in terms of FN, our XCM scheme was compared against other 

two related schemes, ASVM and CDLN, via the ANOVA test (see Section 4.5.2.3). 

The results of this comparative analysis in terms of the FN metric are presented in 

section 4.5.2.3. 

 

4.5.1.5. Memory utilisation 
 

Authors in [92], [93] and [97] described memory utilisation as the space usage on the 

RAM. In these studies, the authors noted that the scheme should have a low memory 

utilisation as this signifies a lightweight scheme, i.e., utilises less space. Our study 

found that memory utilisation remained constant between 0.50% and 1.60% for any 

type of attack (see Figure 4.5). 
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Figure 4.5: Memory Utilisation 

 

Although the results based on Figure 13 remained constant within a range of 0.50% 

and 1.60%, thus symbolising low memory utilisation by our XCM scheme in the 

presence of DDoS and PUE attacks. It was essential to perform a comparative 

analysis amongst the XCM, ASVM and CDLN schemes to determine which scheme 

performs the best in detecting and preventing DDoS and PUE attacks while consuming 

less memory. The results based on this comparative analysis in terms of memory 

utilisation are in section 4.5.2.4 (see Section 4.5.2.4). 

 

4.5.1.6. CPU/processor utilisation 
 

CPU utilisation, sometimes known as processor utilisation, is noted in [92] and [97] as 

the computer's processing time during programme execution. Authors in [92] and [97] 

reported that any network security scheme should result in low CPU utilisation in order 

to be deemed reasonably better performing scheme. The CPU/processor utilisation 

results show that it remained between 0.60% and 2.00% for any attack type (see 

Figure 4.6). 
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Figure 4.6: CPU/Processor Utilisation 

 
Based on the CPU utilisation results, we can observe that our XCM scheme use low 

processing time (between 0.60% to 2.00%). However, to determine whether our XCM 

scheme has a low processor utilisation in terms of detecting the DDoS and PUE 

attacks, a comparative analysis was carried out against other two related schemes, 

which are ASVM and CDLN. This comparative analysis results in terms of 

CPU/processor utilisation in presence of DDoS and PUE attacks are presented in 

section 4.5.2.5 (see Section 4.5.2.5). 

 

The next section that follows presented the comparative analysis and results of our 

XCM scheme against other two related schemes: ASVM [16] and CDLN [70] that were 

also built through the incorporation of ML algorithms. The comparative analysis was 

carried out using this study evaluation metrics, namely DR, FP, FN, memory and 

processor utilisation. 
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4.5.2. Schemes’ Comparisons by Analysis of Variance Test 
 

This section presents ANOVA test findings to determine whether our proposed XCM 

scheme is the best performing scheme as compared with the ASVM [16] and CDLN 

[70]. ANOVA test was applied because it is reported in [101] as the appropriate t-test 

method when comparing more than two populations. Furthermore, the authors in [101] 

also reported that the use of ANOVA allows testing several means simultaneously via 

a single F-test, thereby presenting a comparison of multiple populations at once. Due 

to having more than two schemes under consideration, it was found that the ANOVA 

is a suitable method to be applied in the schemes’ comparisons. 

 

Although the results (section 4.5.1) based on the XCM scheme can confirm the ability 

to detect and protect SDCRN from DDoS and PUE attacks, it was fundamental to this 

study to compare our XCM scheme against other related schemes such as ASVM [16] 

and CDLN [70]. These two schemes were selected because they were designed to 

detect and protect the SDN and CRN from DDoS and PUE attacks, respectively, in 

the same environment (SDCRN). Additionally, these two schemes were also built by 

incorporating ML algorithms, which is comparable to our XCM scheme built through 

the incorporation of ML algorithms in the form of NN concepts. 

  

In order to conduct the ANOVA test, the ML algorithms of ASVM [16] and CDLN [70] 

were implemented, and their values based on the DR, FP, FN, memory and processor 

utilisation metrics were recorded against those of XCM (see tables 4.6, 4.8, 4.10, 4.12 

and 4.15 respectively). The next five subsections that follow present the comparative 

analysis and results based on these three schemes, the XCM, ASVM and CDLN using 

DR, FP, FN, memory and processor utilisation metrics. 

 

4.5.2.1. Schemes’ Comparative Analysis and Results based on DR Metric 
 

DR is defined in [16] as the correct rate for detecting malicious attacks/traffics. As 

mentioned in [16], any security scheme that yields a high DR is deemed a better 

performing scheme. To determine which is the best performing scheme in terms of DR 

metric, each Schemes’ Algorithm at different split rate intervals were recorded and 

tabulated as in Table 4.6. 
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Table 4.6: Detection Rates (%) based on each Schemes' Algorithm 

Split Rate XCM ASVM CDLN 
0.1 99 100 99 

0.2 97 93 98 

0.3 98 98 96 

0.4 99 97 98 

0.5 97 99 97 

0.6 99 99 98 

0.7 100 99 96 

0.8 99 96 98 

0.9 98 97 94 

 

Furthermore, Figure 4.7 depict the same detection rates based on each Schemes’ 

Algorithm at different split rate intervals. Figure 4.7 illustrate that all the three schemes 

managed to yield detection rates of at least 90% in the presence of the two attacks. 

 

 
Figure 4.7: Detection Rates based on each Schemes' Algorithm 

Based on the DR data in table 4.6 and Figure 4.7, an ANOVA test was performed, and 

its output results are as presented in Table 4.7. 
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Table 4.7: ANOVA Summary Output Results – Detection Rates 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
XCM 9 886 98.44444444 1.027777778   
ASVM 9 878 97.55555556 4.527777778   
CDLN 9 874 97.11111111 2.361111111   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 8.296296296 2 4.148148148 1.571929825 0.228284113 3.402826105 

Within Groups 63.33333333 24 2.638888889    
       
Total 71.62962963 26         

 

From this ANOVA summary output results, a hypothesis testing presented as 

hypothesis testing 1 was carried out to compare the proposed XCM scheme with the 

ASVM scheme for DDoS and CDLN scheme for PUE. 

 

Hypothesis Testing 1: Comparing Schemes’ based on DR 

Step 1: Formulation 
H0: 𝜇1 = 𝜇2 = 𝜇3 

H1: at least two 𝜇’s are different 

• Let 𝜇1, 𝜇2 and 𝜇3 denote the DR averages of XCM, ASVM and CDLN schemes 

respectively. 

Step 2: Test Statistic 

Fcalculated = /0(2345336)
/0(584986)

	= :.-:<-:<-:<
=.>?<<<<<<@

	= 1.572 

Step 3: P-Value 
p-value = 0.228 

Step 4: Decision 
Reject H0 if p-value < 0.05 (5% level of significance) 

  0.228 < 0.05 (False) 

Step 5: Conclusion 
We do not reject H0 at 5% level of significance and conclude that there is insufficient 

evidence to suggest that at least two 𝜇’s are different. 
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Since we failed to reject H0 and concluded that there is insufficient evidence to suggest 

that at least two 𝜇’s are different, this indicated that the three schemes do not differ in 

the detection and protection of SDCRN from DDoS and PUE attacks based on DR 

metric. Therefore, we can conclude that the XCM, ASVM and CDLN schemes all 

perform equally in detecting and protecting SDCRN from DDoS and PUE attacks 

based on DR metric. 

 

4.5.2.2. Schemes’ Comparative Analysis and Results based on FP Metric 
 

FP is defined in [16] and [96] as “the amount of network traffic that is incorrectly 

detected and forwarded”. As stated by authors in [90] and [91], any network security 

scheme must produce low FP for it to be considered a good performing scheme. To 

determine which is the best performing scheme in terms of FP metric, each Schemes’ 

Algorithm at different split rate intervals were recorded and tabulated as in Table 4.8. 

 

Table 4.8: False Positives (%) based on each Schemes' Algorithm 

Split Rate XCM ASVM CDLN 
0.1 2 0 1 

0.2 3 6 3 

0.3 3 2 5 

0.4 1 2 3 

0.5 4 1 3 

0.6 1 1 2 

0.7 0 1 2 

0.8 1 3 2 

0.9 2 2 4 

 

In addition, the same false positives recorded in Table 4.8 were also presented in form 

of a bar chart (see Figure 4.8). Figure 4.8 show that all the three schemes managed 

to yield false positives of at most 6% in the presence of DDoS and PUE attacks. 
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Figure 4.8: False Positives based on each Schemes’ Algorithm 

 

Based on the FP data in Table 4.8 and Figure 4.8, an ANOVA test was performed, 

and its output results is as presented in Table 4.9. 

 

Table 4.9: ANOVA Summary Output Results – False Positives 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
XCM 9 17 1.888888889 1.611111111   
ASVM 9 18 2 3   
CDLN 9 25 2.777777778 1.444444444   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4.222222222 2 2.111111111 1.04587156 0.366857812 3.402826105 

Within Groups 48.44444444 24 2.018518519    
       
Total 52.66666667 26         

 

From this ANOVA summary output results, a hypothesis testing presented as 

hypothesis testing 2 was carried out to compare the proposed XCM scheme with the 

ASVM scheme for DDoS and CDLN scheme for PUE. 
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Hypothesis Testing 2: Comparing Schemes’ based on FP 

Step 1: Formulation 
H0: 𝜇4 = 𝜇5 = 𝜇6 

H1: at least two 𝜇’s are different 

• Let 𝜇4, 𝜇5 and 𝜇6 denote the FP averages of XCM, ASVM and CDLN schemes, 

respectively. 

Step 2: Test Statistic 

Fcalculated = /0(2345336)
/0(584986)

	= =.---------
=..-<A-<A-@

	= 1.046 

Step 3: P-Value 
p-value = 0.367 

Step 4: Decision 
Reject H0 if p-value < 0.05 (5% level of significance) 

  0.367 < 0.05 (False) 

Step 5: Conclusion 
We do not reject H0 at 5% level of significance and conclude that there is insufficient 

evidence to suggest that at least two 𝜇’s are different. 

 

Since we failed to reject H0 and concluded that there is insufficient evidence to suggest 

that at least two 𝜇’s are different, this indicated that the three schemes do not differ in 

the detection and protection of SDCRN from DDoS and PUE attacks based on FP 

metric. In other words, the XCM, ASVM and CDLN schemes all perform equally in the 

detection and protection of SDCRN from DDoS and PUE attacks based on FP metric. 

 

4.5.2.3. Schemes’ Comparative Analysis and Results based on FN Metric 
 

In [16] and [96], FN is defined as “the amount of network traffic incorrectly detected 

and dropped”. Also, authors in [89] and [90] weighed in by defining FN as a failure by 

the scheme to report an attacker when it appears or is present, and low FN values are 

deemed appropriate for any network security scheme. To determine whether our XCM 

scheme performed the best against ASVM and CDLN, FN values at different split rate 

intervals were recorded and tabulated as in Table 4.10. 
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Table 4.10: False Negatives (%) based on each Schemes' Algorithm 

Split Rate XCM ASVM CDLN 
0.1 3 0 4 

0.2 2 3 2 

0.3 4 4 5 

0.4 2 2 2 

0.5 1 3 3 

0.6 1 2 2 

0.7 0 1 3 

0.8 2 3 4 

0.9 3 2 2 

 

 

Moreover, the same false negatives recorded in Table 4.10 are presented graphically 

as a bar chart (see Figure 4.9). Figure 4.9 show that all the three schemes managed 

to yield false negatives of at most 5% in the presence of DDoS and PUE attacks. 

 

 
Figure 4.9: False Negatives based on each Schemes’ Algorithm 

 

Based on the FN data in table 4.10 and Figure 4.9, an ANOVA test was performed, 

and its output results are as presented in Table 4.11. 
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Table 4.11: ANOVA Summary Output Results – False Negatives 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
XCM 9 18 2 1.5   
ASVM 9 20 2.222222222 1.444444444   
CDLN 9 27 3 1.25   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4.962962963 2 2.481481481 1.774834437 0.191046155 3.402826105 

Within Groups 33.55555556 24 1.398148148    
       
Total 38.51851852 26         

 

From this ANOVA summary output results, a hypothesis testing presented as 

hypothesis testing 3 was carried out in order to provide a comparison of the proposed 

XCM scheme with the ASVM scheme for DDoS and CDLN scheme for PUE. 

 

Hypothesis Testing 3: Comparing Schemes’ based on FN 

Step 1: Formulation 
H0: 𝜇7 = 𝜇8 = 𝜇9 

H1: at least two 𝜇’s are different 

• Let 𝜇7, 𝜇8 and 𝜇9 denote the FN averages of XCM, ASVM and CDLN schemes 

respectively. 

Step 2: Test Statistic 

Fcalculated = /0(2345336)
/0(584986)

	= =:<-:<-:<-
-.?@<-:<-:<

	= 1.775 

Step 3: P-Value 
p-value = 0.191 

Step 4: Decision 
Reject H0 if p-value < 0.05 (5% level of significance) 

  0.191 < 0.05 (False) 

Step 5: Conclusion 
We do not reject H0 at 5% level of significance and conclude that there is insufficient 

evidence to suggest that at least two 𝜇’s are different. 
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Since we failed to reject H0 and concluded that there is insufficient evidence to suggest 

that at least two 𝜇’s are different, this indicated that the three schemes do not differ in 

the detection and protection of SDCRN from DDoS and PUE attacks based on FN 

metric. In essence, the XCM, ASVM and CDLN schemes all perform equally in 

detecting and protecting SDCRN from DDoS and PUE attacks based on FN metric. 

 

4.5.2.4. Schemes’ Comparative Analysis and Results based on Memory Utilisation 
 

Authors in [92], [93] and [97] described memory utilisation as the space usage on the 

RAM. In these studies, the authors noted that the scheme should have a low memory 

utilisation as this signifies a lightweight scheme, i.e., utilises less space. To determine 

whether our XCM scheme performed the best against ASVM and CDLN, memory 

utilisation values at different epochs were recorded and tabulated as in Table 4.12. 

 

Table 4.12: Memory Utilisations (%) based on each Schemes' Algorithm 

Epochs XCM ASVM CDLN 
1000 1.04 1.41 1.47 

2000 1.19 1.48 1.52 

3000 1.28 1.54 1.65 

4000 1.26 1.62 1.59 

5000 1.30 1.57 1.68 

6000 1.36 1.71 1.72 

7000 1.32 1.73 1.81 

8000 1.46 1.86 1.90 

9000 1.54 1.82 1.89 

10000 1.56 1.87 1.94 

 

Furthermore, Figure 4.10 depict the same memory utilisations based on each 

Schemes’ Algorithm at different epochs. Figure 4.10 show that all the schemes were 

able to yield less than 2% in memory utilisation. 
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Figure 4.10: Memory Utilisations based on each Schemes’ Algorithm 

 

Based on the memory utilisation data in Table 4.12 and Figure 4.10, an ANOVA test 

was performed, and its output results are as presented in Table 4.13. 

 

Table 4.13: ANOVA Summary Output Results – Memory Utilisations 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
XCM 10 13.31 1.331 0.02521   
ASVM 10 16.61 1.661 0.026232222   
CDLN 10 17.17 1.717 0.027067778   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.870106667 2 0.435053333 16.62412432 1.96862E-05 3.354130829 

Within Groups 0.70659 27 0.02617    
       
Total 1.576696667 29         

 

From this ANOVA summary output results, a hypothesis testing presented as 

hypothesis testing 4 was carried out in order to provide a comparison of the proposed 

XCM scheme with the ASVM scheme for DDoS and CDLN scheme for PUE. 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
em

or
y 

U
til

isa
tio

n 
(%

)

Number of Epochs

XCM

ASVM

CDLN



 

60       
 

Hypothesis Testing 4: Comparing Schemes’ based on memory utilisation 

Step 1: Formulation 
H0: 𝜇10 = 𝜇11 = 𝜇12 

H1: at least two 𝜇’s are different 

• Let 𝜇10, 𝜇11 and 𝜇12 denote the memory utilisation averages of XCM, ASVM and 

CDLN schemes respectively. 

Step 2: Test Statistic 

Fcalculated = /0(2345336)
/0(584986)

	= ..:?A.A????
...=>-B

	= 16.624 

Step 3: P-Value 
p-value = 0.000 

Step 4: Decision 
Reject H0 if p-value < 0.05 (5% level of significance) 

  0.000 < 0.05 (True) 

Step 5: Conclusion 
We reject H0 at 5% level of significance and conclude that there is sufficient evidence 

to suggest that at least two 𝜇’s are different. This indicates that the three schemes 

differ in the detection and protection of SDCRN from DDoS and PUE attacks based 

on memory utilisation. 

 

To further establish that a difference exists amongst the three schemes under 

consideration, a technique named the Tukey’s test was performed. Authors in [101] 

stated that a Tukey’s test is used to find the means (averages) significantly different 

from each other. Since in this study we were interested in determining which scheme 

is the best compared to the others in the detection of DDoS and PUE attacks in 

SDCRN, a Tukey’s test was found to be suitable and applicable. The Tukey Test 1 

presented to illustrate the steps, analysis, and results to determine which scheme is 

the best in terms of memory utilisation in detecting and preventing DDoS and PUE 

attacks in the SDCRN. 

 

Tukey Test 1: Memory Utilisation 

Step 1: List all the sample means in ascending order (see Table 4.14). 
Step 2: Calculate absolute differences between pairs of means (see Table 4.14). 
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Table 4.14: Means and Absolute Differences – Memory Utilisation 

  
Absolute Differences 

 
Means XCM ASVM CDLN 

XCM 1.331 0     

ASVM 1.661 0.330 0   

CDLN 1.717 0.386 0.056 0 

 

Also, Figure 4.11 depict the averages for XCM, ASVM and CDLN in terms of memory 

utilisation. From these results, we can see that the XCM scheme has the lowest 

average memory utilisation, followed by the ASVM scheme and CDLN scheme. 

 

 
Figure 4.11: Average Memory Utilisation for XCM, ASVM and CDLN 

  

Step 3: Find Q𝜶,j,n-j from Table of Percentage points of Studentised Range. 
Q𝛼,j,n-j = Q0.05,3,30-3 = Q0.05,3,27 = 3.49, where 𝛼 = level of significance, j = number of 

levels and n-j = df (within group variation). 

Step 4: Calculate D = Q𝜶,j,n-j√𝑴𝑺(𝒘𝒊𝒕𝒉𝒊𝒏)𝒏𝒓
 

D = 3.49√...=>-B
-.

 = 0.179, where nr = each category sample size. 

Step 5: Report conclusion 
Criteria: Any absolute difference value greater than D value (0.179) indicates a 

difference between the two schemes. In this case, we can conclude that a difference 
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exists between XCM and ASVM (0.330 > 0.179) and XCM and CDLN (0.386 > 0.179). 

However, no difference exists between ASVM and CDLN (0.056 < 0.179). Thus, we 

can conclude that XCM is the best performing scheme in terms of memory utilisation 

in detecting and preventing DDoS and PUE attacks. Based on this result, we can state 

that our XCM scheme is lightweight as it utilises less memory than ASVM and CDLN 

schemes. 

 

4.5.2.5. Schemes’ Comparative Analysis and Results based on CPU/Processor Utilisation 
 

CPU utilisation, sometimes known as processor utilisation, is noted in [92] and [97] as 

the computer's processing time during programme execution. Authors in [92] and [97] 

reported that any security scheme should result in low CPU utilisation to be regarded 

as a good performing scheme. To determine whether our XCM scheme performed the 

best against ASVM and CDLN, processor utilisation values at different epochs were 

recorded and tabulated as in Table 4.15. 

 

Table 4.15: CPU/Processor Utilisation (%) based on each Schemes' Algorithm 

Epochs XCM ASVM CDLN 
1000 0.96 1.43 1.47 

2000 1.12 1.57 1.59 

3000 1.28 1.59 1.63 

4000 1.36 1.68 1.71 

5000 1.40 1.75 1.78 

6000 1.53 1.84 1.86 

7000 1.69 1.87 1.92 

8000 1.78 1.91 1.94 

9000 1.81 1.93 1.97 

10000 1.89 1.97 1.98 

 

 

Figure 4.12 illustrates the same CPU utilisations based on each Schemes’ Algorithm 

at different epochs. Figure 4.12 shows that all the schemes could yield less than 2% 

in terms of CPU/processor utilisation. 
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Figure 4.12: CPU/Processor Utilisations based on each Schemes’ Algorithm 

 

Based on the CPU/processor utilisation data in Table 15 and Figure 4.12, an ANOVA 

test was performed, and its output results are as presented in table 4.16. 

 

Table 4.16: ANOVA Summary Output Results – CPU Utilisations 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
XCM 10 14.82 1.482 0.097151111   
ASVM 10 17.54 1.754 0.032671111   
CDLN 10 17.85 1.785 0.031894444   
       
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 0.555846667 2 0.277923333 5.155745646 0.012692162 3.354130829 

Within Groups 1.45545 27 0.053905556    
       
Total 2.011296667 29         
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From this ANOVA summary output results, a hypothesis testing presented as 

hypothesis testing 5 was carried out to compare the proposed XCM scheme with the 

ASVM scheme for DDoS and CDLN scheme for PUE. 

Hypothesis Testing 5: Comparing Schemes’ based on processor utilisation 

Step 1: Formulation 
H0: 𝜇13 = 𝜇14 = 𝜇15 

H1: at least two 𝜇’s are different 

• Let 𝜇13, 𝜇14 and 𝜇15 denote the processor utilisation averages of XCM, ASVM 

and CDLN schemes. 

Step 2: Test Statistic 

Fcalculated = /0(2345336)
/0(584986)

	= ..=BB@=????
...A?@.AAA>

	= 5.156 

Step 3: P-Value 
p-value = 0.013 

Step 4: Decision 
Reject H0 if p-value < 0.05 (5% level of significance) 

  0.013 < 0.05 (True) 

Step 5: Conclusion 
We reject H0 at 5% level of significance and conclude that there is sufficient evidence 

to suggest that at least two 𝜇’s are different. This indicates that the three schemes 

differ in the detection and protection of SDCRN from DDoS and PUE attacks based 

on processor utilisation. 

 

To further establish that a difference exists amongst the three schemes under 

consideration, a technique named the Tukey’s test was performed. Authors in [101] 

stated that a Tukey’s test is used to find the means (averages) significantly different 

from each other. Since in this study we were interested in determining which scheme 

is the best compared to the others in the detection of DDoS and PUE attacks in 

SDCRN, a Tukey’s test was found to be suitable and applicable. The Tukey Test 2 

presented illustrates the steps, analysis, and results to determine which scheme is the 

best in terms of processor utilisation in detecting and preventing DDoS and PUE 

attacks in the SDCRN. 
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Tukey Test 2: CPU/Processor Utilisation 

Step 1: List all the sample means in ascending order (see Table 4.17). 
Step 2: Calculate absolute differences between pairs of means (see Table 4.17). 

 
Table 4.17: Means and Absolute Differences – CPU/Processor Utilisation 

  
Absolute Differences 

 
Means XCM ASVM CDLN 

XCM 1.482 0     

ASVM 1.754 0.272 0   

CDLN 1.785 0.303 0.031 0 

 

Additionally, Figure 4.13 depict the average CPU utilisation for XCM, ASVM and CDLN 

schemes. These results show that the CDLN scheme has the highest average CPU 

utilisation, followed by ASVM scheme and lastly by XCM scheme. 

 

 
Figure 4.13: Average CPU Utilisation for XCM, ASVM and CDLN 

 

Step 3: Find Q𝜶,j,n-j from Table of Percentage points of the Studentised Range. 
Q𝛼,j,n-j = Q0.05,3,30-3 = Q0.05,3,27 = 3.49, where 𝛼 = level of significance, j = number of 

levels and n-j = df (within group variation). 

Step 4: Calculate D = Q𝜶,j,n-j√𝑴𝑺(𝒘𝒊𝒕𝒉𝒊𝒏)𝒏𝒓
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D = 3.49√...A?@.AAA>
-.

 = 0.256, where nr = each category sample size. 

Step 5: Report conclusion 
Criteria: Any absolute difference value greater than D value (0.256) indicates a 

difference between the two schemes. In this case, we can conclude that a difference 

exists between XCM and ASVM (0.272 > 0.256) and XCM and CDLN (0.303 > 0.256). 

However, no difference exists between ASVM and CDLN (0.031 < 0.256). Therefore, 

we can conclude that XCM is the best performing scheme in terms of CPU/processor 

utilisation in detecting and preventing DDoS and PUE attacks. Based on this result, 

we can state that the XCM scheme is not CPU intensive than ASVM and CDLN 

schemes. 

 

4.5.3. Summary of Comparative Results Among the Schemes 
 

Table 4.18 summarises the comparative results of the XCM, ASVM and CDLN 

schemes based on the DT, DR, FP, FN, memory, and processor utilisation. These 

results are summary statistics from the findings in Sections 4.5.1 and 4.5.2. According 

to [101], the mean is a not useful statistic in the comparative analysis as outliers or 

extreme values influence it. Hence, this study used statistical methods and techniques 

such as ANOVA and Tukey, respectively, in a comparative analysis of this study as 

they are the most appropriate. 

 

Table 4.18: Comparative Results of XCM, ASVM and CDLN 

Scheme Name 

DT (µs) - 

Frequency 

DR (%) - 

Average 

FP (%) - 

Average 

FN (%) - 

Average 

Memory 

Utilisation 

(%) - 

Average 

CPU 

Utilisation 

(%) – 

Average 

XCM 4.93 98.44 1.89 2.00 1.33 1.48 

ASVM 4.42 97.56 2.00 2.22 1.66 1.75 

CDLN 4.79 97.11 2.78 3.00 1.72 1.79 

Method/Technique Descriptive Anova Anova Anova 

Anova and 

Tukey 

Anova and 

Tukey 

Best Scheme ASVM All All All XCM XCM 

 

The results confirm that our XCM scheme is superior to ASVM and CDLN in terms of 

memory and processor utilisations, whilst ASVM is superior to XCM and CDLN in 

terms of DT. However, no scheme is the best performing DR, FP, and FN, as all 
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schemes perform equally in detecting and preventing DDoS and PUE attacks. Based 

on these findings, we can attest that our XCM scheme supersedes the ASVM and 

CDLN schemes since our XCM scheme is optimised for both DDoS and PUE attacks 

in SDCRN whilst the ASVM and CDLN schemes are optimised only for DDoS and 

PUE attacks in SDN and CRN respectively. Thus, our XCM scheme is effective, 

efficient, and lightweight for detecting and preventing DDoS and PUE attacks in 

SDCRN. 

 

4.6. Conclusion 
 

This chapter managed to provide the experimental results and analysis of this study. 

It began with data availability discussion, followed by determining an ideal number of 

traffic data examples – both legitimate and malicious traffics. It was then tailed to 

present experimental simulations and their corresponding results based on the six-

performance metrics under study consideration: DT, DR, FP, FN, memory and CPU 

utilisation. The chapter concluded by carrying out ANOVA and Tukey’s tests that 

produced results on which of the three schemes, namely XCM, ASVM and CDLN, 

would be the best way to detect and prevent DDoS and PUE in SDCRN. The next 

chapter that follows presents the discussion, conclusions and recommendations about 

this research study. 
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5. CHAPTER 5: DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS 

 
5.1. Introduction 
 

This chapter summarises the research study, discussion of the research findings, 

conclusions, and recommendations based on the experimental simulations conducted 

in Chapter 4. This study investigated the design of an effective XCM scheme for 

SDCRN in addressing the effects of DDoS and PUE attacks. An effective, efficient and 

lightweight security scheme that can utilise less memory and processing time in the 

mitigation of DDoS and PUE attacks in SDCRN was designed and tested in this 

research study. The following section presented the summary of the research study. 

 

5.2. Summary of the Research Study 
 

The background of this research study was done by reviewing previous related studies 

from the literature. According to [6] and [9], SDN and CRN bring in greater functionality 

for managing networks and efficient use of spectrum, respectively. Thus, the 

integration of SDN with CRN amalgamates the advantages mentioned above. But the 

SDN architecture and CRN technology are both vulnerable to DDoS [19], [13] and 

PUE [14], [24] attacks. Therefore, an integration of SDN with CRN will likely result in 

the effects of these two attacks compounded as the architecture and technology are 

already vulnerable to these two attacks. 

 

This research study designed and tested the effectiveness of the XCM scheme in 

addressing DDoS and PUE attacks in the SDCRN environment. This was inspired by 

the reality that these two attacks have not been addressed in SDCRN integrated 

environment whilst the authors such as [13], [14] and [16-18] revealed that these two 

attacks are the most severe in SDN and CRN. 

 

The research questions of this study were: 

i. Which attributes of DDoS and PUE attacks can be detected and measured in 

SDCRN? 
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ii. What is the most effective technique that can address the DDoS and PUE in 

SDCRN? 

iii. What is the best strategy for optimising the most effective DDoS and PUE 

security scheme to efficiently utilise memory and CPU? 

 

The objectives of this research study were: 

i. To investigate the network attributes of DDoS and PUE attacks which can be 

detected and measured. 

ii. To explore the most effective technique that can address the DDoS and PUE. 

iii. To evaluate the efficiency of the XCM scheme in terms of memory and 

processor utilisation. 

iv. To perform a comparative analysis of the XCM scheme compared to the 

existing DDoS and PUE schemes designed for SDN and CRN, respectively. 

 

The hypothesis of this research study was: 

• the XCM scheme will effectively detect and protect the SDCRN from the effects 

of DDoS and PUE attacks. 

 

The literature review was provided in Chapter 2 and it looked at the effects of DDoS 

attacks on SDN as well as the effects of PUE attacks in CRN. The preventive security 

mechanisms proposed for mitigating the DDoS in SDN and PUE in CRN were 

thoroughly investigated. Also, the conceptual framework constructed for this study was 

presented. This conceptual framework was established based on the principle of SDN 

and CRN commonalities. 

 

The research methodology used in this study was an experimental simulation and its 

approach was quantitative. The SDCRN network model was proposed, and algorithms 

developed for traffic dataset generation, i.e., non-malicious (normal) and malicious 

traffic, with duration and src_bytes as network attributes. We then trained the 

generated traffic dataset in Octave to teach our XCM scheme designed with the 

incorporation of NN concepts on detecting and preventing similar attacks in future in 

similar environments. During the classification phase, the XCM scheme produced four 

attack outcomes which are DDoS, PUE, DDoS and PUE, and neither DDoS nor PUE 

(normal traffic). 
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Following the NN training, the XCM scheme was implemented on the test dataset that 

was generated in a similar SDCRN environment in MATLAB. This was meant to 

evaluate its performance in terms of DT, DR, FP, FN, utilisation of memory and 

processor. These six metrics were used to evaluate the performance of the XCM 

scheme primarily because studies such as [16], [89-93] regard them as the most 

effective performance evaluation metrics.  

 

The next section that follows presents our study findings' discussion based on the six-

performance metrics cited above. The discussion of our study findings was centred on 

providing interpretations to our study results through comparing and contrasting them 

with the results from other related studies that have conducted in the past. 

 

5.3. Results Discussion and Interpretation 
 

In this section, our study findings are presented and discussed. Our study findings are 

compared and contrasted to other related studies’ results. The performance of XCM 

scheme is displayed in the statistical results as shown in Table 5.1 using the six 

metrics under consideration for this study: DT, DR, FP, FN, memory, and CPU 

utilisation. 

 

Table 5.1: Statistical Results for our proposed XCM Scheme Performance Metrics 

Performance Metric Values 
DT (𝜇s) 4.93 

DR (%) 100 

FP (%) 0 

FN (%) 0 

Memory Utilisation (%) 1.33 

CPU Utilisation (%) 1.48 

 

The findings indicate that our XCM scheme can detect the DDoS and PUE attacks in 

SDCRN within a short period (smaller than 5𝜇s). This shows that our XCM scheme 

has a rapid response time in detecting DDoS and PUE attacks in the SDCRN. Hence, 
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our DT findings are consistent with the works of [90] that also recorded a short period 

(less than 2 seconds) for PUE attack in CRN. Additionally, [90] noted that for a 

networking scheme to be classified as a suitable performing security mechanism, a 

lesser DT is expected. 

 

Our findings also indicate that our XCM scheme achieved a high detection rate of 

100%. This demonstrates that our XCM scheme performs very well on correctly 

detecting non-malicious (normal) and malicious (abnormal) traffics in SDCRN 

integrated environment. Henceforth, our studies' DR findings are consistent with the 

findings obtained in studies such as [16] and [70]. In these studies, detection rates of 

99% for DDoS in SDN and 97% for PUE in CRN were achieved. Moreover, [16] added 

that for a security scheme to be considered a good one, the DR values achieved 

should always be high, thus closer to 100%. 

 

Furthermore, in the presence of DDoS and PUE, the XCM scheme can achieve FP 

and FN rates of 0%. This shows that our XCM scheme does not misclassify these two 

attacks when subjected to them in SDCRN integrated environment. Our findings on 

FP and FN rates are consistent with the studies such as [90] and [91], who also 

obtained lower FP and FN rates in the presence of either DDoS in SDN or PUE in 

CRN. Studies as [89] confirmed that FP and FN rates should always be close to 0% 

for a network security scheme to be considered as a good scheme. Thus, our XCM 

scheme managed to achieve lower FP and FN rates as per the assertation of [89]. 

Therefore, we can conclude that our scheme is suitable for securing the SDCRN 

integrated environment against either DDoS or PUE attacks. 

 

Additionally, lower memory and CPU utilisations were achieved in the studies of [92], 

[93] and [97]. These results are similar to the results obtained in our studies for 

memory and CPU utilisation. In our study, the XCM scheme was found to consume 

less resources in memory and processor time (less than 2%). Thus, our proposed 

XCM scheme can provide a secure SDCRN integrated environment from DDoS and 

PUE attacks with lower memory and processor utilisation. 

Finally, a comparison was conducted among the XCM, ASVM and CDLN to determine 

which of them would be the best scheme in detecting and preventing DDoS and PUE 

attacks in SDCRN. Table 5.2 displays the summary of comparative results of the XCM, 
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ASVM and CDLN schemes based on the DT, DR, FP, FN, memory and processor 

utilisation. 

 

Table 5.2: Comparative Results of XCM, ASVM and CDLN 

Scheme Name 

DT (µs) - 

Frequency 

DR (%) - 

Average 

FP (%) – 

Average 

FN (%) - 

Average 

Memory 

Utilisation 

(%) – 

Average 

CPU 

Utilisation 

(%) - 

Average 

XCM 4.93 98.44 1.89 2.00 1.33 1.48 

ASVM 4.42 97.56 2.00 2.22 1.66 1.75 

CDLN 4.79 97.11 2.78 3.00 1.72 1.79 

Method/Technique Descriptive Anova Anova Anova 

Anova and 

Tukey 

Anova and 

Tukey 

Best Scheme ASVM All All All XCM XCM 

 

The findings indicate that the XCM scheme is the best scheme under memory and 

processor utilisation, whilst ASVM scheme is the best scheme under DT. The findings 

also showed that all the three schemes performed the same in terms of DR, FP and 

FN. However, since our XCM scheme is optimised for both DDoS and PUE attacks, 

we can conclude that our XCM scheme is superior to ASVM and CDLN, optimised for 

DDoS in SDN and PUE in CRN. 

 

Overall, our findings show that the results of our XCM scheme are consistent with 

results of studies by [5], [16] on DDoS attacks results in SDN as well as [24], [70] on 

PUE attacks result in CRN. Furthermore, since our XCM scheme was designed for 

the detection and prevention of DDoS and PUE attacks in SDCRN, our results provide 

evidence for us to conclude that our scheme performs better than other schemes 

optimised separately for DDoS in SDN and/or PUE in CRN. Hence, our proposed XCM 

scheme is effective in addressing the effects of the DDoS and PUE attacks in SDCRN 

integrated environment. 

 

 

5.4. Future Work and Recommendations 
 

In the future, it is hoped that the researchers of this study will advance the general 

knowledge about security mechanisms in the mitigation of security attacks in SDCRN 
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by increasing the number of security attacks being investigated. It is also hoped that 

this research study could serve as a benchmark for future related studies in SDCRN 

integrated environment. 

 
5.5. Final Conclusion 
 

This study proposed an XCM scheme that effectively address DDoS and PUE attacks 

in the SDCRN. The results confirms that our XCM scheme took less time of about 4.93 

𝜇s in detecting both DDoS and PUE attacks in SDCRN. Also, the results confirm our 

XCM scheme managed to achieve a high DR of 100% for the DDoS and PUE in 

SDCRN. Furthermore, the results confirm our XCM scheme accomplished low rates 

of 0% in terms of FP and FN in the presence of either DDoS or PUE attacks. In terms 

of resource usage, the results confirm our XCM scheme is lightweight as it uses less 

resources of 1.33% and 1.48% for memory and processor time, respectively. 

Additionally, when compared to ASVM optimised for DDoS and CDLN optimised PUE, 

the results prove our XCM performance supersedes their performance. Finally, our 

results can attest XCM scheme is effective in detecting and preventing DDoS and PUE 

attacks in SDCRN integrated environments. The results of the XCM were therefore 

the best and superior to the ASVM and CDLM.  This can be attributed to the fact that 

the XCM scheme is optimised for DDoS and PUE attacks.  
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6. APPENDICES 
 
Appendix A: XCMDeepLearning Function 
 
function [W1, W2] = XCMDeepLearning(W1, W2, i, c_O) 

a = 0.01; 

 

N = 212; 

for j = 1:N 

  transposed_I = i(j,:)'; 

  

  i_O_H_L = W1 * transposed_I; 

  o_O_H_L = XCMSigmoid(i_O_H_L); 

  

  i_O_O_N = W2 * o_O_H_L; 

  f_O = XCMSigmoid(i_O_O_N); 

  

  c_O_transpose = c_O(j,:)'; 

  e = c_O_transpose - f_O; 

  

  d = e; 

  

  e_O_H_L = W2' * d; 

  d1 = (i_O_H_L > 0).*e_O_H_L; 

  

  a_O_W2 = a * d * o_O_H_L; 

  a_O_W1 = a * d1 * transposed_I; 

  

  W1 = W1 + a_O_W1; 

  W2 = W2 + a_O_W2; 

end 

end 
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Appendix B: XCMSigmoid Function 
 
function y = XCMSigmoid(x) 

  y = 1/(1+exp(-x)); 

end 

 
Appendix C: XCMTrainingNetwork Script 
 
i = [ 

6.21 397; 
8.46 568; 
5.41 438; 
5.17 195; 
9.07 513; 
9.44 663; 

10.01 234; 
9.43 310; 
8.39 557; 
9.48 439; 
9.77 110; 
8.99 564; 
6.21 438; 
4.27 336; 
6.97 565; 
7.32 837; 
7.83 130; 
7.74 455; 
5.94 280; 
4.09 790; 
4.07 807; 
9.48 454; 
8.25 633; 
6.90 223; 
6.72 892; 
5.97 321; 
6.06 908; 
4.56 326; 
3.81 397; 
3.69 263; 

10.07 408; 
5.32 677; 
8.55 640; 
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9.49 99; 
8.79 447; 
5.90 363; 
6.13 805; 
3.51 543; 
5.51 808; 
6.53 139; 
9.34 580; 
3.63 650; 
9.04 725; 
4.50 242; 
9.65 487; 
9.35 427; 
4.17 258; 
6.85 178; 
4.73 111; 
7.05 422; 
9.27 78; 
3.94 538; 
7.02 771; 
2.22 44; 
2.29 69; 
2.01 60; 
1.68 92; 
2.49 49; 
2.23 95; 
3.00 57; 
2.23 80; 
2.07 88; 
2.77 124; 
2.18 27; 
2.15 133; 
1.63 162; 
2.87 52; 
2.87 84; 
1.69 123; 
2.37 153; 
2.14 48; 
2.99 22; 
2.85 28; 
1.85 147; 
1.37 88; 
1.99 44; 
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1.44 103; 
2.96 84; 
1.50 19; 
2.64 9; 
2.03 71; 
1.61 98; 
1.51 57; 
2.52 42; 
1.81 37; 
2.80 149; 
2.29 114; 
1.74 126; 
2.87 112; 
2.54 82; 
2.30 116; 
2.22 131; 
2.87 28; 
1.67 5; 
2.72 60; 
1.82 24; 
1.54 158; 
1.38 32; 
2.46 48; 
2.40 4; 
2.16 165; 
2.49 76; 
1.61 73; 
1.71 73; 
1.46 147; 
2.12 43; 
2.31 289; 
2.84 476; 
3.84 538; 
2.09 147; 
3.42 455; 
2.97 373; 
2.55 433; 
2.34 171; 
1.90 144; 
4.01 255; 
2.87 504; 
2.18 185; 
2.93 38; 
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2.84 565; 
3.13 100; 
3.08 160; 
3.21 519; 
2.61 296; 
3.66 97; 
2.75 153; 
3.44 479; 
3.50 111; 
3.43 89; 
2.04 227; 
4.06 492; 
2.97 362; 
2.00 443; 
2.97 162; 
2.00 518; 
2.56 76; 
3.80 561; 
4.10 4; 
1.90 19; 
3.77 431; 
2.30 25; 
3.81 326; 
3.98 538; 
2.44 124; 
4.17 219; 
3.50 302; 
3.48 394; 
2.43 75; 
2.10 138; 
3.20 535; 
4.10 93; 
3.16 15; 
2.87 61; 
2.05 406; 
2.35 307; 
2.65 564; 
3.06 517; 
3.19 547; 
2.49 251; 
5.13 12716; 
6.50 32844; 
7.72 32280; 
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3.51 13524; 
8.52 22295; 
6.62 35435; 
7.65 24681; 
5.22 13680; 
3.93 12672; 

11.11 31620; 
6.26 13608; 
4.69 24605; 
4.78 6156; 
8.15 29380; 
8.98 8400; 
5.21 19680; 
7.61 79407; 
5.59 14208; 

10.94 2134; 
7.84 4284; 
6.36 70413; 
4.80 9768; 
6.83 3916; 
2.94 23381; 

12.02 41328; 
4.46 6878; 
5.28 3987; 
6.03 11502; 
3.22 50764; 
3.87 4332; 
9.58 23562; 
7.42 148; 
5.32 2831; 
8.63 49134; 
4.00 3150; 

10.93 36512; 
10.11 44116; 

5.61 14384; 
9.26 28689; 

10.05 8456; 
5.81 1970; 
6.61 4500; 
3.82 3312; 
4.93 84530; 
5.66 2976; 
7.77 720; 
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6.89 244; 
4.43 66990; 
5.85 23332; 
4.27 41172; 
5.23 37741; 
4.66 80409; 
5.28 10793; 

 ]; 

 

c_O = [ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
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3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
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4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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4 
4 
4 
4 
4 
4 
4 
4 

]; 

 

W1 = 2*rand(1,2)-1; 

W2 = 2*rand(1,2)-1; 

 

for epoch = 1:10000 

  [W1, W2] = Deep Learning(W1, W2, i, c_O); 

end 

 

save('XCMDeepNeuralNetwork.mat') 

 
Appendix D: XCMTestingDeepLearning Script 
 
load('XCMDeepNeuralNetwork.mat') 

 

i = [ 

6.39 637; 
9.41 168; 
6.84 524; 
9.18 92; 
3.44 513; 
3.77 782; 
6.81 457; 
6.85 855; 
3.55 429; 
9.44 779; 
8.85 503; 
9.71 359; 
4.29 546; 
5.51 94; 
9.84 518; 
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3.51 917; 
4.15 648; 
9.06 688; 
6.33 360; 
5.39 766; 
7.27 586; 
6.14 777; 
2.70 61; 
1.90 89; 
2.04 142; 
2.58 130; 
3.03 141; 
2.63 59; 
2.01 153; 
1.40 57; 
1.55 160; 
1.98 57; 
2.11 94; 
1.69 118; 
2.21 130; 
2.63 105; 
2.45 114; 
2.71 104; 
1.48 168; 
2.98 42; 
1.53 20; 
1.86 38; 
2.83 15; 
3.00 145; 
2.40 445; 
3.15 479; 
2.49 558; 
2.97 51; 
4.00 35; 
2.25 360; 
3.41 507; 
1.83 292; 
2.85 457; 
2.08 275; 
3.68 94; 
2.25 1; 
3.41 389; 
3.28 99; 
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2.72 8; 
4.17 431; 
3.37 207; 
2.80 85; 
2.46 156; 
3.21 168; 
1.99 279; 
3.04 352; 
6.48 27145; 
5.99 42631; 
5.08 79236; 
7.66 6630; 

12.12 4935; 
5.92 21240; 
6.85 77571; 
2.56 16644; 
4.42 73120; 
4.12 15675; 
7.76 8836; 
3.80 118; 
7.54 50570; 
8.63 10395; 
6.66 912; 

11.30 44824; 
4.99 34776; 
8.34 3570; 
3.76 3120; 
5.97 6384; 
5.63 4185; 
9.12 51040; 

]; 

 

N = 88; 

for j = 1:N 

  transposed_I = i(j,:)'; 

  

  i_O_H_L = W1 * transposed_I; 

  o_O_H_L = XCMSigmoid(i_O_H_L); 

  

  i_O_O_N = W2 * o_O_H_L; 
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  f_O = XCMSigmoid(i_O_O_N); 

end 

 
Appendix E: Detection Rates (%) based on each Schemes’ Algorithm 
 

Split Rate XCM ASVM CDLN 
0.1 99 100 99 

0.2 97 93 98 

0.3 98 98 96 

0.4 99 97 98 

0.5 97 99 97 

0.6 99 99 98 

0.7 100 99 96 

0.8 99 96 98 

0.9 98 97 94 

 
 
Appendix F: Analysis of Variance – Detection Rates 
 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   
XCM 9 886 98.44444444 1.027777778   
ASVM 9 878 97.55555556 4.527777778   

CDLN 9 874 97.11111111 2.361111111   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 8.296296296 2 4.148148148 1.571929825 0.228284113 3.402826105 

Within Groups 63.33333333 24 2.638888889    

       

Total 71.62962963 26         
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Appendix G: False Positives (%) based on each Schemes’ Algorithm 
 

Split Rate XCM ASVM CDLN 
0.1 2 0 1 

0.2 3 6 3 

0.3 3 2 5 

0.4 1 2 3 

0.5 4 1 3 

0.6 1 1 2 

0.7 0 1 2 

0.8 1 3 2 

0.9 2 2 4 

 
 
 
Appendix H: Analysis of Variance – False Positives 
 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

XCM 9 17 1.888888889 1.611111111   

ASVM 9 18 2 3   

CDLN 9 25 2.777777778 1.444444444   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 4.222222222 2 2.111111111 1.04587156 0.366857812 3.402826105 

Within Groups 48.44444444 24 2.018518519    

       

Total 52.66666667 26         
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Appendix I: False Negatives (%) based on each Schemes’ Algorithm 
 

Split Rate XCM ASVM CDLN 
0.1 3 0 4 

0.2 2 3 2 

0.3 4 4 5 

0.4 2 2 2 

0.5 1 3 3 

0.6 1 2 2 

0.7 0 1 3 

0.8 2 3 4 

0.9 3 2 2 

 
 
 
Appendix J: Analysis of Variance – False Negatives 
 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

XCM 9 18 2 1.5   

ASVM 9 20 2.222222222 1.444444444   

CDLN 9 27 3 1.25   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 4.962962963 2 2.481481481 1.774834437 0.191046155 3.402826105 

Within Groups 33.55555556 24 1.398148148    

       

Total 38.51851852 26         
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Appendix K: Memory Utilisations (%) based on each Schemes’ Algorithm 
 

Epochs XCM ASVM CDLN 
1000 1.04 1.41 1.47 

2000 1.19 1.48 1.52 

3000 1.28 1.54 1.65 

4000 1.26 1.62 1.59 

5000 1.30 1.57 1.68 

6000 1.36 1.71 1.72 

7000 1.32 1.73 1.81 

8000 1.46 1.86 1.90 

9000 1.54 1.82 1.89 

10000 1.56 1.87 1.94 

 
 
Appendix L: Analysis of Variance – Memory Utilisations 
 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

XCM 10 13.31 1.331 0.02521   

ASVM 10 16.61 1.661 0.026232222   

CDLN 10 17.17 1.717 0.027067778   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 0.870106667 2 0.435053333 16.62412432 1.96862E-05 3.354130829 

Within Groups 0.70659 27 0.02617    

       

Total 1.576696667 29         
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Appendix M: CPU Utilisations (%) based on each Schemes’ Algorithm 
 

Epochs XCM ASVM CDLN 
1000 0.96 1.43 1.47 

2000 1.12 1.57 1.59 

3000 1.28 1.59 1.63 

4000 1.36 1.68 1.71 

5000 1.40 1.75 1.78 

6000 1.53 1.84 1.86 

7000 1.69 1.87 1.92 

8000 1.78 1.91 1.94 

9000 1.81 1.93 1.97 

10000 1.89 1.97 1.98 

 
 
Appendix N: Analysis of Variance – CPU Utilisations 
 

Anova: Single Factor       

       

SUMMARY       

Groups Count Sum Average Variance   

XCM 10 14.82 1.482 0.097151111   

ASVM 10 17.54 1.754 0.032671111   

CDLN 10 17.85 1.785 0.031894444   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 0.555846667 2 0.277923333 5.155745646 0.012692162 3.354130829 

Within Groups 1.45545 27 0.053905556    

       

Total 2.011296667 29         
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Appendix O: Tukey’s Test Analysis – Memory Utilisation 
 

  
Absolute Differences 

 
Means XCM ASVM CDLN 

XCM 1.331 0     

ASVM 1.661 0.330 0   

CDLN 1.717 0.386 0.056 0 

 
 
Appendix P: Tukey’s Test Analysis – CPU Utilisation 
 

  
Absolute Differences 

 
Means XCM ASVM CDLN 

XCM 1.482 0     

ASVM 1.754 0.272 0   

CDLN 1.785 0.303 0.031 0 

 
 
Appendix Q: Percentage Points of the Studentised Range 
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