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PREFACE

This essay accounts for a fifth of the requirements
for the masters degree. Four papers have already been written
to this end. Originality of research is not claimed, and the
essay is to be regarded as the equivalent of an examination

paper, and as a self-preparation for doctorate research.

Part I of the essay deals with what the writer calls
a form of 'inverseness' of certain distributions. Common
univariate distributions are treated, and multivariate
extensions derived. Limiting forms of 'inverseness' are also

given.

In Part II greater attention is given to the inverse
normal distribution. Its properties and characteristics are
studied. Estimation of parameters and tests of hypotheses
concerning them receive attention. Reference is repeatedly

made to Wald's evaluation of a certain Fourier transform:
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A short account is given of how the inverse normal
distribution can be regarded as a sampling distribution in a

renewal process when the sampling is from a normal parent.

The last portion of the essay gives a brief account
of distributions related to the inverse normal distribution,

and of the distributions of the sample arithmetic and harmonic

means.

I am indebted to my tutor and supervisor, Prof. P.C.D.
Oliver, for suggesting this study, and for valuable advice,

contributions and comments in the preparation of this essay.

I also thank Mrs E.L. Pretorius for typing the

script.
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PART I

Atype of 'inverseness' of certain distributions



Chapter 1

COMMON DISTRIBUTIONS

1:1 The inverse Gaussian distributions of
Tweedie and that of Wald

In papers by Tweedie [l1] and Schrodinger (see
Moran [Zil the name 'inverse Gaussian distributions'
referred to a family of continuous distributions of a random

variable X>0 whose density function has any one of the forms

1% -ukx+x(2a)%—l/2x -3
(1) fx(x;a,k) = TE?TEE x /2
. _A(x=p)? 4
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i X T 2x =34
(iv) fx(x:¢,k) = T X

Where the parameters o, A and ¢ are real and positive. It
was found that certain properties of these distributions were
exhibited in the study of Brownian movement. The same type

of distribution is derived {n comrnection With a special amse

Wald's....
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sequential likelihood ratio test. 1In Wald's sense it refers
to the approximate distribution of N, the number of obser-
vations needed to terminate the process of sampling. It is
'inverse' in the sense that it is the number of observations
that is of interest, not the outcome as such. The two cases
above will be referred to in more detail in Part II of this
essay. In the present discussion, the word 'inverse' will
be used in a broader sense and will have meanings like
'negative', 'ratio', 'reversal of normal order of procedure'

and 'complementary events' as we illustrate in the sequel.

1.2 Univariate distributions

For the sake of reference, we repeat the well-known
'inverse' relationships that exist between some common

standard distributions.

The beta and binomial distributions

If X has beta distribution with parameters n and

k and if Y has binomial distribution with parameters m and p,

we know that



P n
! =g -k 2 ! i
f (k—l)?(n—k)g X (1-y) " fay = Ec'r"”(n“ﬁ:Tc')"T % (1)
O =
i.e. P(Y<p] = l...P(x<k)

or equivalently

Fy (p)+Fx(k-1) =1

From (1.1) we see that the events {Y<p} and {Xsk-1} are
complements of one another. 1In words (1.1) would mean: the

ratio of the number of 'successes' out of n trials is less

than a number p if the number of 'failures' is more than k.

The Poission and gamma distributions

For a variate from Poisson distribution with

parameter A, it is easily seen that

X
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i.e. P(Xgx) = P(Y>)) or P(X<x) = 1-P(Y<X)

o DG FX(X)+Fy(A) = 1.



The 'inverseness' is as in the binomial-beta case above.

(1.2) is justified since we know that in a homogenuous Poisson
process the number of events X is a Poisson variate whilst

the waiting time Y up to the x-th event has gamma distribution.
In other words instead of counting the number of events in a
fixed length of time, we interest ourselves in the length of
time when the x-th event occurs i.e. there is a reversal of

r6les between X and Y.

The binomial and the negative binomial distributions,

We know that
P(X<r) = 1-P(Y<n-r)
i.e. F (r=-1)+F (n-r) =1 TR (1.3)
X Y

where X has binomial distribution with parameters n and p,
and Y has negative-binomial distribution with parameters r
and p. Here the 'inverseness' is that instead of observing
the number of 'successes' X in n trials, we may do the
opposite and concern ourselves with the number of trials

needed until exactly x 'successes' are obtained. The prefix



'negative'

is therefore synonymous to 'inverse'. Infact

some authors (e.g. Wilks) term the variate Y as having

binomial-waiting time distribution.

The beta and the negative-hypergeometric distributions.

An analogous relation could not be found in this

instance.

However, let N have negative-hypergeometric

distribution with parameters, M, p and x, then

=1 M-n
Sl )
= - _x-1" Mp-Xx
P (N=n) (M
Mp}
X Mp M-Mp
_ n\x ) (h=x )
M
(n)
X M-Mp :
_ n{n-x) {zn_l(l-zim_ndz
B(x+1,Mp-x+1)
L T
Dieulefait [4] has shown, using (1.4), that the random

variable Y

N-x
M-Mp

has a limiting beta (x,Mp-x+1) distribution

in the following manner: The characteristic function of N

is derived,

and is found to be
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o

where 6 = it.

The limiting distribution of Y is investigated by considering

its characteristic function i.e.

X N 0
eM—MpEEeM—Mp J

¢y(8)

. S Y
B(x,Mp-x+1) f
(8]

1

b (1-2)"P7 (1-z4z (14— w(e)])

1 X
B(x,Mp-x+1) f’z M-Mp T M-Mp

o]

(where %}%% + 0 as(M-Mp)~+ =)

Thus on taking the limit as (M-Mp) + =, we have

1

g _ 1 x-1,.__ . Mp-x_0z

cseses (1.6)



But the right hand side of (1.6) defines the characteristic
function of a beta variate. This establishes a (limiting)
relationship between the hypergeometric and the beta distri-
butions. Notice that it is not the limiting equivalent of
the relation between binomial and beta distributions. Nor

is it the same as the limiting distribution of the proportion

X 7 ¥ § 5
of 'successes', o ¢ in the n binomial trials.

]
9
0]
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I
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n

(1+ple " -11)"

i = 2
(1+p[%§-+é%%%-+...])“

so  lim ¢y (t) = eP'® = ¢ (t)
n+w© q

which is a useless result since p is a constant. Inverting

X

the ré6les of 'successes' and 'failures', it follows that EE

in the long-run has a beta (Mp-x+1,x) distribution.



1.3 A multivariate extension of the binomial-beta
relationship

Consider the random variables xl,...xk from a

multinomial distribution with parameters

n,pl,...,pk_l,pk=l—pl—...—pk_1 and x,6+x +...+xk=n. For k=2,

1 2
then
n-i n-xg2
. ; \ \ 1 g
P(X,>1,X,2]) = > X1!1X,! ?n-xl—Xz)u?l Pz 2 (1=p1=pz) " 1772

X2=7 x1=1

nipx2 \— 1 e
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pl Pz . .
- [(n+1) §/ g’ vl-luj_l(l—v—u)n_l_Jdudv

r{i)r (3)r (n=-i=-j+1)
o]

i.e. P(X;2i,X,=j) = P(U<p;,V<p2)

where U and V have a joint Dirichlet distribution (one of the
multivariate extensions of the beta distribution) with
parameters n, i and j. We shall now prove by induction the

k-variate extension.

Suppose for k=r

P1 P, r

n =
—-
o}
'—l
(]
—
S—
S
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—
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n =
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n!
r r pw ‘
(n=2_ij)t I (i5-1)! .
j=1 j=1
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r
r xy r+l . [n xr+1]_j=1xj
nip T+ \ Py )(1-ij)
— r+1 ‘ \ j=1 j=1
X [ T r+1 r
| r+1° i (n-} xj) !{1’[ xj!)
Xr+1 Xy %y 1=1 1=
Xr+1
\ n!prf_1 \ \ (n—xr+1}! r
= (n-x ) Ix 1) . r s :
,«_’ r+1 r+1° / _ T\ ) i=t
/ (n xr+1 ? xj).{jzlxj.)
Xex x_ x1 j=1

(1p77)

! . r+1( _ }“‘xr+1 G )1
\ Prit Prii - xr+1 :
x - 5w /

/ | |
/ r+1'(n Xr+1).
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(from assumption)

Py..P

% E o
; nlp L r i, -1y
=\ r+1 (IIb.j )
j=1 7

r r i
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(from assumption)

Py Py Pryg

r+1 i.-1
= _ (Hb.3>
r+1 r+1 - e | j

It (1]-1)1 n-E 13 ]

j=1

1.4 Poisson approximation to the multinomial distribution

It is known that for the univariate case, the Poisson
distribution serves as a good approximation to the binomial,

i.e.

-A,x
(z}pxil—p)n-x = ex1k for n large and fixed A = np.

The extension of the above to the k-dimensional case is: if
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the random variables Xi""'xk have multinomial distribution

with parameters N,PyrecesPyr i.e. if

- n! X _ n-x
n{Ex) X zZn n-Zx
then lim f(xl,...,xk) = lim —E;—u——-(ﬂ[np] )[1-—;Fh
n-roo n—+owo n (nx-l-)
npi=)xi npi=li

(Zx)

(where n is the Zx-th factorial power of n)

_ (Hkx)e_zl

- (Mx!)

Thus for n large the multinomial distribution approximates the

product of independent Poisson variates. We give a numerical

illustration. For simplicity we treat the case of two variates

X and Y, i.e.

n-x-y

- n! RV tyone
fx'y(x,y) - x!yan-x—y]!p q* (1-p=q)

=Ay X VI
Thus 1lim £ (x,y) = = lk v B I“
B X,y x! y!
np=A

ng=u



For n=30,

16

p=0,06, g=0,04, 1-p-g=0,9 and A=np=1,8, u=ng=1l,2

Exact Mult.Probty Poisson Approx. Peﬂ;ﬁiﬁfge

(0,0) 0,042391 0,049787 17,4
(0,1) 0,084782 0,089616 5,7
(0,2) 0,036424 0,035846 1,58
(1,0) 0,084782 0,089616 5,7
{1, L) 0,109274 0,107540 1,5
£1.,.2) 0,067993 0,064524 5l
(1,3) 0,027197 0,025809 551
(1,4) 0,007857 0,007427 5,4
(2,0) 0,081956 0,080650 1,6
(2,1) 0,101989 0,096786 5,1
(2,2) 0,061193 0,058071 5;1
(2:3) 0,023571 0,023228 1;5
(2,4) 0,006547 0,006968 6,4
(3,1) 0,061193 0,058071 LT |
(3,2 0,035356 0,034842 1,4
(3:3) 0,013095 0,013937 6,4
(3,4) 0,003492 0,004181 19,4
(4,1) 0,026517 0,026132 1,4
(4,2) 0,014731 0,015679 6,4
(4,3) 0,005238 0,0062717 19,7 .
{5.:1) 0,008839 0,009407 6,4
(5:2) 0,004714 0,005645 19,7
(5,3) 0,001606 0,002257 40,5
(5:4) 0,009816 0,000677 93
(6,5) 0,000271 0,000048 82




For n=100, p=0,01, g=0,03,

1-p-1=0,96, A=np=1l, u=ng=3

17

(X,Y) Exact Mult. Prob®Y Poisson Approx. Peﬁ;ﬁﬁ;?ge
(0,0) 0,016870 0,018315 8,56
(1,1) 0,054367 0,054946 1,06
(1,2) 0,083249 0,082420 0,99
{X,3) 0,081117 0,082420 1,6
.0 I 0,026639 0,027473 33
(2,2) 0,042058 0,041210 2
{2::3) 0,042058 0,041210 2,01
£3.,.F) 0,0093463 0,009157 2
(3,2) 0,014019 0,013736 2
(4,1) 0,002336 0,002289 3
(4,2) 0,00346836 0,0034341 0,99
{5, 1) 0,00046244 0,00045789 0;99
(5,2) 0,00067922 0,000686836 1,1
(5 3) 0,00065799 0,000686836 4

A very clear pattern does not emerge, but it is clear that if

X and Y do not depart much from their means,

is fairly good;

better the approximation.

the approximation

also that the larger n the smaller p and g the

The gamma approximation to the beta distribution

(Wilks [5],)

For the univariate case,

let U be a random variable
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with p.d.f

r(k:;?;£;+1)“k_1(1'“)n—k'°<“‘l'

£i(a) =

let t=nu then l%%|=%

k-1 n-k
- C(n+1) t " <
2 fT(t) - F(k)r(n-k+1)(n) (1 n)
. 1 -t, k-1
which tends to FTETe t as n-—o,
Further

t1 to

Sy = (n+1) ' ki-1, _  ka-1

Failat?) = PO RoT (0K =K, +1) [ T e
r O O

(1-u,) " k2 K14y, du,

and if v;=nu; and v;=nu,, then

n-*rco

51 S22
+ F‘slrSZ} — 1 ki1-1 k-1 -va
1 Vi.,V2 - M(k;)M(kz) Vi (va=vy) e dv,dv;
o o]



1:8

For the multivariate case, let the random variables ViresesV

have p.d.f

V5igewrNg r = [~ - - - + L
1 g em (kl).o- (k ) (n kl . k 1) 1 S

If we put w =nv1,...,w5=nvS then

1

3 ‘i3
BEV1 vs)| _ 1 -
Woree W nS
E(Wlgee Wg) = ———0 C(n+))
Wiis « gy nlTTES (k) LT (k)T (k. omk 1)
n-kl...ks

k _1 k "1 w +...+W
1 s 1 s
W —— ———e e
1 s n

which tends to

1 k=1 bgrd TEape
r(kl)...r(ks)w1 vl @

i.e. the multivariate beta tends to the product of independent
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gamma variates. We have shown the 'inverse' of the multinomial
is a multivariate beta, and that of the Poisson is the gamma.
Also, we have shown that the multinomial can be approximated

by a product of independent Poisson variates. We see therefore
that there are similar correspondences between the distributions
on the one hand and their 'inverses' on the other, i.e. a form

of duality.

Multinomial Dirichlet (beta)

Independent Poissons Independent gammas




PART 1II

The inverse normal distribution



Chapter 2

GENESIS, DEFINITION AND
CHARACTERISTICS

2.1 The Brownian movement approach

Schrodinger (see Moran [2]), Richards [6], and Cox
and Miller [7])give the derivation of the inverse normal
distribution in the study of BrownZan motion. Consider the
Wiener process {X(t),X(0)=0,t>0} with covariance kernel oc?’t
and mean value pt and an absorbing barrier x=a. The transition

probability function of X(t) satisfies the diffusion equation

1 23%p(x;t) _ dp(xit) _3p(x;t)
2 2 H T x at

(x<a)

i bbmeme: k@ed )

(Kolmogorov forward equation)‘

subject to the conditions

p(x;o) § (x)

pl(a;t) 0 , t>o

where p(x;t) is the probability that the particle will be at

X in time t. Denote by p(xo,x:t) the probability that the
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particle will move to x in time t when it was initially at

state x_. If the process was initially at X=X then

_(x—XQ—Ut}2
‘t
P, (Xg,%xit) = o 20 is

Y2lloZt

a general solution of (2.1). When X(o)=xo=0, this reduces to

_ix-ut)?
1 204t

oV/21

pI(O;xst) =

Further the linear combination

p(x,t) = p}(o,x;t) + Apsxo,x;t) also satisfies the diffusion
equation, where A is chosen such that the boundary conditions
are satisfied. Using the method of images, the absorbing
barrier x=a is regarded as the 'image' of the initial state,
hence X is put equal to 2a. If A has the value A = -exp ——

then the solution is

(x-ut)? 2pa _(x-2a-pt)?
1 T 202 g? 202t
plx,t) = ——— e e

Since P(X(t)<a|X(0o)=0) = P(T>t)

(where T is the time to absortion at x=a),



23

a

fioes (p(x,t)dx = P(T>t),

- 00

we have that the p.d.f of T, the first passage time, is

a

ey -5
£.(t) = -3¢ (p(x,t)dx
_(x—ut)2
__t 1 202t
= e dx
V2102t
-0
2ua a (REDas t}2
o2 _(x 2a2p
- 3 f’e ot dx
v 21
2]!a
d a-pt g2 . —a-ut
ol oy K X - e ¢ (———) 1]
dt G/E 0/{
X
where ¢(x) = - (’e dy
v2I
P(x)

Since é% ( g(t,x)dt = ¢'"(x)g(P(x),x) - ¢'(x)g(¢(x),x)
¢ (x)
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P (x)
+ ( —a%g(t,x)dt,
¢ (x)

we have
1 -3 uo (a-ut) ?
—]JO/E -'2-a0't T4 e
£ (t) = 2 & 204t
T ot
1 2
2ay act? _po _(a+ut)
g -uo/E+ 2 2 202t
- e e
ot
_(a-gt}2
= a o 202t , 0.
ov2It3
2.2 The sampling inspection or sample size approach .
wald ([3a] or [3b]), in connection with his sequential

analysis, deals with the sample size N as a variable, rejecting
N
the null hypothesis when E z;21lnA=a and accepting when
i=1
N
Z z;<1nB=b where zi,i=l,2,...,N, is the i-th observation.

i=1

zZ .t Z t+[z. -2 ]t
The identity E(e " )=E(e " Nonty = [o(t)1 ",

vhere ¢(t)=E(etz) and Zi=z +"+Zf the z, being independently

1
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distributed, is used to arrive at what Wald calls his fundamen-

tal identity,

z t
n

E(e " [¢(£)1") = 1.

Further, it is assumed that -log¢(t) = 1 where T is an
imaginary quantity, and that the equation -log¢(t) = 0 has only
two real roots t, and t,. Now if the z, are independent

i
n(u,0?), then

242
-log¢ (t) = -pt-2 ;' = 1, and on solving for t, we have that

t, = ~H-SATorr
= - U -.-l— 22
t2 BT"UZVIJ ag’T .

In this case the fundamental identity becomes
P(z_<logB)B E(e'" |2 _<logB)

+P(2_>a)A"E(e™" |z >a) = 1. inss s (Bel)

If tl and t2 are substituted in (2.2), two equations result
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from which we have

at2-pt:
p(zn>1ogA)[Atth‘—AtlatZ]

I

E(eT”|zn>10gA)

t1_pte

B“l-B
P(2_<logB) [B®1a"2-A%1B"?)

E(eTN|Zn€logB)

Since

St
1

= E(e""|z_<logB)P(z_<logB)

+E(e""|2_>1ogA) P (z_>1ogh)

At z_At1+Bt1_Bt2

BtlAtz—AtlBtz

¢N(T) =

If we consider the limiting case B»0 and A finite with E(z)>0,
then

£y _ati E5 oy
o, (T) = A-2-A ,_B'(1-B

Btl(Atz_AtlBtz-tg) Btl(Atz_At;Btz-tl)

tz—tl)

_ aAt2-at! 1 1

+
Btl(AtZ_AtlBtz_tl) Atz_AtlBtz—t1 Atz/Bt?—t

1-At1
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Since t2—t1<0 and the real part of t2<0 when E(z)=u>0, it

follows that BY2~F!

characteristic function of N is

_t‘l

-at

¢N(T) A

a

_%_Ea_z.]fuz_ztj?.-t

1)

and B2 tend to infinity as B~0.

So the

(since a=logA).

The case where B is finite and A-+0, with pu<0 is similarly

treated and

o

.a-l'-l-_.c;t)_z.‘/uz._zoz-[
e

¢ (T)

The Fourier inversion of the

normal p.d.f

ay af pim
02 "202n 202
£,(n) = -
v2Ilo2
2z 3 Moments

Let X have inverse normal distribution

n

1
2

first ¢N(T) gives

2)

the inverse

1 It is usual to write not the imaginary T but its real coefficient

as arguemtn of &,

2 Wald used differential equations to evaluate the Fourier integral.
See his equations in [3a] or [3b, p.192].
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a 2 2
E% '2az 2 z 3/2
fx(x) = 2¢ e sk i X
v2Ilo?
o0
ay 2 2
Now p' = E(x") = =L e “0°X % x dx
V2Ilg?

H
= s
ro= 22 a ay
Ur ,_2]-[022(1]-2-) Kr_]:(o,z) A (2.4)

where KU(ZJ is the modified Bessel function of the second

kind [2]. Thus with r=1

EE.
o2 2 %
we= =—2(%;) kK, & =2
/2loz © 2 H
; -z |11 i
since Ki%(z) = e 3z ° With r=2
ﬂ
2 2 ¥
4
ny = E(x?) = 22-2(%5) "k, ()
/2lgz © g
E._“]:l_
ae?? a?u/2 o? ay ay
= —K, (=£)+
2n022{u3§){a“K5(02) K—B(oﬂ)}
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L]
[

o]
Q

I
B
[N]
o
=
—
A

since 2% (z) = K, (z)-K _, (z) and K_ (2) = K(z) (see [8]).

The variance of X is

ao? R (- 7%
e T

Moments of order r>2 can be derived in a straight forward

manner from (2.4), eg for r=3,4

b 2.2 3
3Jag',30°a“ a

o IEETE BT TE
i o vaww (2456)
W 150°a,150%a? 60%a’ a*
" u? T T T
thus
= 3ag"®
My T
150%a,30"a?
uw = u7—4- == . mesus (2:7)
2
_ 3“§+150 a

7
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A recurrence relation can be found for the origin moments

of X by the use of integration by parts as follows

%% __a? u’x
2 Z .
u; _ _ae e 20%2x 20 * 1*:+rdx
v2Io?
o
[+ 2]
a 2 ]2
E% '232"2}2‘ 2 2 202 14+ (r+2)
_ ae 02x 20 a _ . 0° =1%+ (r+
W g 202%2 20 )azx dx
(o]
B 0?2 5 q2% 202 -
+§? ae » 202x 20 3 1l=+(r+2)dx
sz:s’
o
a 2 2 o0
E% e L) M 5
o _ae L? 202x 20220 x—15+(r+2)
22
V2Ilo? 2
(o]
2 202 -
__ae e 20%x 20 ig (r+%)x 1E+{r+1)dx+g_u.+2
v2Ilo2
s

=y B Yo, SR
= 0= (r+3duy  raTHre

o= Lg2 2 rpadygy
Thus Mo uz(a pr+20 [r+2]pr+1), and eg.



for r=0,u! = Lr(a?yi+oty!) = 2492 (since u!
or r=0,u, = iT(a p'+o ul) = Srtas sin U,

The characteristic function

The characteristic function of X is

[+]
ay 2 ]2
fx ae? ex'zzzx_£o§ -¥,
¢ () = E(e” ™) = e X dx
X /2To2
=]
(where 6=it)
o0
ay a2 2
2 _a b
a ae0 - 202x [202 e]xx-b%
V2102
(o]
apy e
o2 o2vu2-2g29
ae ae

V2Ilo? V2102

a —
ilzi_a.z_,/“ Z-2020

a
e

n
Thus if Y = E X, is the sum of n independent
l=

having inverse normal distribution,
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]
|

dx

variables



na
g2

— n _—
6,(8) = [o,(0)1" = e

2 _n*a? y?y
2 2
hence f (y) = 128 __ o 20%y 20 Yy L
¥ /21o2
P T
Ynae 202u 202 -1%
——e u

v2Illo?

and fi(u) =

na /~5Fa -5
"-6_2-‘/1‘12-2026
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Fisher's coefficient of skewness is, from (2.7) and (3.5),

which tends to zero as ¢?+0, i.e. the p.d.f of X seems to

(2.8)

tend to normality as o?»0. Tweedie has drawn the curves which

appear in figure 1 for different values of o? with pu=1 for

the p.d.f
_lx-u)?
2 =
fx(x) s 1 & 2 xo X 3/2
Y202

which is of the same form as the one considered in this essay

except for some constants.



a3

Figure 1: Probability density curves of X

2,5 A

2,0 -

It is seen from figure 1 that as o? becomes smaller and

smaller, the curves tend to be symmetric about u=1.

Fisher's skewness, Y, = E%E above, may have any value between
1
2

-« and », which is not very informative. We now use Jensen's
inequality [10] to redefine skewness. The inequality states
that E(glx]) > g[E(x)] if g is convex. If we work with (X-u)°?
instead of X and let g = ( )hh, which is convex, then by the
above inequality E([(X-u)s]g) > Ehh[(X-u)] 1.8 g > p:A.

Thus if we redefine Sk = H%I , it follows that -1<Sk<l (with
H
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which we compare -1<r<1, where r is the correlation coefficient).
Without loss of generality we shall assume Tweedie's form of

the inverse normal distribution i.e. with a=1 in our case.

Then
4
; ot ()
(k) ; 3 .3
('—'5'02“‘?5')

Consider the curves as given in figure 1, with u=1 for each

case, we have that if

I

(i) o%=1 , Sk =0,0130

(11) g?=L ., sk =0,0101
8

(1ii) oz=§%, Sk =0,00189

The distribution is unimodal since X>0 and has its mode at

_a,[90% , _30?
X = u{ Tas+1 2u2}

which tends to 2 as 02+0. Hence Karl Pearson's coefficient

a o
mean-mode -+ 0 as ! §—=>Q.

g
X

of skewness Sk=

The median and other quantities cannot be expressed in closed



35

form because of the integration by parts involved in their

calculation (which leads to infinite series).



Chapter 3
ESTIMATION AND TESTS OF HYPOTHESES

REGARDING THE PARAMETERS OF THE
INVERSE NORMAL DISTRIBUTION

3.1 Method of moments

Since the mean of X is %, and therefore the mean of
the first sample moment er X is %, the moments estimator for

a 2
pis § = ¥~y - The population variance is %%r and the

sample variance is Mé-(Mi)z and

cza(n—l
ud ' n

E(M}-(M!])?) =

)

so the moments estimator of o? is

kS

9 _ n '—m'i—a L 142
g” = TTH:TT(MIJ @42 (M, ] )
3.2 Maximum likelihood estimates

The likelihood function of the random sample
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nay 5 5
ane gl _2‘302—2%—“131—'—2022}; _3/
L(p,0%) = — —g°© nx 72
(2M02)2
and K(p,0?) = 1nL(p,0?) = nljla_%ln(2n02)+iif
1 “
- 2022x 2022x-—21nx. e v s v (3el)

Differentiating (3.1) with respect to a,p and 0% and equating

to zero, leads to only two linearly independent equations viz.

3K _ __..._H_ S
T = =3 X a  pmema g (3=21)
9K _ __n _nap_ a?-1_ 1y’ _
oz = 357 g° 20&2 -+20h2x =0 e (3.3)
ok _ N .np & e,
(and Ba T ater ok xZ— ), seewss (3.4)
since from (3.2) u = %& r and substituting into (3.3) and
(3.4) we have
W _ (na)? | E g naﬂy
202 o%Ix 20“ 2cﬂ/
2 a
i.e. -5, iua) atyl - 0

2 202:x  202°x



38

=]
[}
1]

ie. DyR2_2,% o, ceeee. (3.5)

1
>Iz = 0, : povew 1356)

which is the same as (3.5) above, the reason for this being
that in the case under consideration and the case of Wald,
a is gZzven and cannot be determined by the maximum likelihood

method. (3.2) and (3.3) lead to

noe B4 . 8
= 3% % and
-~ 1.1 n 1 1
7= qe (S ey = 32 (-
g a”( Zx Zx} 4 (i X
where x = Tii-,isthermrmonh:meanof the x,. From (2.8) we
n’x
have that

nap nat nuza

2 2 2+ -
£ k) = /2—222e0 g 9% 208E =5
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For the sample

nay a? 1 UZ
n_02 -——5i———Ix -3
f(xX1,..0%,) = 2—2———He 205 % o Mx 4
xlr--vxn (21-[0,2)1

napy _nat nuza
na oz 202 202t -4

a /ZHGEE
(na) 2 a? _1
n-% 202Tx 202°% oy
a n_lezg Ix 20 x(zx) HHx 2 ,
n?(2Mo2) 2

from which because of the Fisher-Neyman criterion, it follows

that {i is a sufficient statistic for u.

ol
The distribution of o

We are now going to give a derivation by Tweedie of
the distribution of GE. The results are of course well-known
from normal sampling theory but the derivation is interesting
and possibly the inverse normal distribution may derive from
some other distribution than the normal and may even be a

non-sampling distribution.

~
Consider the Laplace transform of the p.d.f. of o?, i.e.
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; (rua)2 a? _1
a3 G2 n-% 2025% 20%0%, . -% ¥
ao’, SL_“(’G ao® (t) a e207Ix 2027x (po X 2

E(e = 8 =1 IM(x dx)

n%(2M02) 7

S o
>y (na)? a? _1
WD ok 2l 2 sl -y

g fétJ (' e~ @0 a n_IeZG Ix 20 x(Ex)aﬂ(x 2 d

n%(Zﬁoz) 2
fi=o o

where the multiple integral is seen not to contain pu. From

the form of f(t), and the fact that it has a unique Laplace
i

transform, it follows that derivative of the multiple integral
with respect to t is the Laplace transform of the conditional

V
p.d.f. of o? given t. Therefore

oo

A (na}2 a? .1
W an7h Sy R
é%S"f; o~ 00 a n_lezo Ix 20 X(Zx) %H(x 2 dx)
n%(2ﬁcz) 2
o
3
= E(e™ %9 |t)
: I~ 2
_ n-% -02(a+a n} -3/
i.e. E(e7%% |t) = %Jf 2 e 2027 ;)" EM(x 2 dx)
" n-1
n*(2Mc?) 2
o]
(since az[%zi—-§% = Gi} vaens s (3=T)
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To evaluate (3.7), first put a=0, then

‘2_2

_O0"a’n Y x ) n;l
S\ .k g 292 (Ex)‘%H(x 2 axy = 2 (2o ) 5 e
ot an;g

1 2ad 1
On the right hand side of (3.8) put 35==(§3;~+63) , then
,"z azn

: it MR L = P S |
ot n-1

n’i(znc’) 2

o
5 1\ %
ek n 2H2a4_1
_ a a2n o2 3
L n-1 an--
n?(2Mg?) 2
= 1
2 n=-1
(20.0 ])7

azn

If we put a=-i6, then
Y : 2 n-1
8o 2i8 e

E(e""" |t) = (1-=5:—)"7 , which is the characteristic

function of a Xi—i variate, i.e.
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o2
The p.d.f. of ¥ = 35 is
~ 5 n-
£ (gi) _ 1 _"202° (nga) 2 a'n
y az? n-1 i ¥ & o2
2 2 F(T)

The joint p.d.f. of xl"" Xn may be written as

nap a? 1 2
_a"e’? “3gflx 2gio%_ =¥,
f(xl, i X)) = —————a Ix
It n
K&;--,Xn (2Ng?) 2
2
nay _nat ny-a
= na o2 o2 202tt—%
- J2mo2°
-ng n-3
1 "292¢ (ng}) 2 a'n
. n-1 n-1 = 02 02
2 at el
277 (5)
n—-1) n-3 _
ik 2 {El-gi)— R Nx %
n-1 X IX
() 2
"3
. 2y _ g(t) o
i.e. f(xl,..,xn,u,o ) fﬁ fy(ET)h(x1""x )

Vhere h{xl,..,xn) is a function which does not depend upon u

and o? jointly or separately. Moreover, the conditional
5 % P
p.d.f. of -7 is independent of u, hence y and o? are joint
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sufficient statistics for y and o? respectively.

3.3 Tests of hypotheses
3.3, 1 Best tests
(1) for y: If it is desired to test the simple hypothesis

H_ :u=u_ against H :u=p, with 0% known, then from the

Neyman-Pearson theorem

L(u,) 57 U=y Y=ottt i, )
.- [ <k
L(uy)

i.e. if X>c where c is such that P(X>c)=o is the

desired size of the test. Since by (2.8)

na 2 2=
oy, na n X
N ‘__T='“H7r =
£_(R) = avne o 20%2% 207, 1%
V2llo?
we have that
o0
nay 2 2=
i oz _JE%__QETK
p(X>c) = Yhae o 2028 20 i-l%di

V2lo?
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which could be evaluated if the

were tabulated.

for o?:
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distribution of X

L{c?) a.l Ei 1 1 n
O o AReE-gi=T=rlXVil——r T4
then —IT(F%_). e 2" x 2 o] Uf (UO) <k
i.e. ° (nay azzl uzZx)( 1 l)élnk—nln(gl)
2 X% 2 g? g? o
) o
a? 2=
l.e. ﬁ"- 5 > C
The characteristic function of
a2 uix _ .
%0 T35z ~ vV 1s
(s2]
1% [azlpzx]‘ pzx

o
¢V(u) ae 8 2x 2

Y2lg?2

=3
2 2
202x 2g @ 2

dx
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and the

fu(u)

Let W=

a
E% 1-ia) -1&
ae -
v2Ilo2
apyia
7] -
e a (l—la) % '
napia n
= e (1-ia) ’
Fourier inverse of ¢z{a) ’
napia
Jﬁ( -iau o ot (-1 TG
—ia(u—ﬂ%g} _n
% e (1-ia) "zda
___H
1 ~lu }( nau)2 1
—e
n
F(E)
*ij
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dx



.3.2

46

(Jl)% _n(w-ay) n
g2 g2 -1
P(wW=c) = = e (w=ap)2 “dw
r(ﬁ)
c
n
i.e. if ; _tt?_ldt = q
F(E)
n(c—alﬂ
02
where t = m:ﬂ'l—) ”
g2

The generalized likelihood ratio test

Consider two composite hypotheses

H_:u=u_, 0%2>0 unspecified and

. 2
Hl'U#UO: g

unspecified. The likelihood ratio is
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In the case of the hypotheses H_:0°=0? u unspecified and

Hl:oz%oé, p unspecified,

max

u
max

H,0

L(u,02)

>
1]

ZL(UrOZ)

T e, T 7
Tl o oFx
= e :
8]

We see that in both instances the likelihood ratio test leads

to more difficult sampling theory than the best test.



Chapter 4

SAMPLING FROM THE NORMAL
DISTRIBUTION AS A RENEWAL PROCESS
AND DISTRIBUTIONS RELATED TO THE
INVERSE NORMAL DISTRIBUTION

4.1 Sampling from the normal distribution as a
renewal process

Consider the p.d.f.

ap .z 2

L
fN(n) _ _ae e20 n 20% 1¥'n>0
vy2Ilo?

where a=Ix and the X's are items of a random sample from a
normal distribution n(u,0?). The random variable N may be
regarded as the number of renewals in a renewal process for
the following reason: the values X may be regarded as the
'inter-event times', IX the 'waiting time' up to the n-th
event (or 'first passagetime'), a the 'time t' and the sample
size n 'the number of events'. The moments of N for the above
distribution therefore follow those of Nt, the number of
renewals in time t of a renewal process. For the above

distribution, we have that

..-a i
'rll"ﬁru ‘--"_3'— s s s == (4»1)
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whereas in a renewal process we have (see Cox[il])

2_. 2
gt e OTY

E(N,) = T «sowse (4:2)

t
u

where u=E(X), o?=var(X), u;=E(X-p)? etc. The simplification

of (4.2) to (4.1) must be due to the fact that for the normal

distribution

(25=1) 162"

2" (n-1)1

Moy = 0 and Moy = , n=1,2,3,...,

i.e. Moo is a function of o only.

Distributions related to the inverse
normal distribution

Consider the p.d.f. of a random variable X

ay 2 2
o g2 LK
£ (x) = t& ¢ 202x 202.-% +>0.
V2Mo?2

Its characteristic function is
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%% lax— az _E.Z_)zi
2 —_
bt = e 20T 257, gy
2Mg?2
[e]
ha y al x
ol ~"—7——-"?{u2-21a02)
- _ue 202x 20 0 de
V2Ilo2
o
Eﬁ_ii{ 2-21002
_ ue02 gz Ho 4300 1
Yu2-21i002

The fact that in the exponential of the p.d.f., x and i
appear, makes it natural to inquire after the joint distribution

of the arithmetic and harmonic means of a random sample.

Let IX=Y and Xi=Z. The joint characteristic function of Y

and Z is
nay = 2 2
1 a 1 u
n_o?2 ioglx+iRLl——I————1Ix
(2No?)2

o
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s 2 2
= : ig a Uox
g? ioax+
2 2
- - X 202x 20 %« %dx
V2lo2

" St AT-21002/a?-21B0?
e

(o]

_n
(n2-2ia02) 2

If we invert following Wald (see (2.3) above), we have

n
__/u2F2ia02/az_2180’2_i8—1ay
]l 2
f {Y:Z) = e e
Y,Z (21) 2

- 00

n
(u?-2i00?) 2dRrda

[es]

- n2(p%-2ia0?) a’z
_ue nvyu2-2ioag2 2 z 2022-1%
21 e

V2Ila?

- 00

. n
e %Y (12-24002) "Zdn

nap 2 2 2
2

nSu* ate
nu'e 202z 202_-1%

= L z
V2102



52

y~ (n=1) —io(y-2-) » n=1

z Leiag” ——
T e (1 _Tﬁ__) dx
““—Hn;2 _nz 2_azz
nye e 202z 202 _-1%
V2102
2 Az 2 2
2 n
T Bl e
—_—e —-— .
r(n-l Z
2

If we put U=§=§ (the sample AM) and V=2=i (the sample HM),

n

then y=nu and zy and the Jacobian of the transformation is
2
n
V_?—' SO
nay 2 2
n}l v na
nue ©° " 202 202v,n,-1%
f (u,v) = se——e (=)
v /o2 v
n-1%
2 T 2
U 2 v - -3
. (202) -;OZ(U_V) L 3 L nz

2
n (u-v)

na
_G'-EP- _n 2\? na?"

95 2 -
_ /nye o 202 20%v, ¥
V2Ilo2
2 & 2
n 2 ny n-3
(202) “2g%\u-v) 2
* n-1 (u-v)
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Let U-V=X-%=W, i.e. U=V+W and S¥=1, so
dw
% np’v na?
2 2 i
£ (w,v) = Ynue o 207 20%v, X
W,V /5Taz
n-1
(n ) 2 __na n-3
. V2 2 .2
——;T_—e W " "8 8 8 (4.3)
r(_i_)

In this case W=X-X and V=X are independent, W being a gamma

variate.

For the inverse normal distribution

ap az 2x
i “202x 202 _-1%
fx(x)=39——e“""x , x>0
V2T o2

it follows as above that

n ﬂ__r.l—/az_ziBOZV/uz—.ziacz
2 2
¢(a,B) = a e " O

1 B,
IX,Zg (a?-21Bo?)?2

On inverting, again following Wald, we have



(a?-2iBo?)dadp

oo

n_o —é}/u2-2ia02/52-21502 -iay-iRz

. ﬁ:ﬁ _nz(a2—20218)_u2y
_ae nv/a2-2iBg2? _ 202y 202
2l VOTE
-
. n
; y_l%e_lsz(az—Ziscz)—?HB
nay 2.2 2
na”e ° _2 2 20?2 -1%
= Bae . 20% 20%,
v2llo2

1 —J.B(z---'rl ) _n-1
'3 (a2-2iB0?) 2 4B
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—{n=1) -iB(z-—) ; s n-
a 1% _2iBo" v~
21 € (1 a ) dg
nap n?a? 2
2 . L
_ nae ° 202y 202 _-1%
v2Ilo?
n-1 2 2
=} a n
( ) (z~= | 2 n-3
: 2—1 20877 Y (242
i

Again putting U=X=2, v=x=7, we find

nay 2 2
?— _ na _nu u
202 2 1% -1
f(u,v) = e g 0N 20" %u E
U’V IHZHOZ
n-1 2
a ——= 14 1 1
(=) & =“F=i{===) n-3 n-3
20 20 v u (l_l) T on 2 I'IEV 2
r_{n-l) v
2
tﬂl_*naz_nuzu
. /nae 3 202u 202 -1%
v2Ilg?
n-1 2
(2.7 -EE?(l_l n-3
20° 202'v u (1_l) 5
n-—l} v u - 8 & ® 8 &
2

@1/25395

(4.4)
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Letting S—u ' W-—v e WSS and v o

3 (u,v) ) D | .
d(s,w) sz wZ '
from (4.4)
nay 2 2
s na s n
£(s,w) = v/nae o 202 20 sslﬁ
S, W v2Io?2
n-1
a na
(5=%) 2 -5—5(w-8) n-3 n-3
ﬂ_EQE:T——e 20 (w-s) 2 n 2 nzwzé%-#%
F(—E—)

E} na?s np?
g R

- 2 2 =
_ /nae o 202 20 sg X

v2Ilo?

From (4.6)

Ra¥  na? np?u

et
el = vYnae o 20%u 207 1%
Lx v2Io2

From ¢(a,B) we have that
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nay na fo————s
'—0-}[—0_2/:] 2ic0

cbzx(u) = cp(a,?) = e
Zx;Z'g
naE ® a
0 -—vp2-2i002 ~iay
so f__(y) = g e dao
X 21
naE -_nzaz_gzu
2 2 -
@ O _jﬁize 20%u 202 ~1% ceeee. (4.6)
v2Ilo

—

and on letting Q=W-S, in (4.5), g“ 1 where W=% and s=%
q v u

n0a2 _na’s_ny?
2 2 o
85, £lxE) = nae 202 20 Sg X
S,0 V2Ilo2
(pa?) 25+ na? .
2 2 sl W11
- L e (4.7)
r(2h
(naz)—:— _nazg _
_ 2072 20 Lo
thus £ _(q) = ————e 2
0 r(n-l
2
%?—ZE "nazs nl].l2
T R
. /nae & 202 20 Sg %ds
V2Ilo2



58

n-1 2
(na )"2— _ha
202

From (4.4) we therefore have that U and Q=$—% are independent
i.e. X and %—% are independent, Q being a gamma variate.

When sampling from

ap 2 2

2 a  px

fx(x) S L - GOER 202x'%, we found that X and X-X were
v2Illo2?2 |

independent and when sampling from
%% __a? u®x

ae 202x 202_-1%

- X

V2Ilo2

fx(x) =

r

that X and %-% were independent. It would be interesting to
investigate similar independences for similar sampled distri-

butions viz. distributions having x ™ instead of x_“S and

o \

. In the case with x *, X is a measure of location and

X-X a measure of dispersion. The p.d.f. of the ratio §§§

is easy to find:

vV, _ dv_
Let Z—W in (4.3), thenv=wz and 3z W,
na na? ”
g2 -—————=——(nz-na) n-2
/1 2 2 Roe: o
sO f(wrz) = _Lg.__e 20%zw 20 w 2 z %

W, 2 V2T o2
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na
b W
a2 (nz-na) n
022w 202 -1
w2 “dw

]

so f(z)

na
g2z
_/née° 2a%(z—a)%K (na/z-a,
IGE 2 2 oz

However we would like to device a test similar to the t-test

viz. one using é:h as test statistic, the idea being that null-

hypothesis k=k, would be rejected if ﬁ;ﬁg were found to be

b4
greater than a certain number. However it does not seem as if
the p.d.f. of 355 could be found without much difficulty.
Also, since the population arithmetic and harmonic means are
not much different in value, one may perhaps obtain an inaccurate
value for X-X, perhaps not (since x-x is, like the standard
deviation, based on all observations). For the p.d.f. with
x_l%, X is a measure of location and %-—% a measure of dispersion.
The matter of hypotheses testing received attention in chapter 3.
In a sense the distributions with x_Js are inverses of one
another: If these distributions have the same parameters a and
W, then the reciprocal of the variable of each has the 'inverse'

distribution with the parameters interchanged:

a
H a?, 2

X

g2 ——
2 7 .=
In f(x) = 88 & 2aex. 20 X 1%, put X=l , then
X v2Ilo?2 Y
va
o -3
Ply] = ae & 20y - %
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4.3 The kappa distribution

Oliver [12], calls the distribution whose p.d.f.

is of the general form

5m G cumfigan _
£ = (2031 K (2a%p1) e/ XTI,

a,b=0 and x>0, the kappa distribution because of the appearance
of K, the modified Bessel function of the second kind, the
Greek capital K (cf. " of the gamma and B of the beta
distribution). It is a generalization of the inverse normal
and its associated distribution with x % (remembering that

the inverse normal distribution has only two parameters

obtainable by maximum likelihood i.e. the above a is equal to

a2

=T and b to the %; of the inverse normal distribution). He
finds approximate estimators of the parameters a and b. By
making use of continued fractions, he shows that for large m
the moments of the kappa distribution can be replaced by those
of the gamma distribution, that the gamma distribution is a
good approximation of the kappa distribution for large m.

He also shows that if A=£X? and T=IX’IY?-I’XY, and a random
sample {(Xl,Yl),...,(xn,Yn)} is drawn from a bivariate normal

(0,0,1,p,1) distribution, then
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t 2
-([=]-a)“/2a
flalt) = +-e P

V21

(P the population covariance determinant)

/% __t a
- e 2Pa 2a—%
V2l

which is a special case of the associate of the inverse normal.
This statement could probably be adapted to read that the
distribution of a sample variance from any bivariate normal
distribution, given the covariance determinant, has the
associate of the inverse normal as its distribution. There
seems to be no reason why Oliver's result could not be
extended to sampling from the bivariate normal (ux,uy,oi,p,o;)
distribution, and going from IX? and IX2:Y?-I2XY (or L(X-u )?
and Z(X-ux)ZE(Y—uy)zwzz(X—ux)(Y-uy) to the sample variance of
X and the covariance determinant should just be a matter of
division by n-1 and reducing the number of degrees of freedom
by 1. The reciprocal of the conditional sample variance should
therefore have an inverse normal distribution, and so the
inverse normal distribution is not only that of sample size
(cf. wald's work above), and so the sampling theory of the

inverse normal distribution need not be a mere mathematical

feat.
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