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Abstract

Operations Research (OR) is a scientific method for developing quantitatively

well-grounded recommendations for decision making. While it is true that it

uses a variety of mathematical techniques, OR has a much broader scope. It is

in fact a systematic approach to solving problems, which uses one or more ana-

lytical tools in the process of analysis. Over the years, OR has evolved through

different stages. This study is motivated by new real-world challenges needed

for efficiency and innovation in line with the aims and objectives of OR – the

science of better, as classified by the OR Society of the United Kingdom. New

real-world challenges are encountered on a daily basis from problems arising

in the fields of water, energy, agriculture, mining, tourism, IT development,

natural phenomena, transport, climate change, economic and other societal re-

quirements. To counter all these challenges, new techniques ought to be devel-

oped. The growth of global markets and the resulting increase in competition

have highlighted the need for OR techniques to be improved. These develop-

ments, among other reasons, are an indication that new techniques are needed

to improve the day-to-day running of organisations, regardless of size, type and

location.

The principal aim of this study is to modify and develop new OR techniques

that can be used to solve emerging problems encountered in the areas of lin-

ear programming, integer programming, mixed integer programming, network

routing and travelling salesman problems. Distribution models, resource al-

location models, travelling salesman problem, general linear mixed integer
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programming and other network problems that occur in real life, have been

modelled mathematically in this thesis. Most of these models belong to the

NP-hard (non-deterministic polynomial) class of difficult problems. In other

words, these types of problems cannot be solved in polynomial time (P). No gen-

eral purpose algorithm for these problems is known. The thesis is divided into

two major areas namely: (1) network models and (2) resource allocation and

distribution models. Under network models, five new techniques have been de-

veloped: the minimum weight algorithm for a non-directed network, maximum

reliability route in both non-directed and directed acyclic network, minimum

spanning tree with index less than two, routing through ′k′ specified nodes,

and a new heuristic to the travelling salesman problem. Under the resource

allocation and distribution models section, four new models have been devel-

oped, and these are: a unified approach to solve transportation and assignment

problems, a transportation branch and bound algorithm for the generalised as-

signment problem, a new hybrid search method over the extreme points for

solving a large-scale LP model with non-negative coefficients, and a heuristic

for a mixed integer program using the characteristic equation approach. In

most of the nine approaches developed in the thesis, efforts were done to com-

pare the effectiveness of the new approaches to existing techniques. Improve-

ments in the new techniques in solving problems were noted. However, it was

difficult to compare some of the new techniques to the existing ones because

computational packages of the new techniques need to be developed first. This

aspect will be subject matter of future research on developing these techniques

further. It was concluded with strong evidence, that development of new OR

techniques is a must if we are to encounter the emerging problems faced by the

world today.

Key words: NP-hard problem, Network models, Reliability, Heuristic, Large-

scale LP, Characteristic equation, Algorithm.
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Chapter 1

Introduction and Background

“To explain all nature is too difficult a task for any one man or even

for any one age. It is much better to do a little with certainty and

leave the rest for others that come after than to explain all things by

conjecture without making sure of anything”.

Isaac Newton

1.1 Introduction

Operations Research (OR) is a scientific method for developing quantitatively

well-grounded recommendations for decision making. It is often considered

to be a sub-field of mathematics (Agbadudu, 2006). The terms management

science, operations management, operational analysis and decision science are

sometimes used to describe this field. By utilising techniques and theories from

other mathematical sciences such as mathematical modelling, mathematical

optimisation, statistical analysis, and artificial intelligence, OR arrives at op-

timal or near optimal solutions to complex decision making problems. While it
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is true that it uses a variety of mathematical techniques, operations research

has a much broader scope. It is in fact a systematic approach to solving prob-

lems, which uses one or more analytical tools in the process of analysis. It can

be said to have been in existence since the beginning of mankind (Agbadudu,

2006). However, OR as a formal subject is more than 60 years old. Its origins

can be traced back to the latter half of the World War I (Rajgopal, 2004). By

the mid-1950s, as OR assumed the mantle of a profession, it began to adopt

its own methodology that included a variety of emerging mathematical meth-

ods such as linear programming, inventory theory, search and set theory and

queuing theory. Although OR is a distinct discipline in its own right, it has also

become an integral part of the engineering profession because of its emphasis

on human-technology interaction and also because of its focus on practical ap-

plications.

Over the years, OR has evolved through different stages. Magee (1973) re-

viewed the phases through which OR has developed. According to the scholar,

OR has gone through three phases of growth: the primitive phase, the aca-

demic phase and the maturing phase. The Primitive Phase is between 1940

and 1960. At this stage, the problem solvers were interested in practical oper-

ational problems. These problems were well-defined and capable of being han-

dled by the smaller, less sophisticated computers available. Furthermore, OR

was in the process of developing into a separate professional field and the theo-

retical foundations of the discipline developed rapidly. However, only very few

universities offered formal training in operations research during that time.

The Academic Phase developed in the early 1960s. The number of universi-

ties offering programmes in operations research grew over 500 percent. Magee

(1973) pointed out that in this phase, people with some OR experience started

featuring at the higher corporate levels in private enterprises. The increasing
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speed and availability of computers were of great help during this time. Magee

(1973) noted that research during this phase tended to be academic, that is,

it was more concerned with developing theory rather than finding workable

applications. It was also during this time, that the limitations of OR became

evident. Some of these limitations are listed in Section 1.4.

Maturing Phase was described by Magee (1973) as a time when balance be-

tween theory and practice was obtained. He argued that even though evidence

of such concerns were noted several years before, the real thrust towards prac-

tice and applications did not come until the 1970s.

1.2 Motivation of the Study

This study was motivated by new real-world challenges needed for efficiency

and innovation in line with the aims and objectives of OR – the science of better,

as classified by the OR Society of the United Kingdom. According to Hammer

and Champy (1993), process re-engineering is the fundamental rethinking and

radical redesign of business processes to achieve dramatic improvements in

critical contemporary modern measures of performance, such as cost, quality,

service and speed. In this study, we took the process of re-engineering a step

further by developing and modifying existing OR models. New real-world chal-

lenges arise on a daily basis from problems in water, energy, agriculture, min-

ing, tourism, IT development, natural phenomena, transport, climate change,

economic and other societal requirements. To counter all these challenges, new

techniques ought to be developed.

Kumar and Munapo (2012) in their study entitled “Some lateral ideas and

their applications for developing new solution procedures for a pure integer

programming model”, came up with a model that has added value and greatly
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contributed to the field of integer programming. Munapo et al. (2008) modified

the critical path method (CPM) by using the shortest route algorithm to deter-

mine the optimal crash limits for various activities in a CPM network. Their

work is currently being used by several construction companies when schedul-

ing activities for their projects, and large sums of money are being saved by

using this technique (Kumar and Munapo, 2012). Nyamugure et al. (2011) suc-

cessfully designed a new algorithm that combined different process capability

indices and proposed a holistic algorithm that addressed the entire quality of

a production process.

These developments, among other reasons, are an indication that new tech-

niques are needed to improve the day-to-day running of organisations, regard-

less of size, type and location. Several methods have been used to approximate

the travelling salesman problem (TSP) but the challenge is that these methods

do not inform on the quality of the solution with respect to the optimal solu-

tion. As a result there is need for new techniques that address and present the

supporting theory that makes the proposed algorithm more efficient and more

user-friendly than existing methods.

Degeneracy in a linear programming (LP) model can cause difficulties, as the

value of the objective function may not improve in successive degenerate iter-

ations. Sometimes a solution may be optimal but the test of optimality fails

to recognise optimality of that solution due to wrong selection of degenerate

variables. Since the transportation and assignment models are degenerate LP

models, where order of degeneracy varies from 1 to n in the context of a LP

model, special methods were developed to deal with these special degenerate

models. A feasible solution in a balanced assignment model of order n is a

degenerate solution by order (n − 1) in the context of a LP model (Munapo et

al., 2012). Perhaps the best known, most widely used, and most written about

technique for solving the assignment problem is the Hungarian method, which
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was first introduced by (Kuhn, 1955), with variants developed by Balinski and

Gomory (1964). This research is motivated by Munapo et al. (2012) who came

up with a unified approach to solve both transportation and assignment mod-

els, which is independent of degeneracy. The proposed unified approach takes

advantage of the Hungarian method of assignment and makes it more versatile

so that degeneracy can be handled. This unified approach, is applicable to both

assignment and transportation problems. Further, the process does not depend

on the number of allocated cells which in the transportation method must be

equal to (m + n − 1) in independent cells. The new unified method is likely to

prove more efficient in solving all transportation and assignment problems.

1.3 Purpose of the Study

1.3.1 Hypothesis

The central hypothesis of the study is that the occurrences of new problems

and challenges the world is facing today demand that we develop, improve and

modify existing models in order to counter these challenges.

1.3.2 Research aim

The principal aim of this study is to modify and develop new OR techniques

that can be used to solve emerging problems encountered in the areas of lin-

ear programming, integer programming, mixed integer programming, network

routing and travelling salesman problems.

1.3.3 Objectives

The specific objectives of this research are to:
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1. Develop new techniques for solving mixed integer linear programming

problems and a new approach to the transportation problem by modifying

the assignment approach, which is capable of dealing with the degenerate

problems.

2. Modify and improve existing shortest route model and maximum reliabil-

ity route in a non-directed network in order to derive the optimal solution

faster, cheaper and more accurately.

3. Combine holistically the minimum spanning tree algorithm and node in-

dex technique to form a new heuristic to the travelling salesman problem.

4. Apply the modified and developed models to solve distribution problems,

resource allocation problems, travelling salesman problem, reliability prob-

lems and shortest route problems.

1.4 Research Problem

OR encompasses a wide range of problem solving techniques and methods,

which are applied in pursuit of improved decision making and efficiency (Man-

gan et al., 2004). Such techniques and methods include simulation, mathemati-

cal optimisation, queueing theory and other stochastic-process models, Markov

decision processes, econometric methods, data envelopment analysis, neural

networks, expert systems, decision analysis, and the analytic hierarchy pro-

cess. Nearly all of these techniques involve the construction of mathematical

models that attempt to describe the system. Because of the computational and

statistical nature of most of these fields, OR also has strong ties to computer

science and analytics. Today, operations research is a mature, well-developed

field with a sophisticated array of techniques that are used routinely to solve

problems in a wide range of application areas.



Introduction and Background 7

As the OR field evolved, there is also an increase in the development of math-

ematical models that were used to model, improve, and even optimise real-

world systems. As the global environment becomes fiercely competitive, OR

has gained significance in applications. The growth of global markets and the

resulting increase in competition have highlighted the need for OR techniques

to be improved as well. During the twentieth century the pace of development

of fundamentally new OR methodologies somewhat slowed down (Kirby, 2007).

However, there has been a rapid expansion in the breadth of problem areas to

which OR has been applied, and in the magnitudes of the problems that can

be addressed using OR methodologies. The importance and numerous applica-

tions of OR models have led and stimulated research in this area. For a long

time, OR and Artificial Intelligence could be seen as alternative approaches

to solve real life optimisation problems such as scheduling or resource alloca-

tion. It now seems clear that we can have the best of both worlds by coming

up with some hybrid techniques that combine the two fields. There are several

emerging technologies which contain some of the most prominent ongoing de-

velopments, advances and innovations in various fields of modern technology.

Some of these fields include: closed door ecology systems, 3D printing and bio-

printing, femtotechnology and picotechnology, magnetic refrigeration, energy

harvesting, wireless energy transfer, genetic engineering and artificial gravity

(Aggarwa and Khetrapal, 2014).

Distribution models, resource allocation models, travelling salesman problem,

general linear mixed integer programming (MIP) and other network problems

that occur in real life have been modelled mathematically. Most of these mod-

els belong to the NP-hard (non-deterministic polynomial) class of difficult prob-

lems (Baker et al., 1975). No general purpose algorithm for these problems is

known. In other words, these types of problems cannot be solved in polyno-

mial time (P). The importance of resolving NP-hard problems is reflected by
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the fact that the problem of P versus NP is one of the seven Millennium Prize

Problems in mathematics that were stated by the Clay Mathematics Institute

in 2000 (Devlin, 2003; Carlson et al., 2006; Wiles, 2006). A correct solution to

any of the seven problems will earn a US $1 million prize (also called a Mil-

lennium Prize) being awarded by the Institute. Out of the seven very difficult

problems, only one was solved by the Russian mathematician Grigori Perelman

in 2003 (Wiles, 2006). For more on the latest developments on NP-hard mod-

els, see Wang et al. (2013), Chagwiza et al. (2015), Lefever et al., (2016), and

Polyakovskiy et al. (2016). This study has addressed a few NP-hard problems

and tried to come up with solutions to these types of problems.

With all these technological advancements, there is need to continuously de-

sign new OR models and modify existing techniques in order to solve the ever

emerging challenges our world is facing. The spread of infectious diseases like

HIV/AIDS, malaria and currently Ebola and the Zika virus, depends on inter-

actions of different types of diseases, which need OR techniques to understand

and possibly come up with solutions. Occurrences of natural disasters and

recent catastrophic events such as earthquakes, tsunamis, heat waves, land-

slides, forest fires, drought and floods, all need a holistic approach to under-

stand, predict and mitigate the impact of these events. Current OR techniques

need to be extended or revamped in order to deal with these new emerging

problems our world is facing.

This thesis is an attempt to address problems that can be classified according

to the selected areas in the next five subsections.

1.4.1 Routing models in non-directed networks

The shortest path problem determines the shortest path between two ver-

tices of a graph such that the sum of the weights of the constituent edges is
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minimised. Many industrial problems can be formulated and analysed as a

shortest path problem or its variants in a network. This has been of inter-

est to researchers and practitioners in many network related disciplines like

transportation, logistics, vehicle routing, airport tours, installation of power

cables, operations research, geographic information system (GIS) technology,

and emergency services. Many approaches have been developed to find the

shortest path from a given node to all other nodes and appropriate computer

codes have been developed for implementation of their algorithms. The prob-

lem of shortest route has been studied in directed as well as in non-directed

networks (Dijkstra, 1959; Dantzig 1960; Zhan, 1997; Zhan and Noon, 1998;

among others).

Many challenges with existing methods remain unsolved to date. Some of the

challenges include being stuck into a local optimum solution instead of global

optimum solution, and challenges created by non-directed graphs and failure

to obtain an optimal solution. In this research a new approach for determining

a shortest path for a non-directed network will be formulated. A minimum

spanning tree approach to determine a route through ‘k’ specified nodes is also

formulated. The path through ’k’ specified nodes is a difficult problem for which

no good solution procedure is known (Gomes et al., 2015). The proposed method

determines an optimal or a near optimal path.

1.4.2 Minimum spanning tree based models for solving

some NP-hard problems

Determination of the travelling salesman problem (TSP) is an NP-hard combi-

natorial optimisation problem (Kahng and Reda, 2004) that has applications in

OR and many other fields, for example, computer science, genetics, electronics

and logistics. The TSP finds a path of moving from an origin node to all the

other nodes in the network and return back to the origin in such a way that
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each and every node is visited once and the total distance travelled is minimal.

Several methods have been used to approximate the TSP but the problem is

that these methods do not tell us about the quality of the solution with respect

to the optimal solution.

In computational complexity theory the TSP belongs to the class of NP-complete

problems, which means that in the worst-case running time for the TSP may

increase exponentially with the number of cities (Mitchell, 2001; Nadef, 2002).

Currently we are not aware of any efficient exact method for the TSP model.

Heuristics have been used to approximate the TSP, but these heuristics do not

tell us about the quality of the solution with respect to the optimal solution

(Wolsey, 1980; Berman and Karpinski, 2006; Cowen, 2011; Razali and Ger-

aghty, 2011). The TSP has so many variants and applications in real life that

it has demanded attention of many researchers (Gutin and Punnen, 2006).

This research presents a heuristic to find the travelling salesman tour (TST)

in a connected network through the minimum spanning tree (MST), thus con-

verting the NP-hard problem to a relatively easier form.

1.4.3 Transportation and assignment problems

The generalised assignment problem (GAP) is the problem of assigning n jobs

to m agents in such a way that the total cost is minimal and that each job is

assigned to exactly one agent and the agent’s capacity is also satisfied. GAP is

an NP-hard problem and many approaches have been proposed in the past 50

years. The GAP can be relaxed to become an ordinary transportation problem.

GAP is a branch and bound technique in which the sub-problems are solved by

the available efficient transportation techniques rather than the usual simplex

based approaches. A transportation model is easy to handle and efficient so-
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lution methods such as network approaches have been formulated. The GAP

model can also be treated as a general case of the assignment problem in which

the number of jobs and agents are equal in size, and the cost associated with

each job-agent combination may have different values. GAP has many appli-

cations in real life and these include vehicle routing (Toth and Vigo, 2001),

resource allocation (Winston and Venkataramanan, 2003), supply chain (Yag-

iura, 2006), machine scheduling and location, among others. In this research

a transportation branch and bound algorithm for solving the GAP will be de-

veloped. This is a branch and bound (BB) technique in which the sub-problems

are solved by the available efficient transportation techniques rather than the

usual simplex based approaches. This technique also selects branching vari-

ables that minimise the number of sub-problems.

1.4.4 Large-scale linear programming

Many solution procedures have been developed for large-scale LP models (Kachiyan,

1979; Karmarkar, 1984) and many variants of these approaches have been dis-

cussed (Roos et al., 2005). Recently Munapo and Kumar (2013), considered a

LP model with non-negative coefficients, and developed an iterative procedure

to solve a large-scale LP by transforming the given ‘n′ variable LP to a ‘2′ vari-

able LP. Computational experiments indicated that their approach performed

better with regard to a large number of randomly generated large LP prob-

lems. However, more needs to be done to improve their approach. As a result,

a large-scale LP model with non-negative coefficients was reconsidered under

a new strategy, that is, an iterative hybrid process. The approach uses the con-

ventional simplex iterations for search along the extreme points of the convex

region, generates an interior point using these extreme points, and moves from

the interior point in the direction of the normal to the given objective function

hyper-plane until an optimal solution has been identified. Authors have recon-
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sidered a conventional LP model with no restriction on coefficients.

1.4.5 Integer programming and mixed integer program-

ming

An integer linear program is a linear program which is further constrained

by integer restrictions on some or all variables. When all variables are inte-

ger restricted, it is called a pure integer program (PIP) model, and when only

some of the variables are restricted to integer values, it becomes a mixed in-

teger program model. Integer programming (IP) models frequently arise in

human resource planning, facility location, assignment problems, production

planning, time-tabling, warehouse location, scheduling and capital budgeting,

just to mention a few.

While most LP problems can be solved in polynomial time, PIP and mixed inte-

ger program are NP-complete problems, which have no known polynomial time

algorithms to solve them. Generally, MIP problems have been solved using the

LP-based BB solvers or with stochastic search-based solvers (Razali and Ger-

aghty, 2011). In reality MIP solvers have implemented more sophisticated ver-

sions denoted by branch and cut (BC) algorithms (Sen and Sherali, 2006). With

the increase in the application of both PIP and MIP, it is of paramount impor-

tance to generate methods that are capable of finding a global optimal solution.

The major disadvantages of existing methods are that there are round off er-

rors, creation or emergence of many sub-problems (branches), the time taken

to obtain the optimal solution and failure to obtain global optimal solutions. All

these shortcomings justify the need to find better approaches for MIP problems.

In this research a heuristic method for MIP using the characteristic equation

hsa been formulated. The proposed method generates a good feasible solu-
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tion with bounds, and it eliminates rounding off errors and dealing with sub-

problems as is commonly required in existing BB methods.

All these problems have resulted in the need to develop new OR techniques to

address the shortfalls of the current methodologies and try to solve emerging

problems in order to improve the efficiency with which organisations operate.

1.5 Limitations of OR

The following are some of the limitations of OR:

• In the quantitative analysis of operations research, certain assumptions

and estimates are made for assigning quantitative values to factors in-

volved. If such estimates are wrong, the result would be equally mislead-

ing.

• Most management problems do not lend themselves to quantitative mea-

surement and analysis. Intangible factors of any problem concerning hu-

man behaviour cannot be quantified accurately and all the patterns of

relationships among the factors may not be covered. Accordingly, the out-

ward appearance of scientific accuracy through the use of numbers and

equations becomes unrealistic.

• The quantitative methods of OR are costly in many cases, elaborate and

sophisticated in nature. Although complex problems are fit for analysis by

tools of operations research, relatively simple problems have no economic

justification for this type of quantitative analysis.

• Knowledge of some concepts of mathematics and statistics is a prerequi-

site for the adoption of quantitative analysis by managers. According to

the present training and experience of most managers, the actual use of

these tools may have natural hesitation by some managers.
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• OR is not a substitute to the entire process of decision making and it does

not relieve managers from their task of decision making. In one phase of

decision making viz., selection of best solution through the evaluation of

alternatives, OR comes into the picture.

These limitations justify the need to continuously develop and modify existing

OR techniques in order to come up with new models that can solve these prob-

lems holistically. Despite the relevance of OR to organisations, Griffen (1987)

argued that quantitative techniques alone cannot fully account for intangible

or qualitative factors in decision making. Qualitative or intangible factors are

factors that are difficult to measure numerically. Mangan et al. (2004) high-

lighted the benefits which can result from combining qualitative and quanti-

tative methodologies in logistic research. Modern challenges associated with

a global economy and the growth of technology have increased the complex-

ity of the business environment. Modern corporations often strive to serve a

global, rather than a regional customer base, hence they must be prepared to

face worldwide competition.

1.6 Significance of the Study

The use of hybrid methods, (that are formed by combining existing techniques)

is in response to the rising number of problems that need to be solved by OR.

Under the unpredictable and turbulence environment, classical and traditional

approaches are partially able to obtain a complete solution with certain degree

of satisfaction. The modified technique must be generic, flexible, robust and

versatile for solving complex problems. The use of these new methods can pro-

vide useful insights where the analytical approach has a shortfall. Therefore,

new OR methods are required to handle these problems holistically.
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The use of new and improved methods improves the way organisations run

their business and saves millions of dollars. Two recent examples are: (1)

the world’s largest logistics company redesigned its overnight delivery network

which was estimated to yield savings of more than 270 million United States

dollars (2) and a global automobile manufacturer streamlined its prototype ve-

hicle testing, saving 250 million United States dollars annually. These exam-

ples and more are available on the internet (Informs, 2004).

The results of this research will serve as a benchmark for comparison with

other models that are currently in use. If scientists put their heads together

we strongly feel that the results of their studies will make this world a better

place to live in.

1.7 Scientific Contributions of the Study

This study aims to strengthen interdisciplinary ties by combining different

techniques from different fields and to initiate new joint ventures in research

and education. The major contribution of this thesis is in coming up with new

techniques and methods of solving emerging problems and applying these new

techniques to real life situations. The specific contributions are as follows:

1. Developed a new labelling method for a probabilistic directed network

that identifies existence of virtual directions in a non-directed network.

These directions are used for developing a labelling method for the non-

directed network. The approach can easily be used for finding a minimum

delay path, widest communication band width etc., which have applica-

tions in operations research, robotics and transportation of communica-

tion signals.

2. Developed a minimum spanning tree approach to determine a route through
′k′ specified nodes. The path through ′k′ specified nodes is a difficult prob-
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lem for which no good solution procedure was known before. The proposed

method determines the route, which may be either an optimal or a near

optimal path and has several applications in telecommunication, distri-

bution management and transportation.

3. Developed a new method to find the minimum spanning tree path, such

that the node index of each node is less than or equal to 2. The method

obtained is such that, such a spanning tree may can be used to deter-

mine the NP-hard travelling salesman tour which have applications in

Computer Wiring, DNA, Logistics, Baseball etc.

4. Developed a transportation branch and bound algorithm for solving the

generalised assignment problem. This is a branch and bound technique in

which the sub-problems are solved by the available efficient transporta-

tion techniques rather than the usual simplex based approaches. This

technique also select branching variables that minimise the number of

sub-problems.

5. Modified and created a hybrid search process for a large-scale LP problem.

The hybrid approach uses the normal simplex iterations for search over

the extreme points of the convex region, then generates an interior point

using these extreme points, and moves from the interior point in a known

direction, which is normal to the given objective function. This approach

is suitable for a large-scale LP and it has several real life applications.

6. Formulated a new heuristic for solving MIP problems using the charac-

teristic equation. The new method does not create round off errors which

leads to non-optimal or non-feasible solutions. The heuristic also does not

create sub-problems as is in the case with BB or BC methods. It also

searches the optimal solution using the simplex algorithm, but moves

over the integer polyhedron.
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1.8 Outline of the Thesis

The structure of this thesis is arranged such that Chapter 1 gives an introduc-

tion to the research study. This chapter also presents a comprehensive research

problem, motivation of the study, hypothesis of the study, principal aim, objec-

tives of the study, significance of the study and scientific contributions of the

study. The Chapter highlights the origins of OR, the advantages of using OR,

the growth of the subject since the 1950s and its numerous applications. It also

motivates for the need to continuously modify and develop new techniques in

order to solve the ever-emerging challenges faced in the world.

Chapter 2 reviews the general literature on the research areas that are cov-

ered in this thesis, that is, routing models, travelling salesman problem, trans-

portation and assignment problems, large-scale linear programming problem

and mixed integer programming problem. The Chapter provides the literature

on the developments of the OR field, and the capabilities and challenges that

the current models are facing in solving the emerging problems. The Chapter

also reviews current OR research and how it is benefiting mankind.

The technical chapters of this thesis are arranged such that they fall into two

major sections. Section I is on Network models, and consists of three chap-

ters, namely (1) Routing models in non-directed networks, (2) Minimum span-

ning tree based models for solving some NP-hard problems, and (3) Travelling

salesman problem. Section II is on Resource allocation and distribution

models, and consists of two chapters, namely (1) Transportation and assign-

ment problems, and (2) Linear programming based models for solving some

NP-hard problems.

Chapters 3 to 7 are based on 9 papers as per details given as foot note on pages

18, 19 and 20 and have been submitted individually for publication purposes.
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Each of these chapters explains how the new techniques have been formulated.

A detailed analysis of the methodology, data analysis, results, conclusion and

recommendations will be done in each of these chapters. Although these chap-

ters are self-contained, there will be consistency in notation throughout the

thesis so as not to confuse the reader. Also the chapters will be written in such

a way that if there is a technique or method that is used in another chapter,

then the two chapters will follow each other.

Chapter 3: Routing Models in Non-directed networks has been divided

into two sections. Section 11 describes how a new minimum weight labelling

method for determining the shortest route is developed. It also gives a numer-

ical example to illustrate the new method. Its advantages are also outlined.

Section 22 presents a new and efficient labelling approach for the determina-

tion of a maximum reliability route in a non-directed network. The proposed

method finds the reliability and the corresponding path from an origin node

to all other nodes. Practical use includes waste management, where recycling

reduces the bulk of solid waste and provides cheap resource to industry. Simi-

larly, information recycling is intended to minimise unnecessary computations

when that information can be extracted by earlier computations.

Chapter 4: Minimum Spanning Tree based Models for solving some NP-

hard Problems is divided into two sections. Section 13 outlines how a new

method to find the minimum spanning tree path such that the node index of

each node is less than or equal to 2, was developed. The method developed
1A minimum weight labelling method for determination of a shortest route in a non-

directed network (Kumar et al., 2013) International Journal of Systems Assurance Engineering
and Management. 4(1),13-18. 2013. DOI 10.1007/s13198-012-0140-7 Springer verlag.

2Identification and Application of Virtual Directions in a Non-Directed Network: A La-
belling Method for Determination of Maximum Reliability and the Route (Kumar et al., 2016).
Communications in Dependability and Quality Management (CDQM) Journal 19(1):85-95.
2016

3A Minimum Spanning Tree with node index ≤2 (Munapo et al., 2016). The Australian
Society for Operations Research (ASOR) Bulletin 34(1): 1-14. 2016
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is then used to determine the NP-hard travelling salesman problem. Section

21 develops a minimum spanning tree approach to determine a route through
′k′ specified nodes. In this section, the concept of the specified nodes has been

discussed in connection with the shortest route from a given origin node to the

destination node. For a feasible solution, one has to visit the specified node

within the specified time window. This simple mathematical concept has ap-

plications in patient routing in the hospitals, where time windows arise due to

availability of beds, theatre, doctor, radiology results etc.

Chapter 5: Travelling salesman problem, is divided into two sections. Sec-

tion 1 describes the method of obtaining the travelling salesman tour (TST)

through the MST technique. The proposed method does not generate sub-

problems that can explode as is the case with most of the branch and bound

related methods. The method can result either in an optimal solution or bounds

on the TSP tour. Section 22 describes how a new heuristic to the TSP is formu-

lated. The new method is then compared to another leading TSP heuristic that

used the Christofides algorithm (Cowen, 2011). The new method was found to

produce better results than those obtained using the Christofides algorithm.

Chapter 6: Transportation and Assignment Problem3 deals with the de-

velopment of a transportation branch and bound algorithm for solving the gen-

eralised assignment problem. The proposed approach has the advantage that

the individual knapsack objective values can be found independently, thus al-

lowing the much needed use of parallel processors. The sub-problems resulting
1A Minimum Spanning Tree Approximation to the Routing Problem through ′k′ Specified

Nodes (Kumar et al., 2014). Journal of Economics, 5(3), 307-312. 2014
2A minimum spanning tree based heuristic for the travelling salesman problem in a con-

nected network (Kumar et al. 2017(a)). Revised manuscript submitted to Opsearch, 2017
3A transportation branch and bound algorithm for solving the generalised assign-

ment problem (Munapo et al., 2015).International Journal of System Assurance Engi-
neering and Management 2015, 6(3):217-223. DOI 10.1007/s13198-015-0343-9 Springer.
http://www.springerlink.com/openurl.asp?genre=article&id-doi10.1007/s13198-015-0343-9.
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from the search trees are transportation models that can be solved efficiently

by the available network approaches. The sub-problems that result from the

usual branch and bound related approaches are NP-hard integer models which

are very difficult to solve. The only disadvantage to this approach is that like

the simplex based approaches it is also not spared by degeneracy. The degen-

eracy drawback can be alleviated by noting all alternate optimal solutions at

every node and then branch in such a way that the objective value does not

remain static.

Chapter 7: Large-Scale Linear Programming, is divided into two sections.

Section 11 modifies and creates a hybrid search process for a large-scale LP

problem. The hybrid approach uses the normal simplex iterations for search

over the extreme points of the convex region, then generates an interior point

using these extreme points, and moves from the interior point in a known direc-

tion, which is normal to the given objective function. This approach is suitable

for a large-scale LP with coefficients of the form greater or equal to zero, and

it has several real life applications. A conventional LP with no restriction on

coefficients is reconsidered with strategies to reduce feasible space and number

of constraints.

In this same Section2 strategies for reducing the feasible space, and the num-

ber of variables when solving a large-scale LP model is also discussed. When

the feasible space is reduced in a way discussed in this Section, the optimal

solution can be found faster than in the current methods.

1Solving a large-scale LP model with non-negative coefficients: A hybrid search over the
extreme points and the normal direction to the given objective function (Munapo et al., 2014).
The Australian Society for Operations Research (ASOR) Bulletin 2014 33(1), 11-24.

2Strategies for reducing feasible space and the number of variables for solving a LP model
(Kumar et al., 2017(b)). To appear in International Journal of Mathematical, Engineering and
Management Sciences
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Section 21 describes a new heuristic for solving MIP problems using the charac-

teristic equation was developed. The new method has several advantages over

existing ones in that it does not create round off errors which leads to non-

optimal or non-feasible solutions, and also it does not create sub-problems as is

in the case of branch and bound (BB) or branch and cut (BC) methods. A small

and large-scale MIP problems were solved and compared to the BB and the BC

methods respectively and the results clearly shows that our method performs

better. The only drawback is that computational experiments on these new

methods need to done.

Chapter 8: Summary, Conclusions and Recommendations, summarises

and concludes the thesis, and it also gives overall recommendations of the

study. The Chapter also outlines the limitations of the study and covers ar-

eas of future research directions.

1A heuristic for mixed integer program using the characteristic equation (Nyamugure et
al., 2016). International Journal of Mathematical, Engineering and Management Sciences.
2(1):1-16: ISSN 2455-7749



Chapter 2

General Literature Review

“Research is to see what everybody else has seen, and to think what

nobody else has thought”.

Albert Szent-Gyorgyi

2.1 Introduction

This thesis presents research carried out in two major areas of: (a) network

models, and (b) resource allocation and distribution models. Literature review

is therefore limited to the models that have been developed in this thesis. The

review highlights the developments that have been carried out in these two

types of models, their application, limitations and areas that need improve-

ments or further developments.

Operations research encompasses a wide range of problem-solving techniques

and methods applied in the pursuit of improved decision making and efficiency,

such as simulation, mathematical optimisation, queuing theory, stochastic-
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process models, Markov decision processes, econometric methods, data envel-

opment analysis, neural networks, expert systems, decision analysis, and the

analytic hierarchy process (Fasika et al., 2013; Jinn-Tsong et al., 2013).

Most researchers in the area of big data solve a problem by combining dif-

ferent techniques (Gradisar and Trkman, 2013). Emerging problems in most

cases are so complicated that a single method might not solve the problem

to optimality. When analysing multi-criteria decision making (MCDM) meth-

ods, Velasquez and Hester (2013) concurred with this idea, and established

that the newest trend with respect to MCDM method use, is to combine two or

more methods to make up for shortcomings in any particular method. Konidari

and Mavrakis (2007) utilised several methods to evaluate climate change mit-

igation policy instruments. In addition to utilising analytic hierarchy process

(AHP) to define coefficients for criteria, the researchers used a combination

of multi-attribute utility theory (MAUT) and a simple multi-attribute ranking

technique (SMART) process to assign grades to the instruments. Zabeo et al.

(2011) assessed the risk and vulnerability of soil contamination in Europe by

selecting a vulnerability assessment framework. They did this by combining

multi-criteria decision analysis techniques and spatial analysis.

2.2 Network Models

Kumar et al. (2013) proposed a new minimum weight labelling method for de-

termining the shortest route in a non-directed network from a source node to

a destination node. Kumar et al. (2014) developed a minimum spanning tree

method for the determination of a route through ′k′ specified nodes in a con-

nected network with n nodes, where 0 ≤ k ≤ n − 2. The strength of the new

approach lies in the fact that the proposed method provides the exact TSP opti-
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mal tour through the minimum spanning tree (MST), which is computationally

easy to solve and the iteration used in the present context does not explode, as

is the case with most available branch and bound type approaches.

Gnedenko et al. (1999) described a system as a directed network consisting

of nodes and arcs where one node is defined as the source and another node

is defined as the sink. Each component of the network is identified as an arc

passing from one node to another. A failure of a component is equivalent to

an arc being removed or cut from the network. The system is successful if

there exists a successful path from the source to the sink. The system fails if

no such path exists. The reliability of the system is the probability that there

exist at least one successful path from the source to the sink. Leitch (1995)

stated that the structure function of network reliability can be constructed with

knowledge of the set of minimal cuts of the network. If C is a set of components

comprising a minimal cut, then the event that all components in the cut will

fail is
∏

(1 − Xi) and the event that all the components in the cut works is

1 −
∏

(1 − pi), where pi is the probability that component i is working. If the

network has C1, C2, ..., Ck collections of minimal cuts, then the reliability RC(X)

that the network is functioning (if it functions only if all cuts function) is given

by:

RC(X) =

[
1−

∏
i∈C1

(1−Xi)

][
1−

∏
i∈C2

(1−Xi)

]
......

[
1−

∏
i∈Ck

pi (1−Xi)

]
(2.1)

The reliability upper bound is obtained by computing the probability that at

least one minimal path is successful with the added assumption that paths fail

independently. The reliability upper bound RU , according to Leitch (1995), is

given by:

RU(X) = 1−

[
1−

∏
i∈P1

pi

][
1−

∏
i∈P2

pi

]
......

[
1−

∏
i∈Pk

pi

]
(2.2)
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where P1, P2, ..., Pk are the minimal cuts probabilities. The reliability lower

bound RL(X) is obtained by computing the probability that every minimal cut

is successful, with the added assumption that paths fail independently and is

given by:

RL(X) =

[
1−

∏
i∈C1

(1− qi)

][
1−

∏
i∈C2

(1− qi)

]
......

[
1−

∏
i∈Ck

pi (1− qi)

]
(2.3)

where C1, C2, ..., Ck are the minimal cuts probabilities of the network.

Ant colony optimisation (ACO) is a heuristic algorithm which has been proven

to be successful in solving the travelling salesman problem (TSP). It has been

applied to a number of combinatorial optimisation problems, and is also con-

sidered as one of the high performance computing methods for the TSP (Hlaing

and Khine, 2011). According to the researchers, ACO has a very good search

capability for optimisation problems, but it still remains a computational bot-

tleneck in that the ACO algorithm takes too much time to convergence. In

trying to find an optimal solution for the TSP, ACO also gets trapped in local

optima instead of converging to the global optima. They proposed an improved

ACO algorithm by adopting a candidate set strategy to increase the conver-

gence speed. They also included a dynamic updating rule for the heuristic

parameter, based on entropy to improve the performance of their algorithm in

solving the TSP. Their new method was tested on benchmark problems and

their results showed that the proposed algorithm performed better than the

conventional ACO algorithm.

Stutzle and Doringo (1999) gave an overview of the available ACO algorithms

for the TSP. They highlighted that the first ACO algorithm called Ant Sys-

tem has been applied to the TSP and several improvements of the basic Ant

algorithm have been proposed. When studying ACO algorithms for the TSP,
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Stutzle and Doringo (1999) noted that after all the ants have constructed their

tours, the pheromone trails are updated. This is done by first lowering the

pheromone strength on all arcs by a constant factor, and then allowing each

ant to add a pheromone on the arcs it has visited. This is achieved using the

following equation:

τij(t+ 1) = (1− ρ).τij(t) +
m∑
k=1

∆τ kij(t) (2.4)

where 0 < ρ ≤ 1 is the pheromone trail evaporator, ∆τ kij(t) is the amount of

pheromone ant k puts on the arcs it has visited. Strutzle and Doringo (1999)

then highlighted that the global best tour was used to update the pheromone

trails. The global best solution which gives the strongest feedback, is given

weight w. The rth best ant of the current iteration contributes to pheromone

updating with a weight given by max{0, w − r}. Thus, the modified updated

rule was then given by:

τij(t+ 1) = (1− ρ).τij(t) +
m∑
k=1

(w − r).∆τ kij(t) + w.∆τijgb(t) (2.5)

where ∆τ rij(t) = i/Lr(t) and ∆τ gbij (t) = 1/Lgb, Lr(t) is the length of the rth ant’s

tour and Lgb is the length of the global tour. According to Strutzle and Doringo

(1999), the modified updated rule (equation (2.5)) proved to be superior to the

genetic algorithm and the simulated annealing procedures.

2.3 Resource Allocation and Distribution Mod-

els

He et al. (2015) developed a mixed integer linear program (MILP) model that

addressed the dynamic resource allocation problem for transportation evac-
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uation planning on large-scale networks. The model is built on the earliest

arrival flow formulation that significantly reduced the problem size. In their

study, the MILP model was decomposed into two sub-problems: the restricted

master problem, which first identifies a feasible dynamic resource allocation

plan; and the auxiliary problem, which models the dynamic traffic assignment

in the evacuation network given a resource plan. Their results showed that

the decomposition algorithm can solve problems to optimality efficiently on a

large-scale network.

A wide range of problems can be modelled as mixed integer programming (MIP)

problems using standard formulation techniques. However, in some cases the

resulting MIP problem can be either too complicated or too large to be effec-

tively solved by the current solvers (Vielma, 2015). In such cases either new

MIP models need to be developed or existing methods need to be combined

holistically in order to solve those problems.

Integer programming (IP) models frequently arise in human resource plan-

ning, facility location, assignment problems, production planning, time-tabling,

warehouse location, scheduling and capital budgeting, just to mention a few.

While most LP problems can be solved in polynomial time, pure integer pro-

gramming (PIP) and MIP problems are NP-complete for which there are no

known polynomial time algorithms to solve them (Williams, 2009). Generally,

MIP problems have been solved using the LP-based branch and bound (BB)

solvers or with stochastic search-based solvers (Vielma et al., 2007). The ad-

vantage of the first approach (BB solvers) is that it provides rigorous lower

and upper bounds on the solution, which in turn provides the optimal solution.

During the search the upper and lower bounds are used to prune branches of

the tree (Mavrotas and Diakoulaki, 1998). BB algorithms, however, may lead

to unwieldy situation due to large number of sub-problems that may have to
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be solved, particularly when the LP relaxation is poor. In reality MIP solvers

have implemented more sophisticated versions denoted by branch and cut (BC)

algorithms (Razali and Geraghty, 2011). In these algorithms, valid inequalities

denoted by cutting planes are added to the linear relaxations in order to reduce

the size of the feasible space without eliminating any feasible integer solution.

One of the objectives of this research is to come up with a new method for solv-

ing a MIP, hoping that it may provide insight into the scope of MIP applications.

Li et al. (2008) developed an improved genetic algorithm of the vehicle routing

problem (VRP) that they applied to the distribution of fruits and vegetables.

Their method included the vehicle routing problem with hard time windows

(VRPHTW) and vehicle routing problem with soft time windows (VRPSTW).

According to Li et al. (2008), the mathematical model based on the total lowest

cost for optimising target C were formulated as follows:

minC = a0m+
n∑
i=0

n∑
j=0

m∑
k=1

a1δijdijxijk+
n∑
j=1

a2(Tj).(max{(TEj−Tj, 0}+max{(Tj−TLj), 0}

(2.6)

with xijk={1, if vehicle k travels from i to j; 0, otherwise}, a0 is fixed cost per

vehicle, a1 is the running unit cost per vehicle and a2(Tj) is unit penalty cost

if the time goes beyond the time windows, qi is demand of customer i, δij rep-

resents evaluation coefficient of road surface evenness between customer i and

customer j, dij is distance between customer i and customer j, [TEj, TLj] de-

notes time windows of receiving for customer j, and Tj is travel time between

customer i and customerj, the variable m is the number of delivery vehicles

and n is the number of customers.

The model (2.6) was improved using the sweep algorithm by dividing the cus-

tomers into different groups and ensuring that each group meets all of the

constraints conditions (Li and Guo, 2010). A penalty strategy was introduced
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to define the fitness function Z as:

Z = C +M1

m∑
k=1

max(
k∑
i=1

k∑
j=1

xijkqi −Q, 0) +M2

m∑
k=1

max(
k∑
i=1

k∑
j=1

xijkdi − L), 0)

= a0m+
n∑
j=0

m∑
k=1

a1δijdijxijk +
n∑
j=1

a2(Tj).(max{(TEj − Tj, 0}

+ max{(Tj − TLj), 0}+M1

m∑
k=1

max(
k∑
i=1

k∑
j=1

xijkqi −Q, 0)

+M2

m∑
k=1

max(
k∑
i=1

k∑
j=1

xijkdi − L, 0)

(2.7)

where C is the optimising target of the proposed model. In the improved Ge-

netic model (2.7), penalty factors were added where M1 is the penalty factor

for being overweight and M2 is the penalty factor for being over the maximum

travel distance. Li et al. (2008) concluded that the improved genetic algorithm

was superior to four other methods that they made comparison to. As proposed

by (Calvete et al., 2007), the VRPHTW and the VRPSTW have been proven to

be NP-hard, and only relatively small problems of this nature have been solved

to optimality due to their huge computational requirements.

2.4 Development of new Techniques

Solving integer programming optimisation problems, that is, finding an opti-

mal solution to such kind of problems, can be a difficult task. To solve a non-

convex integer programming problem could be an algorithmically unsolvable

task (Britton, 1979; Khachiyan, 1982). The convex non-linear IP problems be-

long to the class of NP-hard problems (Garey and Johnson, 1979; Arora and

Barak, 2009). There are few exact algorithms which can solve these problems

in polynomial time, depending on the nature of the problem, input data, length
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or size of the problem. The linear IP problems are easier to solve than convex

non-linear integer programming problems. It should be noted, however, that

there are many special cases of problems that belong to the class P (solvable

in polynomial time) (e.g. matching, node packing on appropriately restricted

classes of graphs, and some optimisation problems), i.e. there exist algorithms

with polynomial time computational complexity, which can solve them. The

difficulty in solving IP problems arises from the fact that unlike LP problems

whose feasible region is a convex set, for IP problems, one must search for a

lattice of feasible integer points to find an optimal solution.

Unlike LP problems where due to the convexity of the problem, we can exploit

the fact that any local solution is a global optimum. IP problems have many lo-

cal optima. Finding a global optimum to the problem requires one to prove that

a particular solution dominates all the feasible points by arguments other than

the calculus-based derivative approaches of convex programming with contin-

uous variables. For this reason, the approximate algorithms for solving integer

programming optimisation problems are widely used.

To date, only a few algorithms have been developed that are able to compute

a bi-level problem whose lower level problem has discrete variables (DeNegre,

2011; Xu and Wang, 2014). Nevertheless, those algorithms either (i) heavily

depend on enumerative BB strategies based on a rather weak relaxation, or

(ii) involve complicated operations that are problem-specific and challenging

for most researchers and practitioners. Hence, existing methods are of very

limited computational capability. As a consequence, there is no commonly ac-

cepted approach and little support is available to transform bi-level problems

into a decision making tool for real system practice (Xu, 2012).

The intrinsic complexity of interior-point method limits the size of the prob-
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lems that they can handle. In the recent years, new and cheaper approaches

have been developed to attack much larger semi-definite problems. These al-

gorithms, called first-order methods, are very sophisticated extensions of old

gradient methods. Their scope of applicability and the impressive acceleration

possibilities that they offer are not yet fully understood. Many development

strategies can still be investigated for further improvement in order to make

them an indispensable tool to tackle huge-size semi-definite problems, or to

leverage their versatility in the context of mixed integer convex optimisation.

Over the last two decades, many sophisticated evolutionary algorithms have

been introduced for solving constrained optimisation problems (COPs). El-

sayed et al. (2011) noted that due to the variability of characteristics in differ-

ent COPs, no single algorithm performs consistently over a range of problems.

The scholars introduced an algorithm framework that uses multiple search op-

erators in each generation. The appropriate mix of the search operators, for

any given problem in their method, is determined adaptively. Their algorithm

framework was tested by implementing two different algorithms and the per-

formance of the algorithms was judged by solving 60 test instances taken from

two constrained optimisation benchmark sets from specialised literature. The

first algorithm, which is a multi-operator based genetic algorithm (GA), showed

a significant improvement over different versions of GA (each with a single one

of these operators). The second algorithm, using differential evolution (DE),

also confirmed the benefit of the multi-operator algorithm by providing bet-

ter and consistent solutions. The overall results demonstrated that both GA

and DE based algorithms show competitive, if not better performance than the

state-of-the art algorithms.

Balseiro et al. (2011) developed an ant colony system algorithm hybridised with

insertion heuristics for the time-dependent vehicle routing problem with time
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windows (TDVRPTWs). In their research a fleet of vehicles delivered goods

to a set of customers and time window constraints of the customers were re-

spected. They also took into account the fact that travel time between two

points depended on the time of departure. The latter assumption was par-

ticularly important in an urban context where traffic plays a significant role.

They highlighted that the shortcoming of ant colony algorithms for capacitated

routing problems was that, at the final stages of the algorithm, ants tended to

create infeasible solutions with unrouted clients. Hence, they enhanced the al-

gorithm with an aggressive insertion heuristic relying on the minimum delay

metric. Computational results confirmed the benefits of involving the insertion

heuristics. Moreover, the resulting algorithm turned out to be competitive,

matching or improving the best known results in several benchmark problems.

2.5 Improving Existing Techniques

Wang (2012) proposed a hybrid multi-criteria decision making (MCDM) model

combining analytic network process (ANP) and decision making trial and eval-

uation laboratory technique (DEMATEL). Utilising this hybrid method, Wang

(2012) applied a framework of decision making to international trade practices

in Taiwan. Tsai et al. (2010) took this one step further, although not directly

building upon Wang’s (2012) research. They combined ANP, DEMATEL, and

zero-one goal programming (ZOGP). They applied the new method to apply to

a sourcing decision about (i) keeping IT functions in-house or (ii) contracting

to a third party provider. Due to certain shortcomings in (AHP), ANP has seen

an increase in usage, especially in combination with other MCDM methods.

Artificial bee colony (ABC) algorithm is a relatively new optimisation tech-

nique which has been shown to be competitive to other population-based al-

gorithms. However, Gao and Liu (2012) highlighted that ABC still needs to be
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modified in terms of its solution search equation, which is good at exploration

but poor at exploitation. Inspired by differential evolution (DE), Gao and Liu

(2012) proposed an improved solution search equation. They stated that ABC

searches only around the best solution of the previous iteration to improve the

exploitation. In order to make full use and balance the exploration of the so-

lution search equation of ABC and the exploitation of the proposed solution

search equation, they introduced a selective probability P to obtain the new

search mechanism. In addition, to enhance the global convergence when pro-

ducing the initial population, both chaotic systems and opposition-based learn-

ing methods were employed. Gao and Liu (2012) came up with the modified

ABC (MABC), which includes the probabilistic selection scheme and scout bee

phase. They conducted experiments on a set of 28 benchmark functions, and

their results demonstrated good performance of MABC in solving complex nu-

merical optimisation problems, compared with two ABC-based algorithms.

Vidal et al. (2013) presented an efficient hybrid genetic search with advanced

diversity control for a large class of time-constrained vehicle routing problems,

introducing several new features to manage the temporal dimension. They pro-

posed new move evaluation techniques, which accounted for penalised infeasi-

ble solutions with respect to time-window and duration constraints. The hybrid

technique would allow evaluation of moves from any classical neighbourhood

based on arc or node exchanges in constant time. Furthermore, geometric and

structural problem decompositions were developed to address efficiently large

problems. Their proposed algorithm outperforms all current state-of-the-art

approaches on classical literature benchmark instances for any combination of

periodic, multi-depot, site-dependent, and duration-constrained vehicle rout-

ing problem with time windows.

The VRP with time windows is a complex combinatorial problem with many
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real-world applications in transportation and distribution logistics (Garcia-

Najera and Bullinaria, 2011). Its main objective is to find the lowest distance

set of routes to deliver goods to customers with service time windows, using

a fleet of identical vehicles with restricted capacity. However, there are other

objectives, and having a range of solutions representing the trade-offs between

objectives is crucial for many applications. Previous researchers used evolu-

tionary methods for solving this problem, and they rarely concentrated on the

optimisation of more than one objective, and hardly ever explicitly considered

the diversity of solutions (Garcia-Najera and Bullinaria, 2011). They came up

with an improved multi-objective evolutionary algorithm, which incorporates

methods for measuring the similarity of solutions, to solve the multi-objective

problem. The algorithm is applied to a standard benchmark problem set that

showed that when the similarity measure is used appropriately, the diversity

and quality of solutions are higher than when it is not used. Their algorithm

achieves highly competitive results compared with previously published stud-

ies and those from a popular evolutionary multi-objective optimiser.

Job shop scheduling problem is a typical NP-hard problem (Qing and Wang,

2012). To solve the job shop scheduling problem more effectively, Qing and

Wang (2012) designed some new genetic operators. In order to increase the

diversity of the population, a mixed selection operator based on the fitness

value and the concentration value was given. Qing and Wang (2012) made full

use of the characteristics of the problem itself, by specifically designing a new

crossover operator based on the machine and mutation operator based on the

critical path. They presented a new algorithm to find the critical path from the

schedule. Furthermore, a local search operator was designed, which improved

the local search ability of GA greatly. Based on all these, a hybrid genetic al-

gorithm was presented and its convergence was proved. Computer simulations

were made on a set of benchmark problems and the results demonstrated the
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effectiveness of the proposed algorithm.

Roberti and Toth (2012) surveyed the most effective mathematical models and

exact algorithms for finding the optimal solution of the asymmetric travelling

salesman problem (ATSP). They extended the fundamental integer linear pro-

gramming (ILP) problem proposed by Dantzig et al. (1954) by first deriving

its classical relaxations and combining the techniques with BB and BC algo-

rithms. They defined zhij for (i, j, h = 1, ..., n) to be a binary variable that is equal

to 1 if arc (i, j) is traversed in position h in the optimal tour, or zero otherwise

and rhkij for (i = 1, ..., n; j = 1, ..., n; k = 2, ..., n;h = 1, ..., n − 1) to be a binary

variable that is equal to 1 if arc (i, j) is traversed in position h in the first part

of the original tour that links vertex 1 to vertex k, or zero otherwise. Their for-

mulations involve n4−4n3+9n2−7n variables and 2n3−9n2+15n−8 constraints

and the model was formulated as follows:

Minimise
∑
i∈V

∑
j∈V

cij

n∑
h=1

zhij

subject to∑
j∈V

r1k1j = 1 k ∈ V {1}

∑
j∈V {1}

rh+1,k
ij −

∑
j∈V {k}

rhkji = 0 h = 1, ..., n− 2, k, i ∈ V {1} : i 6= k

∑
j∈V {k}

zh+1
kj −

∑
j∈V {k}

rhkjk = 0 h = 1, ..., n− 1, k = 2....n

∑
j∈V {k}

(zh+1
ij − rh+1,k

ij )−
∑

j∈V {1}

rhkjk (zhji − rhkji ) = 0 h = 2, ..., n− 1, k, i ∈ V {1} : i 6= k

zhij ∈ {0, 1} i, j, h = 1, ..., n

rhkij ∈ {0, 1} j, k ∈ V {1}, i ∈ V {k}, h = 1, ..., n− 1.

(2.8)

Biological networks look at the physical interactions between proteins, metabolic

networks which encode biochemical reactions and transcriptional regulatory
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networks that describe the regulatory interactions between different genes

(Ravasz et al., 2002). If for example, protein A interacts with and influences

protein B, and B influences protein C, then A has an indirect influence on C.

The shorter the chain of interaction, the stronger the influence. This knowl-

edge may then be used to find treatments for diseases by identifying drug tar-

gets (Newman, 2002).

Mangan et al. (2004) noted the advantages derived from combining quantita-

tive and qualitative methodologies in logistic research. They also highlighted

that quantitative and qualitative methodologies are generally associated with

the two principle research paradigms which are generally labelled as posi-

tivism and phenomenology, respectively.

Munapo and Kumar (2013) developed a method to solve a large scale linear

programming (LP) model with non-negative coefficients. Their method is an it-

erative approach in which search points move from one boundary of the convex

region to an improved point on the boundary of the LP convex region. Their

method is suited for large-scale LP models because of its advantage of turning

an ′n′ variable problem into a two-variable problem. In their method they de-

fined a surrogate constraint which they generate from a point P0 (x1 = ϕ1, x2 = ϕ2, ..., xn = ϕn)

for some constants (ϕ1, ϕ2, ..., ϕn). The point P0 is a feasible point of the given

LP model. The surrogate constraint was defined as:

(a11 + a21 + ...+ ar1)x1+(a12 + a22 + ...+ ar2)x2+...+(a1n + a2n + ...+ arn)xn = β1+β2+...+βn

(2.9)

An improved point P1 in the feasible region was obtained by moving from the

initial point P0 in the normal direction to the surrogate by P1 = P0 + µD +

λCT , where D is the direction of travel and CT is the transpose of the objective

function coefficients. The method was then compared to the simplex method
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and it proved to be more effective. The method also does not use slack variables

as is the case with the simplex method. Munapo and Kumar (2013) highlighted

that this method is most suitable for solving large-scale LP problems. They

also noted that it would be desirable to extend the ′n′ to 2 transformation for

the model to cater for a situation where all the elements are not restricted to

be non-negative.

2.6 Conclusion

The combination of multiple methods addresses deficiencies that may be seen

in certain existing methods. These combined methods, along with the methods

in their original forms, can be extremely successful in their applications, but

only if their strengths and weaknesses are properly assessed. The most impor-

tant challenge in some optimisation problems is central processing unit (CPU)

time. The original existing optimisation algorithms have been modified in or-

der to increase the convergence speed of most of these optimisation algorithms.

The proposed modifications have also been tested on several optimisation prob-

lems to evaluate the effect of these modifications on the convergence speed of

the new algorithms, and in most cases, the modified algorithms are faster than

the original algorithms, and the results of these proposed algorithms have been

verified with analytical results.

The performance characteristics of the modified models and algorithms have

been compared with those of the original models, and algorithms and results

obtained have shown that the modified algorithms are able to converge to opti-

mality and find the optimum point faster compared to the original algorithms.

These modifications have been applied not only to new problems, but also to

the old problems in order to assess and compare whether or not there are real

improvements in these modified methods.
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The OR field was developed to find optimal solutions in a holistic manner by

taking into consideration all the factors that affect the problem in question. In

this modern world these factors are enormous, and expressing them as quanti-

tative models and establishing relationships among them require voluminous

calculations, which can be handled only by machines. There is need, therefore,

to combine OR with other disciplines like computer science, in order to improve

the decision making process.

As shown in this chapter, it is of paramount importance that new techniques be

developed. In the literature that have been reviewed in this thesis, it has been

shown that new algorithms outperform the old ones. The development of new

methods or a combination of existing ones to come up with a better method, is

one reason why this research, aimed at developing new techniques, has been

undertaken. As the world evolves, new challenges are being encountered on

a daily basis. In order to overcome or counterbalance these new challenges,

the development of new techniques becomes a necessity. One good example

is the data revolution coupled with new form of data, including big data, that

has compelled institutions of higher learning and industry to offer e-Research,

data science and/or data analytics. Climate change research offers yet another

example.

In general, literature reviewed in this chapter has revealed several gaps in the-

ory and application of OR. Several authors have advocated for the improvement

of the existing methods and the need to evaluate the new methods adopted in

other developed countries, with the view that these methods may also work for

the developing countries. This may, however, not be the case given different

operating characteristics and climatic conditions.



Part I

Network Models



Chapter 3

Routing Models in Non-directed

Networks

“I have not failed. I have successfully discovered 10 000 things that

won’t work”.

Thomas Edison

3.1 Introduction

The shortest path problem deals with the determination of a shortest path

between two vertices of a graph such that the sum of the weights of the con-

stituent edges is minimised. Shortest path algorithms are applied to automat-

ically find directions between physical locations, such as driving directions on

web mapping websites like Map-Quest or Google Maps. For this application

fast specialised algorithms are available (Sanders, 2009). If one represents a

non-deterministic abstract machine as a graph where vertices describe states

and edges describe possible transitions, shortest path algorithms can be used
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to find an optimal sequence of choices to reach a certain goal state, or to estab-

lish lower bounds on the time needed to reach a given state. For example, if

vertices represent the states of a puzzle like a Rubik’s Cube and each directed

edge corresponds to a single move or turn, shortest path algorithms can be

used to find a solution that uses the minimum possible number of moves.

Many industrial problems can be formulated and analysed as a shortest path

problem or its variants in a network. This has been of interest to researchers

and practitioners in many network related disciplines like transportation, op-

erations research, geographic information system (GIS) technology, and emer-

gency services like supply of blood or reporting of ambulance at the accident

scene. Many approaches have been developed to find the shortest path from a

given node to all other nodes and appropriate computer codes have been devel-

oped for implementation of their algorithms (Dijkstra, 1959).

Many variants to this problem have been discussed in literature (Righin and

Salani, 2008; Zhu and Wilhelm, 2008). In a networking or telecommunica-

tions mindset, the shortest path problem is sometimes called the min-delay

path problem, and is usually tied with a widest path problem. For example,

the algorithm may seek the shortest (min-delay) widest path, or widest short-

est (min-delay) path. A more light-hearted application is the games of “six

degrees of separation” that try to find the shortest path in graphs like movie

stars appearing in the same film. Applications of shortest path also arise in

many different areas where a problem can be viewed as a network problem,

and therefore, network methods can be applied to solve such problems.

The majority of communications applications, from cellular telephone conver-

sations to credit card transactions, assume the availability of a reliable net-

work. Reliability is an attribute of any computer-related component (software
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or hardware), that consistently performs according to its specifications. Relia-

bility has long been evaluated as one of three related attributes that must be

considered when making, buying, or using a computer product or component

(Ball, 1980). Reliability, availability, and serviceability are considered to be

important aspects to design into any system. In theory, a reliable product is to-

tally free of technical errors. In practice, however, vendors frequently express

a product’s reliability quotient as a percentage. Evolutionary products (those

that have evolved through numerous versions over a significant period of time)

are usually considered to become increasingly reliable, since it is assumed that

bugs have been eliminated in earlier releases.

In a general network, the reliability computation problem is NP-hard (Ball,

1980). The evolution of communication technologies has resulted in contin-

uous increase in capacities and higher concentration of traffic on relatively

fewer elements. The failures of these high capacity elements affect the quality

of service provided by the network. Reliability is a very complex measure of

networks which is difficult to define and/or evaluate. Some of the most criti-

cal problems concerning network reliability modelling and analysis are in the

determination of possible states of a network with extremely large number of

elements subject to failure, and also the determination of the impact of failures

on reliability measures in the presence of several applied multi-layer protec-

tion techniques.

The problem of evaluating and optimising the reliability of networks deserves

attention. The network reliability analysis problem consists of measuring the

global probability of the whole network value given failure/operation probabil-

ities for each link and node. To remain competitive, the guarantee of high sys-

tem reliability at low cost is essential. Computing system reliability is usually

not sufficient because it would also provide mechanisms to optimise the relia-
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bility taking into account budgetary constraints and parameters which could

vary in real-time.

In this chapter, two new variant methods: one for the shortest route problem

in a non-directed network, and the other for the determination of maximum re-

liability in a non-directed network, are formulated. A worked example is given

in each case. The advantages and practical usage of the proposed methods are

also outlined.

The rest of the chapter is arranged such that Section 3.2 discusses the lit-

erature review of the two methods. A minimum weight labelling method for

determining the shortest route is discussed in Section 3.3. The methodology,

analysis, results and application of this method are also presented in this sec-

tion. Section 3.4 presents a new and efficient labelling approach for the deter-

mination of a maximum reliability route in a non-directed route. Section 3.5

gives the summary of the chapter.

3.2 Literature Review

The problem of shortest route has been studied in directed as well as in non-

directed networks (Dijkstra, 1959; Dantzig, 1960; Zhan, 1997; Zhan and Noon,

1998; among others). Many variants of the shortest path problem have been

formulated and algorithms developed (Banasal and Kumar, 1977; Kumar et

al., 1999; Munapo et al., 2008; among others).

In graph algorithms, the widest path problem is the problem of finding a path

between two designated vertices in a weighted graph, and maximising the

weight of the minimum-weight edge in the path. The widest path problem is
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also known as the bottleneck shortest path problem or the maximum capacity

path problem. It is possible to adapt most shortest path algorithms to compute

widest paths by modifying them to use the bottleneck distance instead of path

length (Pollack, 1960). However, in many cases even faster algorithms are pos-

sible. For instance, in a graph that represents connections between routers in

the Internet, where the weight of an edge represents the bandwidth of a con-

nection between two routers, the widest path problem deals with determina-

tion of an end-to-end path that has the maximum possible bandwidth between

two internet nodes (Shacham, 1992). The smallest edge weight on this path is

known as the capacity or bandwidth of the path. Schulze (2011) described the

widest path problem as an important component of the Schulze’s method for

deciding the winner of a multi-way election. It has also been applied to digital

composition (Fernandez et al., 1998), metabolic pathway analysis (Ullah et al.,

2009), and the computation of maximum flows (Ahuja et al., 1993).

In an undirected graph, a widest path may be found as the path between the

two vertices in the maximum spanning tree of the graph, and a minimax path

may be found as the path between the two vertices in the minimum spanning

tree (Malpani and Chen, 2002). In any graph, directed or undirected, there

is a straightforward algorithm for finding a widest path once the weight of its

minimum-weight edge is known: simply delete all smaller edges and search

for any path among the remaining edges using breadth first search or depth

first search. Based on this test, there also exists a linear time algorithm for

finding a widest path in an undirected graph, that does not use the maximum

spanning tree. The main idea of the algorithm is to apply the linear-time path-

finding algorithm to the median edge weight in the graph and then either to

delete all smaller edges or contract all larger edges, depending on whether a

path does or does not exist (Kaibel and Peinhardt, 2006).
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In graph theory and theoretical computer science, the longest path problem

is the problem of finding a simple path of maximum length in a given graph.

A path is called simple if it does not have any repeated vertices. The length

of a path may either be measured by its number of edges, or (in weighted

graphs) by the sum of the weights of its edges. In contrast to the shortest path

problem which can be solved in polynomial time in graphs without negative-

weight cycles, the longest path problem is NP-hard, meaning that it cannot be

solved in polynomial time for arbitrary graphs, unless P = NP (Karger et al.,

1997). However, the longest path problem has a linear time solution for di-

rected acyclic graphs, which has important applications in finding the critical

path in scheduling problems.

The NP-hardness of the unweighted longest path problem can be shown using

a reduction from the Hamiltonian path problem (Schrijver, 2003). A graph G

has a Hamiltonian path if and only if its longest path has length n − 1, where

n is the number of vertices in G. Because the Hamiltonian path problem is NP-

complete, this reduction shows that the decision version of the longest path

problem is also NP-complete. In this decision problem, the input is a graph G

and a number k; the desired output is “yes” if G contains a path of k or more

edges, and “no” otherwise (Schrijver, 2003).

The critical path method for scheduling a set of activities involves the con-

struction of a directed acyclic graph in which the vertices represent project

milestones and the edges represent activities that must be performed after one

milestone and before another. Each edge is weighted by an estimate of the

amount of time the corresponding activity will take to complete. In such a

graph, the longest path from the first milestone to the last one is the critical

path, which describes the total time for completing the project (Sedgewich and

Wayne, 2011).
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A network formulation is an abstraction of a physical real-life situation which

is made for better understanding, analysis and for making informed decisions

with respect to that situation as explained in Ahuja (1994) and Chenkassky

(1996). One of the many problems that have attracted attention is that of

the shortest route joining two nodes of the given network. For shortest route

algorithms, see Bellman (1958), Dijkstra (1959) and Dantzig (1960); and for

algorithms and applications, see Zhan (1997), and Abraham et al. (2010). A

network is comprised of a collection of nodes and links or arcs that joins nodes

together. The nodes usually represent points of interest and the links joining

these nodes represent relationships between the nodes. In many situations

these relationships can be quantified and represented either by a number or

by a probabilistic estimate. A network can be directed or non-directed depend-

ing on the original physical real-life situation that is being investigated. Many

variants of the shortest path problems have been studied in the literature; see

for example, Arora and Kumar (1993), Kumar and Bapoo (1999) and Munapo

(2004).

In a directed network, each link has an associated direction, which helps in

analysing the given situation. The same analysis in a non-directed network

becomes more demanding in the absence of directions. A labelling technique

for the shortest path problem for a deterministic situation was developed by

Munapo et al. (2008) and applied to a critical path analysis, which commonly

arises in a project scheduling situation. Later a labelling method for the short-

est path in a non-directed network was presented by Kumar et al. (2013). In

both cases the network was assumed to have associated link-weights as a de-

terministic quantity representing distance, time or cost.

Reliability or dependability describes the ability of a system or component

to function under stated conditions for a specified period of time (O’Connor
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2002). For any system, one of the first tasks of reliability engineering is to

adequately specify the reliability and maintainability requirements allocated

from the overall availability needs, and more importantly, derived from proper

design-failure analysis or preliminary prototype test results. Clear require-

ments should constrain the designers from designing particular unreliable items.

Setting only availability, reliability, testability, or maintainability targets (e.g.,

maximum failure rates) is not sufficient. Reliability modelling is the process of

predicting or understanding the reliability of a component or system prior to

its implementation.

The practical definition of reliability is the probability that service will be con-

tinuously available over a given period of time (Xin et al., 2013). In their paper,

the researchers highlighted that there is a gap between the state of service ex-

ecution in terms of reliability and what the network reliability data suggest.

Their study proposed a network service reliability analysis method based on

service in order to bridge the gap. Their study satisfies these needs in the fol-

lowing ways: (1) analysing various factors affecting reliability of the network

system; (2) establishing the reliability block diagram of service operating pro-

cess and calculating the reliability of the equipment by the diagram; and (3)

analysing a case utilising the model in (2). Their method did not overestimate

the availability of the network system, but enhanced some previous studies by

utilising the analysis based on service. With their method, they highlighted

that the gap between the service experience of users in terms of reliability and

the result reliability of the method will be bridged.
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3.3 Shortest Route in a Non-directed Network

3.3.1 Research methodology

This section describes how a new minimum weight method for the determina-

tion of the shortest route in a non-directed network is formulated. The min-

imum weight label method for the determination of the shortest route in a

directed network was developed by Munapo et al. (2008). In their method,

they changed the weight associated with directed links entering a node by sub-

tracting the minimum weight from all the incoming links and then adding the

same minimum weight to the weights of all links departing from that node.

This leaves the total weight unaffected along any path from the source node to

the destination node.

In a directed network, a link (i, j) joins the nodes i and j. The node i indicates

the start of the activity and the node j indicates the end of that activity, and it

is further possible to assume, without any loss of generality, that i < j, i.e. the

nodes of the network are to be numbered according to topological sort of the

nodes. Let the source node be denoted by node 1 and the destination node be

denoted by node n. All nodes of the network, other than the source node and

the sink node, have at least one incoming link and at least one outgoing link.

These intermediate nodes will be represented by 2, 3, . . . , (n − 1). A label to

a node assigns two values: a number m representing its sequential position in

the network as was assigned to it by the topological sort, and a weight w rep-

resenting the shortest distance from the source node to that node. These two

numbers associated with a node form its label. The shortest distance from the

source node to that node is denoted by w, and it is known. The path that leads

to the shortest distance from the source node to that node can also be easily

traced out with the help of the label m.
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The minimum weight label algorithm discussed in Munapo et al. (2008), con-

sists of the following steps:

Step 1: Label the source node as (1,0), the first number indicating the node

where we are coming from and the second number indicating the distance from

the source node to that particular node.

Step 2: Set k = 2, and go to Step 3.

Step 3: At node k, find the minimum weight,

wk = min[wl1,k;wl2,k; .....wlk,k].

The assumption is that at node k, there are lk number of incoming links. Using

the minimum weight wk, modify the associated weights with all incoming links

by subtracting wk from their existing weights and by adding the same weight

wk to the existing weights of the outgoing links from the node k. Go to Step 4.

Step 4: If k < (n− 1), set k = k + 1 and return to Step 3.

Step 5: Label node n and determine wn, the minimum weight associated with

node n to conclude the shortest distance between the source node and node n.

Note that wn is the minimum weight associated with all the incoming links

with the destination node n. The corresponding path can be traced by back-

tracking with the help of the element of the label at node n.

3.3.2 Shortest path in a non-directed network

In the case of a non-directed network, the above steps are no longer possi-

ble even if we convert the non-directed links into directed links as the very

structure of the network undergoes unmanageable changes. For example, a

non-directed link (i, j) can be replaced by equivalent directed links (i → j),

(j → l) and (l → i). Here node l is an extra node and link (j, l) and link (l, i)

are extra links. The weight associated with one of the extra links can be zero,

and the weight with the other link can be the original weight associated with

the link (i, j). This means that each non-directed link conversion to directed



Routing Models in Non-directed Networks 50

link is achieved by introducing two additional links and one extra node. The

network N(M,L), where M is the node set and L is the link set, will transform

into a network N ′(M + L, 3L). This makes the transformed network unwieldy.

In addition to the property that each directed link (i → j) will be such that

the property i < j will also not be satisfied. Furthermore, the aspect that non-

directed connected networks are cyclic will further add complications to the

network. In light of all these problems, other properties of non-directed net-

works have to be exploited.

3.3.3 Mathematical background of non-directed networks

Let N(M,L) be a non-directed network comprising of a node set {M} and the

link set L. Let also the cardinality of these two sets be denoted by |M | and |L|

respectively. Let the origin node be denoted by O and the destination node be

denoted by D. Then the number of the other intermediate nodes in the network

is given by (|M | − 2). It is assumed that the given situation is represented by a

single-source, single-destination non-directed network with non-negative link

distances. The following definitions are necessary for the development of the

algorithm.

Definition 1: A Node Label

A three-element label is assigned to a node k when the shortest route and the

corresponding shortest distance from the origin node O to node k is known.

The three-element label at node k is denoted by k(i, j, d), where the number i

indicates the order of labelling. Thus, i will have integer values 0, 1, 2, . . . ,

(M − 1). Alternatively, i also indicates the order of the distance of node k from

the origin node O. The number j indicates the node on the path leading to the

node k. This information helps us to trace the shortest path from the origin
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node to the specific node k. Finally, the weight d indicates the shortest distance

from the origin node O to the node k.

Initially, only the origin node O can be labelled, as the distance from the node

O to itself is zero. The path from node O to itself means that travel has not yet

commenced. The value of i is zero as it is the nearest node to the origin node

O. Thus, initially the label at the origin node O will be O(0, O, 0) and all other

nodes will be unlabelled. The third element of the label on a node indicates

the total shortest distance between the origin node and that particular node,

meaning that the value of the third element d is also zero at the origin node.

Definition 2: The Sets of Nodes and Links

Let L0 be the set of labelled nodes. Initially the set L0 = {0}, i.e. an empty set.

Let L1 be the set of links that are directly joining labelled nodes to unlabelled

nodes. Initially it will be comprised of links (O, k), where a node k is a directly

connected node to the origin node O. The links in this set L1 will be considered

for determination of the minimum weight.

L2 is the set of links which will never participate in the shortest path. Initially

this is an empty set. The links in this set will be a collection of those links

that exist between any two labelled nodes with positive weight. Travel along

the link with positive weight between two labelled nodes will only result in an

inferior route. The elements in this set can be one way or two way links.

L3(O, k) is a set of links that give rise to the shortest path between the nodes

O and k. This path gets unfolded with the help of the second element j of the

label.
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Definition 3: Minimum Weight

Since a label on the source node can be easily created, the set L0 will not be an

empty set. Thus, the set L1 will also not be an empty set since the origin node

will be joined to at least one other node. Hence a minimum weight will always

exist, which may not be unique. Once a minimum weight has been obtained

and a node k has been labelled, it will result in modified weights of all links

joining the node k to other nodes of the network. Modified weight associated

with the link (k, j) reflects the total distance from the origin node O to the node

j via the node k. The modified weight with links (k, r) will represent the dis-

tance from the origin node O to the node r and the distance from the origin

node O to the node k will be zero.

The following observations are also necessary for the development of the algo-

rithm.

Observation 1

The origin node O is the start node. The shortest path and the corresponding

distance is required from the node O to the destination node D. The first link

on the required path will always be one of the links that directly joins the origin

node O to some other node j of the given network in the direction (O → j).

Observation 2

Since all links are non-directed, theoretically one can return to the origin node

O from any other node j which is directly connected with node O, but such a

path from any node j to the node O will only increase the total distance be-

tween node O and node D. Thus, such a revisit to node O from any node j will
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not be appropriate with regards to the shortest path.

Proof Let the length of the link (j, O) be denoted by d(j,O) > 0 which is a positive

quantity. Let the shortest path distance between the nodes (O,D) be denoted

by sd(O,D). The length of the path from the node j via the node O to the des-

tination will be given by d(j,O) + sd(O,D) which will be longer compared to the

distance sd(O,D), which by definition is the shortest distance.

Observation 3

If a node k has been labelled, the shortest path and the shortest distance from

the origin node O to the labelled node k is known. From Observation 2, it

is clear that returning to a labelled node from any unlabelled node can only

increase the distance. Thus, for purposes of the shortest path, all non-directed

links from the labelled node k to unlabelled nodes iwill be operating as directed

links (k → i), where node k is a labelled node and node i is an unlabelled node.

Observation 4

Since initially the origin node O is a labelled node, the links contained in the

set L1 are the directly connected links originating from the node O to all other

nodes. These links may temporarily be treated as directed links from O to

those nodes j. Thus, the minimum weight of the links in the set L1 can be

easily determined. Suppose the minimum weight is associated with the link

(O → k). If this minimum weight is subtracted from this minimum weight

link, the altered associated weight will be 0 on link (O → k) and if the same

minimum weight is added to all links from the node k in the direction (k → j),

the new weight in the direction (k → O) will be twice the original weight. Note

that one more node has been labelled and this is one iteration of the labelling

process.
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Observation 5

Since in each iteration of the labelling process, one more unlabelled node is

labelled, the process must terminate in at most (|M | − 1) iterations. Alterna-

tively, as soon as the destination node is labelled and becomes a member of the

set {L0}, the process terminates.

3.3.4 The minimum weight algorithm for the non-directed

network

Taking into consideration the above mentioned definitions and observations,

the minimum weight algorithm for the non-directed network consists of the

following steps:

Step 1:

Label the origin node O as O(0, O, 0), and let the set L1 will be comprised of

all the links that emanate from the node O and linking all the nodes j, which

are directly connected to node O. These links will be temporarily treated as

directed links from the node O to the node j for determination of the minimum

weight. The set L2, which comprises of the links which will never be part of the

shortest path, is an empty set at this point.

Find the minimum weight associated with a link that belongs to the set L1.

Let the corresponding node associated with the minimum weight be denoted

by node j and the minimum weight be denoted by w(O, j). Now label the node

j that corresponds to the minimum weight as j(1, O, w(O.j)). The number 1 in

the label on node j indicates that it is the first labelled node after the initial

labelled node O. The minimum distance to this node j from the origin node O

is w(O, j). The shortest path from the origin node O to the node j is formed by

the link (O, j). All other links from the node j will have different weights in
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two directions as the minimum weight will have to be added in the direction

(j → k).

Go to Step 2.

Step 2:

Based on the weight value w(O, j), identified in Step 1, modify link weights as

follows:

1. The new weight associated with the link (O, j) will be w(O, j)−w(O, j) = 0.

2. New weights associated with all directly connected links (j, k) will be

given by w(j, k) + w(O, j). Thus, the weight on the link in the direction

(j → O) will be twice the original weight.

3. New weights of all the remaining links not connected with the node j will

remain unaltered.

4. Upgrade the sets L0, L1 and L2.

Step 3:

Now the nodes O and j are labelled nodes. Using the Observation 3, one can

once again temporarily assume that all undirected links are connected with

the nodes O and j as directed links going away from them. Once again find the

minimum weight associated with the directed links and label one more node as

the new labelled node.

Step 4:

Is the node D labelled? If yes, stop and the shortest path has been determined.

If not, go to Step 2.

Note that at each iteration, the total distance of a path joining the origin node

O to the destination node D remains unaltered, and all associated link dis-

tances are non-negative quantities. Since the sum of the modified distances
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from the origin node O to the destination node D will be comprised of zero total

distance, it will constitute the shortest path.

3.3.5 Analysis and results

The analysis and implementation of the above new technique will be done by

considering a non-directed 6-node network shown in Table 3.1. The network

diagram of the corresponding network is shown in Figure 3.1. Here the node O

is the origin node, the node D is the destination node and the nodes 2, 3, 4 and

5 are the intermediate nodes. Since the non-directed links (O, j) will be used

only in the direction (O → j), it is indicated in Table 3.2, the direction for each

entry. Initially the set L0 = {0}.

Table 3.1: Link distances

Nodes O 2 3 4 5 D
O − 6 12 ∞ ∞ ∞
2 6 − 5 10 8 ∞
3 12 5 − 3 2 ∞
4 ∞ 10 3 − 7 9
5 ∞ 8 2 7 − 11
D ∞ ∞ ∞ 9 11 −

The link distances are shown in Table 3.2. The set L1 = ({O→ 2), (O → 3)}, and

set L2 = {} is still an empty set. The minimum weight w(O, j) = min(6, 12) = 6

and this corresponds to the link (O → 2), which will result in a label at the node

2. This label also results in the path set L3(O → 2) as the link with minimum

distance w(O, 2) = 6. The link distances in Table 3.2 will have to be modified

by subtracting the minimum weight w(O, 2) = 6 from the link (O → 2) and

added to all links joining the node 2 to all other nodes, i.e. links [(2→ O), (2→

3), (2→ 4), (2→ 5)].
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Figure 3.1: Network diagram of numerical example

Table 3.2: Modified link distances

Nodes O 2 3 4 5 D
O(0,O,0) − 6(O,2) 12(O,3) ∞ ∞ ∞

2 6(2,0) − 5(2,3) 10(2,4) 8(2,5) ∞
3 12(3,0) 5(3,2) − 3(3,4) 2(3,5) ∞
4 ∞ 10(4,2) 3(4,3) − 7(4,5) 9(4,D)

5 ∞ 8(5,2) 2(5,3) 7(5,4) − 11(5,D)

D ∞ ∞ ∞ 9(D,4) 11(D,5) −

Implementation of the first iteration will result in Table 3.3. The updated sets

are: L0 = {O, 2}, L1 = {(O → 3), (2→ 3), (2→ 4), (2→ 5)}, and L2 = {(2→ O)}.

The minimum weight will be given by min(12, 11, 16, 14) = 11, which leads to

the label on the node 3 as shown in Table 3.4. The path set L3(O → 3) = {O →

2→ 3} with minimum distance between the nodes O and 3 is equal to 11.

The distance 11 will be subtracted from the link (2 → 3) and added to links

(3→ O), (3→ 2), (3→ 4) and (3→ 5), which are shown in Table 3.4.

From Table 3.4, the updated sets are: L0 = {O, 2, 3, }; L1 = {(2 → 4), (2 → 5),

(3→ 4), (3→ 5)}; and L2 = {(O → 3), (2→ O), (3→ 2)}.

The minimum weight will be given by min(16, 14, 14, 13) = 13. This minimum
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Table 3.3: Modified link distances after iteration 1

Nodes O 2 3 4 5 D
O(0,O,0) − 0(O,2) 12(O,3) ∞ ∞ ∞
2(1,O,6) 12(O,2,0) − 11(O,2,3) 16(O,2,4) 14(O,2,5) ∞

3 12(3,0) 5(3,2) − 3(3,4) 2(3,5) ∞
4 ∞ 10(4,2) 3(4,3) − 7(4,5) 9(4,D)

5 ∞ 8(5,2) 2(5,3) 7(5,4) − 11(5,D)

D ∞ ∞ ∞ 9(D,4) 11(D,5) −

Table 3.4: Modified link distances after iteration 2

Nodes O 2 3 4 5 D
O(0,O,0) − 0(O,2) 12(O,3) ∞ ∞ ∞
2(1,O,6) 12(0,2,0) − 0(0,2,3) 16(0,2,4) 14(0,2,5) ∞
3(2,2,11) 23(O,2,3,0) 16(O,2,3,2) − 14(O,2,3,4) 13(O,2,3,5) ∞

4 ∞ 10(4,2) 3(4,3) − 7(4,5) 9(4,D)

5 ∞ 8(5,2) 2(5,3) 7(5,4) − 11(5,D)

D ∞ ∞ ∞ 9(D,4) 11(D,5) −

weight corresponds to the node 5 by using the link (3 → 5). This means that

13 will have to be subtracted from the link weight (3 → 5) and added to link

weights (5→ 2), (5→ 3), (5→ 4) and (5→ D). This is shown in Table 3.5.

From Table 3.5, the updated sets are L0 = {O, 2, 3, 5}; L1 = {(2 → 4), (3 → 4),

(5→ 4), (5→ D)}; and L2 = {(O → 3), (2→ O), (3→ 2), (5→ 2), (5→ 3)}. The

minimum weight will be given by min(16, 14, 20, 24) = 14, which corresponds to

node 4. Labelling node 4 and updating the network and the associated weights,

we get Table 3.6.

The minimum distance path from the origin node O to the node 4 is given by

{O → 2 → 3 → 4)} with minimum distance 14. From Table 3.6, the updated

sets are L0 = {O, 2, 3, 4, 5}, L1 = {4 → D), (5 → D)}, and L2 = {(O → 3),

(2 → 4), (4 → 2), (5 → 2)}. The minimum weight will be given by min(23, 24)

= 23, which corresponds to the destination node D. Labelling the node D and
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Table 3.5: Modified link distances after iteration 3

Nodes O 2 3 4 5 D
O(0,O,0) − 0(O,2) 12(O,3) ∞ ∞ ∞
2(1,O,6) 12(O,2,0) − 0(0,2,3) 16(0,2,4) 14(0,2,5) ∞
3(2,2,11) 23(O,2,3,0) 16(O,2,3,2) − 14(O,2,3,4) 13(O,2,3,5) ∞

4 ∞ 10(4,2) 3(4,3) − 7(4,5) 9(4,D)

5(3,3,13) ∞ 21(O,2,3,5,2) 15(O,2,3,5,3) 20(O,2,3,5,4) − 24(O,2,3,5,D)

D ∞ ∞ ∞ 9(D,4) 11(D,5) −

Table 3.6: Modified Link distances after iteration 4

Nodes O 2 3 4 5 D
O(0,O,0) − 0(O,2) 12(O,3) ∞ ∞ ∞
2(1,O,6) 12(O,2,0) − 0(0,2,3) 16(0,2,4) 14(0,2,5) ∞
3(2,2,11) 23(O,2,3,0) 16(O,2,3,2) − 14(O,2,3,4) 13(O,2,3,5) ∞
4(4,3,14) ∞ 24(O,2,3,4,2) 17(O,2,3,4,3) − 21(O,2,3,4,5) 23(O,2,3,4,D)

5(3,3,13) ∞ 21(O,2,3,5,2) 15(O,2,3,5,3) 20(O,2,3,5,4) − 24(O,2,3,5,D)

D ∞ ∞ ∞ 23(O,2,3,4,D) 24(O,2,3,5,D) −

updating the network and the associated weights, we get Table 3.7.

Table 3.7: Modified link distances after iteration 5

Nodes O 2 3 4 5 D
O(0,O,0) − 0(O,2) 12(O,3) ∞ ∞ ∞
2(1,O,6) 12(O,2,0) − 0(0,2,3) 16(0,2,4) 14(0,2,5) ∞
3(2,2,11) 23(O,2,3,0) 16(O,2,3,2) − 14(O,2,3,4) 13(O,2,3,5) ∞
4(4,3,14) ∞ 24(O,2,3,4,2) 17(O,2,3,4,3) − 21(O,2,3,4,5) 23(O,2,3,4,D)

5(3,3,13) ∞ 21(O,2,3,5,2) 15(O,2,3,5,3) 20(O,2,3,5,4) − 24(O,2,3,5,D)

D(5,4,23) ∞ ∞ ∞ 23(O,2,3,4,D) 24(O,2,3,5,D) −
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Table 3.8: Distance and optimal path from origin node O to other nodes

From node O to node j Min distance Shortest Path
j = O 0 O → O
j = 2 6 O → 2
j = 3 11 O → 2→ 3
j = 4 14 O → 2→ 3→ 4
j = 5 13 O → 2→ 3→ 5
j = D 23 O → 2→ 3→ 4→ D

Table 3.8 shows the optimal solution using our method. Table 3.9 shows the so-

lution of the same problem using the Dijkstra Algorithm (Dijkstra, 1959). The

solution obtained by minimum weight labelling method compares well with the

one obtained using Dijkstra’s Algorithm. The major advantage of this method

is that for an m node network the method finds an optimal solution in at most

m − 1 iterations. Dijkstra’s Algorithm does a blind search by looking at all

Table 3.9: Solution of the problem using Dijkstra’s Algorithm (Dijkstra, 1959).

From node O to node j Min distance Shortest Path
j = 2 6 O → 2
j = 3 11 O → 2→ 3
j = 4 14 O → 2→ 3→ 4
j = 5 13 O → 2→ 3→ 5
j = D 23 O → 2→ 3→ 4→ D

nodes that can be reached from a node that has just been permanently labelled,

thereby consuming a lot of time and wasting the necessary resources (Shivan et

al. 2013). The algorithm cannot handle negative edges as well, and this leads

to acyclic graphs, and most often cannot obtain the optimal shortest path. The

distance is calculated as a 1-to-many basis in the Dijkstra’s Algorithm when a

many-to-many should be better, and this makes the algorithm to have limited

memory due the 1-to-many approach.
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3.4 Maximum Reliability Route in a Non-directed

Reliability Network

3.4.1 Research methodology

In this section we reconsider a problem similar to the shortest path, but as-

sume that link weights are positive quantities between 0 and 1 representing

probabilities. For example, the weight associated with a link (i, j) is rij where

0 ≤ rij ≤ 1 represents reliability of a successful intended operation between the

nodes i and j. For a perfect node reliability, Rii = Ri = 1, ∀i (i.e. the reliability

of a node is perfect).

We first develop a labelling method for a probabilistic directed network and

identify existence of virtual directions in a non-directed network. These direc-

tions are used for developing a labelling method for the non-directed network.

The proposed approach can easily be used for finding a minimum delay path,

widest communication band width etc., which have applications in operations

research, robotics and transportation of communication signals. The labelling

method developed is used for directed as well as non-directed reliability net-

works.

3.4.2 Maximum reliability route in a directed acyclic net-

work

The network and associated assumptions

Let N(M,L) be an acyclic directed network N with M nodes and L links or arcs.

We will assume that the following conditions hold:
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1. Each link (i, j) in the acyclic directed network joining the nodes i and j

can be such that i ≤ j if the direction of the link (i, j) is from the node i to

the node j. In other words, the nodes are numbered in a topological sort

of the nodes. The reliability rij associated with the link (i, j), is such that

0 ≤ rij ≤ 1 and nodes are perfect, i.e. Rii = Ri = 1, ∀i.

2. Nodes of the given network after the topological sort are numbered 1 to

M , where 1 is the origin node and M is the destination node.

3. All nodes of the network, other than the source and the destination, have

at least one incoming and one outgoing link associated with them. The

origin node has only the outgoing links and the destination node has only

the incoming links.

4. In a progressive way, each node i is assigned a two-tuple label, where the

first value in that label is a number m representing a sequential position

of a node as per the topological sort from where one has arrived to the

node i, and the second number between 0 and 1 is the reliability of suc-

cessful operation joining the origin node to the current position node i.

This number is a probability represented by ri, where 0 ≤ ri ≤ 1. The

path that corresponds to the reliability ri from the origin node 1 to the

node i can easily be traced with the help of the first value of the two-tuple

label. A suffix associated with each label is just an indicator of the order

of the label.

5. It is assumed that if rij is the reliability of the link (i, j) and the reliability

of any link (j, k) is rjk, then the reliability of the path formed by the two

links from i to k passing through the node j is given by rjik=rij.rjk.

6. The problem considered in this section is to find the value of r(1,m) = rm,

∀m, where (m = 1, 2,. . . ,M).
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7. In a directed network, a node j can be labelled only when all nodes di-

rectly connected to node j from node i have been labelled with respect to

that node j.

Algorithm for finding the maximum reliability route in the directed

network

The problem considered in this section is to find in the directed networkN(M,L),

the maximum reliability r(1,m)=rm, for m = 1, 2, . . . ,M and the corresponding

path that will give rise to the reliability rm.

The following algorithm will be used for a directed network.

Step 1. Carry out the topological sort and call the origin node 1 and the des-

tination node M . Initially the origin node will be the only labelled node and

its label will be given by (1, 1)1, indicating that the route to node 1 from the

origin node 1 is through itself and its reliability is 1, since the node is per-

fect. It means that r1=R1 = 1. The problem is to find the value of r(1,m)=rm, ∀

m = 2, 3, . . . ,M . Set k = 1, and go to Step 2.

Step 2. Find the maximum probability associated with the outgoing links from

the labelled node k, and let this reliability be denoted by r(k,j) where k < j and

node j qualifies for labelling. The reliability of the route from the origin node

to the node j will be given by:

r(1,j) = r1k.rkj. (3.1)

where the reliability of the route from the origin node to the node j is given by

rj and it is the product of the reliability of the route from the origin node to the

node k(rk) and the reliability of the link joining the node k to the node j.
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Step 3. If k < M − 1, set k = k + 1. Go to Step 2.

Step 4. All nodes have been labelled except the destination node. This means

that the maximum reliability and the corresponding route from the origin to

the destination can now be determined by using the equation (3.1).

3.4.3 Analysis and results

For the analysis of this method we considered an 8-node directed acyclic net-

work shown in Figure 3.2. Direct link probabilities are also shown.

Figure 3.2: Directed network with link probabilities

Link probabilities and the corresponding labels obtained by using equation

(3.1) are entered in Table 3.10.

Notes that explain labels shown in Table 3.10

1. We start by labelling node 1, the origin node as (1, 1)1. Although there are

three links going out of the origin node 1, only two links will satisfy the

labelling requirement as the origin of these links has been labelled. Two

links entering the node 4 have their starting point unlabelled. Since node



Routing Models in Non-directed Networks 65

1 is a labelled node, only links (1,2) and (1,3) will qualify for the next

labelling. After arbitrarily selecting the node 2 (because of the tie) the

label at this node will be (1, 0.9)2. The next set of links that will qualify

for consideration of labelling will be the link (1,3) only. This will result in

a label at node 3 as (1, 0.9)3 as shown in Table 3.10.

2. When nodes 1, 2 and 3 have been labelled, the next set of links can be

(1,4), (2,4) and (3,4). Calculation details for the next label are:

Max {(1, 4) ⇒ 1x0.8 = 0.8, (2, 4) ⇒ 0.9x0.8= 0.72, (3, 4) ⇒ 0.9x0.91 = 0.82}

= 0.82, hence node 4 is labelled as (3, 0.82)4.

3. Now nodes 1, 2, 3 and 4 have been labelled. The only link joining the

labelled node to an unlabelled node will be (4,5). Hence node 5 will be

labelled from node 4 and the label will be (4, (0.82x0.7)=0.57)5.

4. Note that nodes 1, 2, 3, 4 and 5 have been labelled. The links that will

qualify will be given by: (2,6), (5,6), (3,7) and (5,7). Corresponding calcu-

lations for the next label are:

Max {(2, 6) ⇒ 0.9x0.95 = 0.86, (5, 6) ⇒ 0.57x0.95 = 0.54,(3, 7) ⇒ 0.9x0.95 =

0.86, (5, 7)⇒ 0.57x0.8 = 0.46} = 0.86, i.e. label either node 6 or node 7. Let

us select node 6 arbitrarily. Then the label at the node 6 will be (2, 0.86)6.

5. When nodes 1 to 6 have been labelled, the links for consideration of the

next label will be (3,7) and (5,7). Associated calculations have been given

in note 4 above, hence the label at node 7 will be (3, 0.86)7.

6. Thus, the final label to the node 8 will be based on links (5,8), (6,8) and

(7,8). It will be determined by:

Max {(5, 8)⇒ 0.57x0.97 = 0.55, (6, 8)⇒ 0.86x0.97 = 0.82, (7, 8)⇒ 0.86x0.98 =

0.84} = 0.84 from the node 7. Thus, the label at the node 8 will be (7, 0.84)8

and the path will be 1→ 3→ 7→ 8. The required maximum reliability is

0.84.



Routing Models in Non-directed Networks 66

Table 3.10: Link reliabilities and labels

i/j 1 2 3 4 5 6 7 8 Links for next
label

label Reliability
and Path

1 1 0.9 0.9 0.8 ∗ ∗ ∗ ∗ (1, 2), (1, 3) (1, 1)1 1, 1→ 1
2 1 ∗ 0.8 ∗ 0.95 ∗ ∗ (1, 3) (1, 0.9)2 0.9, 1→ 2
3 1 0.91 ∗ ∗ 0.95 ∗ (1, 4), (2, 4),

(3, 4)
(1, 0.9)3 0.9, 1→ 3

4 1 0.7 ∗ ∗ ∗ (4, 5) (3, 0.82)4 0.82, 1 →
3→ 4

5 1 0.95 0.8 0.97 (2, 6), (5, 6),
(3, 7), (5, 7)

(4, 0.57)5 0.57, 1 →
3→ 4→ 5

6 1 ∗ 0.97 (2, 6), (5, 6),
(3, 7), (5, 7)

(2, 0.86)6 0.86, 1 →
2→ 6

7 1 0.98 Note5 (3, 0.82)7 0.82, 1 →
3→ 7

8 1 (5, 8), (6, 8),
(7, 8)

(7, 0.84)8 0.84, 1 →
3→ 7→ 8

In Table 3.101

1A ∗ indicates that there is no direct connection between that pair of nodes; and a blank
space indicates opposite direction where information flow is not permitted
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3.4.4 Reliability route in a non-directed network

In the case of a non-directed network, the steps of the algorithm described

above are no longer valid, even if each non-directed link is replaced by two

directed links, as the network will cease to be an acyclic network and will just

become unmanageable. Therefore, the only choice is to exploit other features,

which may help. Here are a few observations.

Some useful observations

Observation 1: Two numbers p and q representing probabilities between 0

and 1, will satisfy the inequalities 0 ≤ p.q ≤ min(p, q).

This observation can be easily proved. Let min(p, q) = p. Note that p − (p.q) =

p.(1− q) ≥ 0 since both quantities on the LHS are positive quantities. A similar

result will hold for the quantity q.

Observation 2: Although the given network has non-directed links, a revisit

to the origin node from any other node will simply make its reliability less

than 1, the current reliability. Hence for the origin node that can be labelled

as (1, 1)1, the label will also determine virtual directions from the node 1 to all

directly connected nodes k and the direction will be from node 1 to k. For node

1 which has a reliability 1 and is labelled as (1, 1)1, only directions from this

node to all other nodes directly connected to it are permissible.

Virtual direction theorem: Once a node has been labelled, it creates virtual

directions for all links connected from that node to all unlabelled nodes. The

direction will be from the labelled node to an unlabelled node. Thus, the origin

node, which initially is the only labelled node, will give rise to virtual directions

to all links from the origin, and the direction will be going away from the origin.

Thus, all links directly connecting a labelled node to an unlabelled node have

virtual directions from the labelled node towards the unlabelled node. Once
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a labelled node has been identified, one can easily generate a new label from

that node. Thus, at each iteration, a new label is created, and the process

will terminate in at most M iterations when the given destination node in the

non-directed network N(M,L) has been labelled.

The algorithm for the non-directed network

Since there are no directions associated with the links, the destination node

can be labelled before all other nodes are labelled. This means that, one has a

choice to either stop when the destination node is labelled, or continue labelling

until all other nodes are labelled. The steps for the non-directed network will

be as follows:

Step 1: Label at the origin node is (1, 1)1, meaning that the path to node 1 is

through the node 1 and it is a perfectly reliable node.

Step 2: Find all feasible links that join the labelled node to an unlabelled node

by a direct connection. This will be the set of links originating from the origin

node. Select the link with a maximum reliability and call this link (1, b), joining

the origin node to the node b. This will be the second label, hence we label the

node b as (1, r1b)2, indicating that the path is the link 1 → b and the reliability

associated with this path is r1b. Node b becomes the second labelled node in the

network. Let there be a parameter k, and set k = 2.

Step 3: If k ≤M − 1, set k = k + 1 and go to Step 4, else go to Step 5.

Step 4: Find the set of qualifying direct links joining the labelled node to un-

labelled nodes. Find the next labelled node and the corresponding maximum

reliability path joining the origin node 1 to the selected node. Label the se-

lected node and return to Step 3.

Step 5: Since all nodes have been labelled except one node, find the qualifying

links that can label this remaining node. Find the reliability, the label associ-

ated with this node and the reliability path.



Routing Models in Non-directed Networks 69

3.4.5 Analysis and results

Let us reconsider the network in Figure 3.2 as a non-directed network, formed

by disregarding the directions as shown in Figure 3.3.

Figure 3.3: Undirected network with link probabilities

Since the network is a non-directed network, the link reliabilities will be the

same from i to j as for j to i. This is given in Table 3.11. Calculation details

are given as notes below.

Notes on Calculations

1. After an initial label, feasible links joining the labelled node directly to

unlabelled nodes are links {(1,2), (1,3), (1,4)} and the associated reliabil-

ities are {0.9, 0.9, 0.8}. The maximum reliability is with respect to node

2 or node 3. We arbitrarily select node 3. This label is entered in Table

3.11.

2. Since the labelled nodes are nodes 1 and 3, feasible links will be (1,2),

(1,4), (3,4) and (3,7) for the next label. Corresponding reliabilities are:
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Table 3.11: Link reliabilities and labels from Figure 3.3

i/j 1 2 3 4 5 6 7 8 label Path Remarks
1 1 0.9 0.9 0.8 ∗ ∗ ∗ ∗ (1, 1)1 1→ 1 Initial la-

bel 1
2 0.9 1 ∗ 0.8 ∗ 0.95 ∗ ∗ (1, 0.9)3 1→ 2 See note 3
3 0.9 ∗ 1 0.91 ∗ ∗ 0.95 ∗ (1, 0.9)2, 1→ 3 See note 1
4 0.8 0.8 0.91 1 0.7 ∗ ∗ ∗ (3, 0.82)7 1→ 3→ 4 See note 6
5 ∗ ∗ ∗ 0.7 1 0.95 0.8 0.97 (8, 0.814)8 1 → 3 → 7 →

8→ 5
See note 7

6 ∗ 0.95 ∗ ∗ 0.95 1 ∗ 0.97 (2, 0.86)4 1→ 2→ 6 See note 3
7 ∗ ∗ 0.95 ∗ 0.8 ∗ 1 0.98 (3, 0.86)5 1→ 3→ 7 See note 4
8 ∗ ∗ ∗ ∗ 0.97 0.97 0.98 1 (7, 0.84)6 1→ 3→ 7→ 8 See note 5

Max {(1, 2) → 1x0.9 = 0.9, (1, 4) → 1x0.8= 0.8, (3, 4) → 0.9x0.91 = 0.82,

(3, 7) → 0.9x0.95 = 0.86 } = 0.9. Therefore, node 2 qualifies for the next

label and the path is 1→ 2.

3. Now nodes 1, 2 and 3 have been labelled. Potential links are {(1,4), (2,4),

(2,6), (3,4), (3,7)} and the reliabilities and the corresponding paths are:

Max {(1, 4) → 1x0.8 = 0.8, (2, 4) → 0.9x0.8= 0.72, (2, 6) → 0.9x0.95 = 0.86,

(3, 4) → 0.9x0.91 = 0.82, (3, 7) → 0.9x0.95 = 0.86} = 0.86 corresponding to

node 6 or node 7. We arbitrarily we label node 6 next. The label on node

6 will be (2, 0.86)4, which is entered in Table 3.11. The path is 1→ 2→ 6.

4. The labelled nodes are {1, 2, 3 and 6} and the corresponding feasible

links are (1,4), (2,4), (3,4), (3,7), (6,5) and (6,8). Corresponding reliability

evaluations are given by:

Max {(1, 4) → 1x0.8 = 0.8, (2, 4) → 0.9x0.8= 0.72, (3, 4) → 0.9x0.91 = 0.82,

(3, 7)→ 0.9x0.95 = 0.86, (6, 5)→ 0.86x0.95 = 0.66, (6, 8)→ 0.86x0.97 = 0.83}

= 0.86, suggesting that node 7 be labelled, generating the path 1→ 3→ 7.

5. The Labelled nodes are {1, 2, 3, 6 and 7} and node 8 is still unlabelled.

Feasible links at this stage are {(1,4), (2,4) (3,4), (6,5), (6,8), (7,5) and
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(7,8)}. These possibilities are now evaluated for reliabilities, which are

given by:

Max {(1, 4) → 1x0.8 = 0.8, (2, 4) → 0.9x0.8= 0.72, (3, 4) → 0.9x0.91 = 0.82,

(6, 5)→ 0.86x0.95 = 0.66, (6, 8)→ 0.86x0.97 = 0.83, (7, 5)→ 0.86x0.8 = 0.69,

(7, 8)→ 0.86x0.98 = 0.84 } = 0.84, suggesting that node 8 be labelled from

node 7. The path is 1 → 3 → 7 → 8. The maximum reliability of the path

joining the nodes 1 to 8 is 0.84, and the corresponding path is 1 → 3 →

7→ 8.

Here we have a choice to stop if the objective is to find the maximum

reliability path joining the origin node to the destination node; or We can

continue labelling as all nodes have not been labelled, and we do not know

the maximum reliability route from the origin node to these unlabelled

nodes. Currently the set of labelled nodes is {1, 2, 3, 6, 7 and 8}.

6. Links joining the labelled to unlabelled nodes are (1,4), (2,4), (3,4), (6,5),

(7,5) and (8,5). Reliability values from node 3 are given by:

Max {(1, 4) → 1x0.8 = 0.8, (2, 4) → 0.9x0.8 = 0.72, (3, 4) → 0.9x0.91 = 0.82,

(6, 5) → 0.855x0.95 = 0.812, (7, 5) → 0.86x0.8 = 0.69, (8, 5) → 0.84x0.97 =

0.8148 } = 0.82. Node 4 is labelled as (3, 0.82)7.

7. All nodes are labelled except node 5. Links to be considered are (4,5), (6,5)

(7,5) and (8,5). The associated calculations are:

Max {(4, 5)→ 0.82x0.7 = 0.574, (6, 5)→ 0.855x0.95 = 0.812, (7, 5)→ 0.86x0.8

= 0.69, (8, 5) → 0.84x0.97 = 0.8148 } = 0.814 from node 8. Thus the label

on node 5 is (8, 0.814)8.

Comparison between directed and non-directed networks

For a given directed network, reconsidered as a non-directed network, the max-

imum reliability between any pair of nodes will always be greater than or equal

to the reliability between the same pair of nodes under the case when the net-
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Table 3.12: Reliabilities comparison, paths and the labelling order

From
Origin to
node

Reliability and the
path for Directed
network

Reliability and the
path for Non-directed
network

1 1, 1→ 1, initial 1, 1→ 1 initial
2 0.9, 1→ 2 0.9, 1→ 2
3 0.9, 1→ 3 0.9, 1→ 3
4 0.82, 1→ 3→ 4 0.82, 1→ 3→ 4
5 0.57, 1→ 3→ 4→ 5 0.814, 1→ 3→ 7→ 8→ 5
6 0.86, 1→ 2→ 6 0.86, 1→ 2→ 6
7 0.86, 1→ 3→ 7 0.86, 1→ 3→ 7
8 0.84, 1→ 3→ 7→ 8 0.84, 1→ 3→ 7→ 8

work is assumed to be directed. This is due to loss of independence in the

movement from one node to the other. The fact that links have been reduced

in a directed network means that the choice for links that gives higher reli-

abilities has also been reduced resulting in a greater or equal reliability in a

non-directed. For comparison, see Table 3.12.
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3.5 Summary of the Chapter

A new minimum weight labelling method for determination of the shortest

route in a non-directed network was formulated. The method was used to solve

a 6-node network problem. This method can be used on both the directed and

non-directed networks. This new method has its motivation from the method

developed by Munapo et al. (2008), which solves problems on directed net-

works. The major contribution of this method for determining the shortest

route in a non-directed network is that, for an m-node network, the algorithm

developed finds an optimal solution in at most m − 1 iterations. The solution

of the method was also found to be similar to the one obtained using the Dijk-

stra’s Algorithm (1959).

For large networks (with more than 50 nodes and 100 links) this method will

be more preferred than the traditional methods because of its ability to com-

pare the weights of all the adjacent nodes to the one recently permanently

labelled. The algorithm enables the algorithm to search backwards for any pos-

sible shortest paths, guaranteeing that all possible paths have been searched.

Just like the Dijkstra’s Algorithm all nodes of the network will be labelled so

that it can be easy to identify the shortest path from the start node to any

other node on the network. This concept of the algorithm has several applica-

tions in real life, with examples in telecommunication, transportation, logistics

and distribution management.

As is the case with any new methodology, there are some areas for possible

extension and improvement. For example, the determination of set L2 (which

is a set of links that will never participate in the shortest path), can lead to the

determination of the second best, third best etc., shortest paths. The second

best shortest path has several applications in real life, the common applica-

tion being in disaster management. If the best shortest path method cannot be
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used, then the second best can be implemented. Xu et al. (2012), went further

to evaluate the K shortest paths in a schedule-based network, an algorithm

that has several applications in computer science.

In a non-directed reliability network, virtual directions for a specified purpose

do exist, and they have been used to find the maximum reliability from the

origin node to all other nodes. In the case of a non-directed network, the order

of label indicates that the path reliabilities are in non-increasing order. Since

virtual directions are dependent on labels, this approach can be used for the de-

termination of all reliability paths from a given node to all other nodes in that

network. In any real-life application for a given situation, it may be desirable

to consider all variations that might occur in the input data, before accepting

the outcome of an analysis. The occurrence of these variations in the input

data was referred to as a protean system by Kumar (1995), Kumar and Arora

(1995) and Kumar et al. (1999), which can easily be accommodated.

Information recycling is useful for protean networks. The protean system deals

with changes in the model, and recycling deals with extracting information

that may be available from the system before occurrence of a change. In waste

management, recycling reduces the bulk of solid waste and provides cheap re-

source to industry. Similarly, information recycling is intended to minimise

unnecessary computations when that information can be extracted by earlier

computations. These situations can arise also in reliability networks. Informa-

tion recycling concept has been applied to mathematical programming models

(Kumar, 1995).

Traditionally, directed networks are relatively easy to analyse compared to

non-directed networks, as directions have inbuilt additional information that

has been exploited from time to time in various forms (Bellman, 1958; Pol-



Routing Models in Non-directed Networks 75

lack and Weibenson, 1960; Beckwith, 1961). A large number of applications

of directed graphs have been presented and analysed in Hastings (1973). All

these cases discussed by Hastings (1973) form a directed network, and were

analysed using the dynamic programming technique for the directed networks.

The same dynamic programming analysis becomes very demanding for a non-

directed network. Munapo et al. (2008) developed a labelling technique for

the directed network by link-weight modification and solved the shortest route

problem in a directed network. Their method is simple and easy to implement,

and it found strong applications in the critical path method (CPM) analysis.

However, when a network is non-directed, all those properties used by Hast-

ings (1973) or Munapo et al. (2008) are no longer applicable. Loss of directions

results in an increase of computational effort as illustrated by Beckwith (1961).

In this chapter, we have attempted to use other properties of the given net-

work and identified virtual directions based on those other properties. We used

those virtual directions to establish a labelling method when link weights are

deterministic values representing cost, distance or time. Using these virtual

directions, a labelling technique was developed and illustrated. Similarly, in

a probability network where link weights are represented by probabilities, the

network has been analysed for directed and non-directed networks for finding

the maximum reliability and the route in these reliability networks.

Since the proposed method concludes in n − 1 iterations where n represents

the number of nodes in the given network, the computational requirement re-

mains under control, even for the non-directed network. The concept of identi-

fying virtual directions is a challenge which is worth further investigations for

other variants of routing problems, and this will be the subject of subsequent

investigations.



Chapter 4

Minimum Spanning Tree based

Models for Solving Some

NP-hard Problems

To do successful research, you don’t need to know everything, you

just need to know of one thing that isn’t known.

Arthur Schawlow

4.1 Introduction

The minimum spanning tree (MST) is one of the most well known problems in

combinatorial optimisation (Graham, 1985). According to Graham (1985), the

MST is the shortest distance that is used to connect all the nodes in a network.

Zhaocai et al. (2013) defined the MST as a problem of finding the minimum

edge connected subsets containing all the nodes of a given undirected graph.

Zhaocai et al. (2013) came up with a new and fast algorithm for solving the
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MST problem based on the computation of DNA molecules. Concurring with

both Graham (1985) and Zhaocai et al. (2013), Peppino et al. (2013) also de-

fined the MST as the problem of finding a spanning tree with minimum total

cost such that each non-leaf node in the tree has a degree of at least d, (d > 2).

While the MST previously used to perform more comprehensive studies of as-

set returns correlations, it can also be used to deduce the underlying owner-

ship structure with reasonable accuracy (Rosovsky et al., 2014). The Euclidean

MST-based evolutionary algorithm to solve multi-object optimisation problems

was proposed by Li et al. (2014).

The purpose of this chapter is to develop two new techniques that make use of

the MST of a network graph. The two techniques are developed in such a way

that the node index of each node ni satisfies the condition that 1 ≤ ni ≤ 2, for

all i. It is anticipated that such a spanning tree may have several applications,

including determination of the travelling salesman tour (TST).

This chapter also presents a MST approach to determine a route through ′k′

specified nodes. The path through ′k′ specified nodes is a difficult problem for

which no good solution procedure is known. The proposed method determines

the route, which may either be an optimal path or a near optimal path. The

complexity of this problem depends on the number of specified nodes.

The rest of the chapter is arranged as follows: Section 4.2 reviews the litera-

ture of the MST model and the route through ′k′ specified nodes. Section 4.3

presents the MST with node index which is less than or equal to 2. The the-

orems that led to the reduction in the node index are also discussed in this

section. Section 4.4 presents the route through ′k′ specified nodes, its appli-

cations and the complexity of the problem as the number of specified nodes

increases. Section 4.5 gives a summary of the chapter.
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4.2 Literature Review

Jayawant and Glavin (2009) highlighted that the MST problem originated in

the 1920s when Boruvka in 1926, identified and solved the problem during the

electrification of Moravia. In the 1950s, many authors contributed to the MST

problem, among them were Kruskal (1956) and Prim (1957), whose algorithms

are very widely used today. The algorithm now known as Prim’s algorithm

was in fact discovered earlier by Jarnik in 1930. Jayawant and Glavin (2009)

presented a variant of Boruvka’s algorithm and compared it to the algorithms

given by Boruvka, Prim and Kruskal which have been central to the history of

the problem.

Anupam (2015) defined the MST problem as a classic (and important) prob-

lem, which has been tackled many times. The author gave a brief history of

the problem and stated that Boruvka’s algorithm, formulated in 1926, was the

first MST algorithm. Jarnik gave his algorithm in 1930 and Kruskal gave his

in 1956. Prim rediscovered Jarnik’s algorithm in 1957 and Dijkstra gave his

algorithm in 1959. According to Anupam (2015), all these algorithms can be

easily implemented in O(mlogn) time where n is the number of nodes and m

is the number of edges. Yao’s (1975) algorithm was formulated in 1975 and it

achieved a run time of O(loglogn). Anupam further highlighted that Karger,

Klein and Tarjan got an algorithm with a run time of O(m) time but it was a

randomised algorithm, so the search for a deterministic linear-time algorithm

continued. Dynamic programming formulation for the MST was given by Garg

and Kumar (1968).

According to Graham and Hell (1985), the MST is one of the most typical

problems of combinatorial optimisation. The problem has generated impor-

tant ideas of modern combinatorics and has played a central role in the de-

sign of computer algorithms. The MST has several applications that include
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designing of computer communication networks, power and leased lined tele-

phone networks, wiring connections, links in transportation network, piping in

a flow network and several others (Graham and Hell, 1985). The MST offers

methods of solutions to other problems to which it applies less directly, such as

network reliability, surface homogeneity tests, picture processing, automatic

speech recognition clustering and classification problems (Kumar et al., 2016)

.

Given an undirected network with positive edge costs and a positive integer

d > 2, the minimum-degree constrained minimum spanning tree problem is

the problem of finding a spanning tree with minimum total cost such that each

non-leaf node in the tree has a degree of at least d (Akgun and Tansel, 2010).

According to the authors, this problem is new to the literature while the re-

lated problem with upper bound constraints on degrees is well studied. Mixed

integer programs proposed for either type of problem are composed, in gen-

eral, of a tree-defining part and a degree-enforcing part. In their formulation of

the minimum-degree constrained minimum spanning tree problem, Akgun and

Tansel (2010) stated that the tree-defining part is based on the Miller-Tucker-

Zemlin constraints while the only earlier paper available in the literature on

this problem used single and multi-commodity flow-based formulations that

are well studied for the case of upper degree constraints. They proposed a new

set of constraints for the degree-enforcing part that lead to significantly better

solution than earlier approaches when used in conjunction with Miller-Tucker-

Zemlin constraints.

Chazelle (2000) agreed with other authors and pointed out that the history of

the MST problem goes as far back as Boruvka’s work in 1926, and the author

also pointed out that the MST is perhaps the oldest open problem in computer

science. Chazelle (2000) presented a deterministic algorithm for computing a
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MST of a connected graph. The algorithm had a running time of O(mα(m,n)),

where α is the classical functional inverse of Ackermann’s function, n is the

number of vertices (nodes) and m is the number of edges. The algorithm used

pointers and not arrays, and it made no numeric assumption on the edge cost.

Ishii and Matsutomi (1995) considered a P model version of stochastic span-

ning tree problems with random edge costs. Parameters of underling proba-

bility distribution of edge costs were unknown, and estimated by a confidence

region from statistical data. The problem was first transformed into a deter-

ministic equivalent problem with a minimax type objective function and a con-

fidence region of means and variances, since they assumed normal distribu-

tions with respect to random edge costs. Their model reflects the situation that

the maximum possible damage due to an unknown parameter should be min-

imised. They also showed that the problem can be reduced to the deterministic

equivalent problem of another stochastic spanning tree problem, which they

had previously investigated. Thus, they found an optimal spanning tree of the

original problem very efficiently by this reduction technique.

According to Gomes et al. (2015), there are very few works that address the

problem of calculating the shortest path from a source node to a target node

that visits a specified set of nodes (it is assumed that the source and target

nodes are different). The first known work is from Saksena and Kumar (1966)

who developed an exact algorithm using the principle of optimality, for cal-

culating the shortest path (possibly with cycles) that visits a specified set of

nodes. They named their method SK66. de Andrade (2013) noted that if the

set of specified nodes to be visited is made of all nodes in the graph, excluding

the source and target nodes, this corresponds to finding an Hamiltonian path

of minimum cost, which is NP-hard.
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Ibaraki (1973) considered separately the problem of calculating the shortest

loop-less path that visits a specified set of nodes and the shortest path (possi-

bly with cycles) that visits a specified set of nodes. The scholar proposed two

approaches for the calculation of the shortest loop-less path that visits a spec-

ified set of nodes, one based on dynamic programming and the other based

on the branch and bound principle. Computational results indicated that the

algorithm based on branch and bound principle was more efficient than the al-

gorithm based on dynamic programming.

Vardhan et al. (2009) presented an algorithm to find a simple path in the given

network with multiple must-include nodes. They highlighted that the prob-

lem of finding a simple path with only one must-include node can be solved

in polynomial time using lower bound max-flow approach. However, including

multiple nodes in the path has been shown to be NP-complete. This problem

may arise in network areas such as forcing the route to go through particular

nodes, which have wavelength converter (optical), monitoring provision (tele-

com), gateway functions, or are base stations.

In their research, Vardhan et al. (2009) formulated a heuristic algorithm to

find a simple path between a pair of terminals which has a constraint to pass

through a certain set of other nodes. The algorithm was divided into two main

steps: (1) considering a pair of nodes in sequence from source to destination

as a segment and then computing candidate paths between each segment, and

(2) combining paths, one from each segment in order to form a simple path

from the source to the destination. The max-flow approach was used to find

candidate paths which provided maximum number of edge disjoint paths for

individual segments. The second step of their algorithm used backtracking

algorithm for combining paths. The time complexity of the first step of their al-

gorithm is O(k |V | |E|2), where k is the number of must-include nodes, V is the
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number of vertices and E is the number of edges. The time complexity of step

(2) depends upon the total number of candidate paths which are not touching

any one of the candidates of other segments. So, the worst-case time complex-

ity of step (2) was O(λk), where λ is the maximum nodal degree of the network.

However, they showed that step (2) has minimal effect on the algorithm and

does not grow exponentially with k in this application. Their experimental re-

sults showed that the algorithm is successful in computing the near optimal

path in reasonable time.

The problem of calculating the shortest path that visits a given set of nodes

is at least as difficult as the travelling salesman problem, and it has not re-

ceived much attention (Gomes et al., 2015). The authors formulated a heuristic

whose results were compared to a previously efficient integer linear program-

ming (ILP) formulation that solved this problem. The ILP formulation included

a constraint that forced the model to obtain a path that will be protected by a

node-disjoint path. Computational experiments, however, showed that this ap-

proach, in large networks, may fail to obtain a solution in a reasonable amount

of time. Therefore, Gomes et al. (2015) proposed three versions of their heuris-

tic, for which extensive computational results show that they are able to find

a solution in most of the cases that they have considered. The calculated solu-

tions using their method gave an acceptable relative error regarding the cost of

the optimal active path. Furthermore, the CPU time required by their heuris-

tics was significantly smaller than the one that is required by the ILP solver

that they compared with.
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4.3 Minimum Spanning Tree with index ≤ 2

The minimum spanning tree (MST) of a given graph can be obtained iteratively

by any greedy approach, which is linear in time and converges in n − 1 itera-

tions, where n is the number of nodes. In a connected network, a spanning tree

is a group of n− 1 arcs that connects all the nodes of the network and contains

no loops. A spanning tree connecting all nodes of a network becomes a MST

when the sum of the selected arcs is smallest. Generally, the method of finding

a MST, arbitrarily starts from any node and connects that node to the nearest

node, forming a spanning tree of the two nodes. In the next iteration, one more

node is selected which is nearest to one of them and also not forming a loop

with already selected nodes. Ties are resolved arbitrarily. After n− 1 such iter-

ations, all nodes and the selected n− 1 links form a MST of the given graph.

The index of a node in the MST is given by the number of arcs joining this node

to other nodes. The index value for each node will be at least 1 and at most

n − 1 the maximum being realised when all nodes are connected to the same

node.

4.3.1 The problem statement and the mathematical sup-

port

For a given graph G(n, L), where n is the number of nodes and L is the number

of links or arcs, the MST obtained by any known greedy approach will have

node indexes ni, where 1 ≤ ni ≤ (n − 1) for node i, and hence such a MST will

have to be modified to satisfy the condition 1 ≤ ni ≤ 2, for all i. In this thesis,

it is assumed that the ′n′-node network is a connected graph where each node

has at least two arcs emanating from it.
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Definitions

Basic arc: An arc connecting two nodes i and j is said to be basic if xij = 1,

that is if it belongs to the MST solution. If xij 6= 1, then the arc is said to be

non-basic.

Index of a node: The index of a node in an MST graph is given by the number

of basic arcs emanating from that node. Since the total number of selected arcs

in a MST will be n − 1, the total node index value of these selected arcs in a

MST will be 2(n − 1). In an extreme case, the total node index number can be

distributed such that ni = 1, for n− 1 nodes; and for another node, the node in-

dex ni = n− 1, and this happens when all the nodes are connected to one node.

When the node index has to satisfy the condition ni ≤ 2, for all i, however, the

selection of arcs forming the minimum connected graph will have to be read-

justed. Since the MST will be comprised of all nodes and n − 1 selected arcs,

the number of nodes with index 2 will be at most n− 2, and the remaining two

nodes will have the node index of 1 to get the total node index value of 2(n− 1).

Therefore, the selected arcs joining nodes with node index greater than 2 will

have to be replaced by other arcs to balance out the index requirement on each

node. The network modification theorem given later in this chapter attains

even distribution requirement of the node index values.

High and low index nodes: Since the number of basic arcs emanating from

a node gives its index value, a node is called a high index node if its number of

basic arcs is greater than 2, and a low index node if the number of basic arcs

is 1. In this thesis, we require a MST, where the index ni at node i satisfies the

condition 1 ≤ ni ≤ 2, for all i.

Neighbouring arcs: These are arcs that emanate from neighbouring nodes. A

node i is said to be a neighbour to node j if the two nodes i and j are connected

by a single arc. In a completely connected graph, all nodes are neighbouring

nodes since all pairs of nodes are directly connected by single arcs.
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A string in a MST: A string in a MST is a collection of arcs where the degree

of all intermediate nodes is 2 and the end nodes have a degree 1 with respect

to that string. In other words, more than one string may start from the same

node and more than one string may have a part of the string common to them.

Thus, the MST of a given graph may have several strings.

Balancing node index by arc weight modification

Theorem 4.1

Adding or subtracting the same constant µ to all the arc-distances emanating

from the same node does not change the relative merit of any given tour with

respect to other tours. Note that there are (n − 1)! tours in an ′n′-node com-

pletely connected network.

Proof

In a completely connected graph, each node has n − 1 arcs emanating from it.

Suppose there are n− 1 arcs emanating from node i as shown in Figure 4.1.

Figure 4.1: Arcs emanating from a node i
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Adding a constant µ to all the arcs in Figure 4.1 generates the modified dis-

tances shown in Figure 4.2.

Figure 4.2: After adding a constant µ to every arc

When an arc length is changed by adding a constant quantity µ to each arc

emanating from that node, it will have consequences on both sides of the arc,

i.e. arc-weight distribution of two nodes will be affected. Therefore, two sepa-

rate considerations are required at both ends of the arc. Consider that adding

a constant modifies the arcs emanating from the node i. The motivation for

this modification is to create an alternative for the MST. When the node i is

a candidate for modification as the index ni is greater than 2; let the arc (i, p),

from node i to node p be currently a MST member that is causing the imbalance

(i.e. to have node index at ni ≥ 2. If length of the arc (i, p) is increased to be

equal to an arc (p, l), which at present is not a member of the MST since the

arc-weight (i, p) is smaller than the arc-weight (p, l). After adding a constant µ,

the arc-weight (i, p) is made equal to arc weight (p, l); the arc (i, p) can now be

replaced by the arc (p, l) in the MST. Therefore, altering an arc-weight of (i, p)

brings the corresponding index value change at node i as well as at node p. The
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index at node i goes down by 1 and the index at node p goes up by 1.

Consideration at node i

Let the optimal MST be of length (L[τ0]). This length is a sum of (n−1) selected

arc-weights in the given n-node network. The MST under the index restriction

can have at most two arcs emanating from node ′i′, one of them will give entry

to that node and the other will provide exit from that node. Since (L[τ0]) is

minimum, the same MST will remain minimum in the modified network as

shown by equation (4.1).

L[τ0] + 2µ ≤ minL
′
[τk] + 2µ (4.1)

where L
′
[τk] represents the set of lengths of other MSTs excluding the min-

imum length. Note that equation (4.1) holds since equation (4.2) is true by

definition.

L[τ0] ≤ L
′
[τk] (4.2)

The constant µ is a positive quantity that was used to create an alternative

without changing the relative merit of a given MST.

Consideration at the other end of the arc (i, p)

Since in a connected graph all arcs emanating from a node ′i′ are changed, we

have also changed arc weights from other nodes ′p′ to this node ′i′. Thus, rel-

ative merits of the arcs from the node ′p′ are changing as well. However, the

affected arcs have no place in the MST as these other arcs did not belong to the

MST, but were only creating alternative routes. Thus, arc weights can be mod-

ified in the above manner, resulting in an equivalent network with alternative

MSTs.
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Balancing node index by arc weight modification

Theorem 4.2

For any given MST solution, the number of basic arcs emanating from node i

can be altered by adding a constant µ to all the arcs emanating from that node.

Proof

Let any two neighbouring nodes of node i be node j and node k as shown in

Figure 4.3.

Figure 4.3: Neighbouring nodes

In Figure 4.3 the arcs (i; j) and (i; k) are basic. A positive constant µ is added

to each arc emanating from node i as shown in Figure 4.4.
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Figure 4.4: Adding a positive constant µ

If µ is a positive quantity such that Cij + µ ≥ Cjk or Cik + µ ≥ Cjk, then the new

MST solution becomes as shown in Figure 4.5 or in Figure 4.6.

Figure 4.5: New MST when Cik + µ ≥ Cjk
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Figure 4.6: New MST when Cij + µ ≥ Cjk

These diagrams show ways of reducing the number of basic arcs emanating

from a given node i. Only three nodes and three arcs are used to illustrate the

theorem. A method for any number of nodes greater than three is similar to

the above case. The question is how to find the quantity µ.

The purpose of including an additional quantity to the existing arc weights is

to create alternative arcs that can qualify to become basic as a member of the

new MST. Thus, one can alter the number of basic arcs from a given node. The

value of µ is obtained by looking at the minimum difference between the basic

arc-weight and the incoming non-basic arc-weight so as to create an alterna-

tive arc to form a new MST.

4.3.2 MST path

The MST under the node index condition 1 ≤ ni ≤ 2, for all i, is a path. When

n− 2 nodes have index 2, the remaining two nodes will have index 1, then they

form a path. This path may have several applications like finding the TST of a

network. Such a path will also be useful for the situation when a single truck

is being used to deliver seeds to various centres and deliveries must be done
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before the season starts. It is assumed that seeds are being sourced from a

supplier who is willing to deliver to any desired starting point. In this case the

MST path will give a far better solution when seeds are delivered from the node

with index value 1 to all other nodes. Note that Theorem 4.1 and Theorem 4.2

are applicable to any high index node. Their repeated applications can modify

the node index value to a desired value, which in this case is 2.

An example of a MST path is given in Figure 4.7.

Figure 4.7: An MST path between nodes 2 and 7
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The MST solution in Figure 4.7 is a path. If the supplier is willing to deliver to

any of the nine centres (represented by nodes), then it makes sense to have the

deliveries moving from node 2 passing through all the other centres until we

reach node 7. Theorems 4.1 and 4.2 can be applied to obtain a MST path from

any given source node i to any destination node j. If the associated weights in

Figure 4.7 are in hours then the shortest time in which deliveries can be made

to all nodes is given in equation (4.3).

L[τ0] = 2 + 1 + 2 + 3 + 2 + 2 + 2 + 1 = 15hrs (4.3)

Note that there is no other delivery time less than 15hrs.

The Algorithm

The algorithm to find the MST with node index restriction can be described as

follows:

Step 1

Find a MST of the given graph by any known method. If in the process of arc

selection, a tie is experienced, always select the arc that does not increase the

degree of a node beyond 2. Go to Step 3.

Step 2

Find the MST of the modified network and go to Step 3. Once again ties are

resolved as in Step 1. As arc lengths are modified, more and more ties will

be observed. Always select an arc that does not increase the index of a node

beyond 2, if feasible.

Step 3

Check if the MST obtained satisfies index conditions. Do all nodes have node



MST based Models for Solving Some NP-hard Problems 93

index less than or equal to 2? If the answer is “no”, go to Step 4, else go to Step

5.

Step 4

Select a node ′i′ with node index 3 or more. With the help of the neighbouring

arcs, find the minimum value µ that can be used to reduce the index at the

high index node ′i′. Reduction in index is achieved by adding an appropriate

minimum quantity µ to all arcs emanating from the selected node ′i′. Doing

this will result in the creation of an alternative basic arc that will reduce in-

dex of the node ′i′, and increase the node index of a low index node. Go to Step 2.

Step 5

The optimal MST is obtained when all index conditions are satisfied.

4.3.3 Analysis and results

We consider the 6-node completely connected network used by Cowen (2011)

for a TSP. It is given in Table 4.1. The objective is to find an index restricted

MST.

Table 4.1: Arc-weights considered by Cowen (2011)

From\To 1 2 3 4 5 6
1 − 11 9 9∗ 15 16
2 11∗ − 14 10 10 15
3 9 14 − 6 13 11∗

4 9 10 6∗ − 9 10
5 15 10∗ 13 9 − 8
6 16 15 11 10 8∗ −
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The corresponding network diagram is shown in Figure 4.8.

Figure 4.8: Arc-weights considered by Cowen (2011)
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In Figure 4.8 Medford is node 1, Arlington node 2, Everett node 3, Somerville

node 4, Belmont node 5 and Cambridge node 6. The optimal tour obtained by

Cowen (2011) is comprised of the following arcs: {(1, 4), (4, 3), (3, 6), (6, 5), (5, 2), (2, 1)}.

These arcs have been indicated by a star mark in Table 4.1. The optimal tour

length as obtained by Cowen (2011), is given by {9+6+11+8+10+11 = 55}.

Since, for an MST, we can start from any node, we commence arbitrarily from

node 6 and select the first arc (6, 5) as part of the MST. The next selected arc

will be either from the node 5 or the node 6, which is arc (5, 4). We continue

similarly, and select the third arc as (4, 3). At the next stage, we have a tie.

Two possibilities arise. They are arc (3, 1) or arc (4, 1). Note that the arc (4, 1)

together with the existing selected arcs will create three basic arcs from node 4,

whereas the arc (3,1) does maintain index balance. Thus, arc (3, 1) is selected.

Selected arcs so far are: {(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4}. One more arc has to be

selected to connect node 2, which still is an isolated node. This is either link

(4, 2) or (5, 2). If (4, 2) is selected, it will increase the number of basic links at

node 4 and similarly if the link (5, 2) is selected, it will increase the number of

basic links at node 5. Hence in either case imbalance of basic arcs will arise at

nodes 4 or 5. Therefore, all links emanating from nodes 4 and 5 are altered by

adding 1. These modified arc lengths are shown in Table 4.2.

Table 4.2: Modified arc-lengths in rows 4 and 5

From\To 1 2 3 4 5 6
1 − 11 9 10M4 16M5 16
2 11 − 14 11M4 11M5 15
3 9 14 − 7M4 14M5 11
4 10M4 11M4 7M4 − 11M4, 5 11M4
5 16M5 11M5 14M5 11M4, 5 − 9M5
6 16 15 11 11M4 9M5 −
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Once again, starting from node 6, the MST from Table 4.2 will be comprised

of the arcs: {(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4}. Now there are three possibilities to

connect node 2, for it to be part of the MST. They are links (1, 2) or (4, 2) or

(5, 2). Note once again that the link (4, 2) will increase the number of basic arcs

at node 4, and the link (5, 2) will increase the number of basic arcs at node 5,

hence the link selected for the MST is (1, 2). Thus, the required MST will be

given by: {(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4, (1, 2)5}. These selected arcs in the MST

will give rise to the MST path as follows: 2 −→ 1 −→ 3 −→ 4 −→ 5 −→ 6. Note

that some of this path is contained in the tour obtained by Cowen (2011).

4.3.4 Concluding remarks

Due to the numerous applications of minimum spanning trees to communica-

tions and transportation networks, it is important to have efficient algorithms

to find minimum spanning trees in weighted connected graphs. In this section,

arc-weight modification theorems have been developed to create alternative

MSTs in a network. The node index was restricted to a value which is less

than or equal to 2. A shortest path in a non-directed network has an alter-

native interpretation that it gives rise to an MST of index that is less than or

equal to 2 of the nodes on the shortest route. This path comprises of selected

nodes which lie on the shortest path. These MST paths may have an applica-

tion in the determination of the travelling salesman tour (TST). Since the MST

approach is linear and the TST is NP-hard, the TST obtained through the MST

is likely to reduce the complexity of the TST. Obtaining a TST through the MST

will be the subject matter of Chapter 5 in this thesis.

4.4 Routing through ′k′ Specified Nodes

The routing problem pertains to the search for a shortest route in a network

connecting two designated nodes, generally called the origin and the destina-
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tion. The path through ′k′ specified nodes is a difficult problem for which no

good solution procedure is known. The method considers the path from the

origin node to the destination node, which must visit a set of specified nodes en

route before arriving to the destination node. When the set of specified nodes

is a null set, the problem reduces to an ordinary shortest route problem (Ahuja

et al., 1990). However, when the set of specified nodes is not a null set, the

required route is such that it has to pass through the set of specified nodes

before arriving at the destination node. Such a route may have loops. An-

other extreme case of the ′k′ specified node problem is when the set of specified

nodes contains all nodes and one is required to return to the origin node after

visiting all nodes. The problem reduces to a conventional travelling salesman

problem (Bellman and Dreyfus, 1962). Complexity of this problem depends on

the number of specified nodes. Saksena and Kumar (1966) solved the general

routing problem through the ′k′ specified nodes by using the functional equa-

tion technique of dynamic programming. They assumed that 0 ≤ k ≤ n, where

n is the number of nodes in the given network with non-negative link distances.

The requirement for a path to pass through ′k′ specified nodes arises when one

may be interested in either saving a separate trip to the given specified node

or attempting to take care of a future eventuality that is likely to arise in that

situation. The path through ′k′ specified nodes is a mathematical simplifica-

tion of much general situations encountered in all walks of life. Guided Tours

is a multi-billion dollar business all over the world. Tours are planned and

programmed meticulously. For any tour company operating in any country, a

common feature is that with all major tours, they always have suggestions for

a few pre-tours or post-tours, providing choice to the tourist to cover those des-

tinations. This is an attractive offer for the tourist and also equally good for

the tour company to create an additional business from the same tourist and

the route through ′k′ specified nodes concept can be used in this case.
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National planning can serve as another illustration. For example, a national

decision is generally not intended to address the immediate situation faced

today but solution is intended to address also the likely situation going to arise

tomorrow or in the near future. To be specific, consider a decision to add an

extra lane to an existing road to address traffic congestion. This additional lane

is not just intended to meet the current traffic requirements, but the number of

additional lanes should also address future likely traffic requirements on the

same sector.

4.4.1 The problem

Let the given network consist of n+1 nodes, which for convenience are denoted

in any order by a sequence of numbers 0, 1, 2, . . . , n− 1, n. Here 0 denotes the

origin node and n denotes the destination node. Let the set of specified nodes

(through which the route must pass) contain k elements, where 0 ≤ k ≤ n. For

a case where k = 1, i.e. there is one specified node, let this node be denoted by

rj. In this case the problem reduces to two shortest route problems, i.e. finding

the shortest route from the node 0 to the node rj and shortest route from the

node rj to the final destination node n. The sum of these two shortest routes

will give the required shortest path from 0 to n passing through the node rj.

One can easily see that the combinations will increase when k > 1.

Saksena and Kumar (1966) developed a functional equation using the princi-

ple of optimality, which is briefly presented here. They defined Dr(i, j) to be the

distance between the ordered pair (i, j), where i denotes the starting node and

j denotes the destination, and the index r indicates the specified nodes that

occur on the optimal route, r = 0, 1, 2,. . . They also defined f ξ1 as the minimum

distance from the specified node i to the final destination, passing through at

least ξ distinct specified nodes (the initial node i is not to be counted as one of
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the specified nodes even if it is repeated en route). These definitions together

with the principle of optimality result in the functional equation (4.4).

f ξi = min{Dr(i, j) + f ξ−r−1j } (4.4)

for j=1, 2, 3,... and j 6= i. Also f 0
i is the minimum distance from the speci-

fied node i to the final destination, without passing through any other specified

node. The initial calculation of the minimum distance was given by equation

(4.5).

f 1
i = min{D(i, j) + f 0

j } (4.5)

Arora and Kumar (1993) reconsidered the problem of passing through ′k′ spec-

ified edges.

Problem complexity

Similar to the travelling salesman problem, the path through ′k′ specified nodes

has complexity as a function of the number of specified nodes. This is explained

in Table 4.3.
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Table 4.3: ′k′ specified node patterns

No. of
specified
nodes
(r) and
their
identifi-
cation

Possible routes

No of short-
est route prob.
solved/Total No
of new prob.
solved/No. of
evaluations

Complexity
pattern 2(No.
of specified
nodes) r +rC2

1; r1 O → r1 −→ n 2/2/1 = 1! 2(1) + 0=2
2; r1, r2 O → r1 −→ r2 −→ n

O → r2 −→ r1 −→ n
3
2/5/2 = 2! 2(2) +2 C2 = 5

3; r1, r2, r3 O → r1 −→ r2 −→ r3 −→
n
O → r1 −→ r3 −→ r2 −→
n
O → r2 −→ r1 −→ r3 −→
n
O → r2 −→ r3 −→ r1 −→
n
O → r3 −→ r1 −→ r2 −→
n
O → r3 −→ r2 −→ r1 −→
n

4

2

1

1

1

0/9/6 = 3!

2(3) +3 C2 = 9

... ... ... ...
r; r1, r2, ..., rr O −→ r1... −→ rr −→ N (r + 1)...0/2(r) +

[rC2]/r!/r!
2(r) +r C2

From Table 4.3, it is can be seen that as the value of k increases, the complexity

of the problem increases with respect to the number of shortest route problems

solved and also the number of evaluations required before arriving at the solu-

tion. The number of evaluations increases in a factorial manner. Therefore, a

good approximate solution in a linear time would be desirable in many practi-

cal situations.
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MST based approach to find the route through the specified nodes

Let the network be denoted by N{n, L}, where n is a set of nodes whose ele-

ments are O, 1, 2, . . . , n and L is an arc set with elements {Lij}. Let s be the set

of specified nodes, and let also this set s be a sub-set of the set of n nodes. The

steps of the algorithm are as follows:

Step 1

Find the shortest path without imposing specified nodes condition by any known

method. Let the links on this path be denoted by the set SP.

Step 2

Check if the shortest path obtained from Step 1 has visited all nodes in the set

s? If “yes”, terminate the search process and go to Step 6. Else redefine the set

of specified nodes which have not been covered by the shortest path. Let the

specified nodes that are not on the shortest path be denoted by s′, where s′ ≤ s.

Go to Step 3.

Step 3

Find the MST of the given network, starting from a node in the set s. Go to

Step 4. This connected graph will be comprised of all nodes, those specified and

non-specified ones. Let the links in the MST be denoted by the set ’MST’.

Step 4

Find the union of the two sets (SP and ’MST’) obtained from Steps 1 and Step

3. The set of links in the union set will have links forming a path joining the

origin and the destination nodes. This union set will contain all the specified

nodes, non-specified nodes and the links. All nodes and links in the union set

may not be required.
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Step 5

Rearrange the links in the union set to form strings. For example, the links

{(1, 2), (1, 7), (2, 3), (3, 4), and (2, 4)} will form three strings: {1 −→ 2 −→ 3 −→

4, 1 −→ 7 and 1 −→ 2 −→ 4}. One of these strings will be the shortest path

joining the origin and destination.

Step 6

Delete a string if it does not contain any node from the set of specified nodes

and does not contain both the origin node and the destination node. Remove

loops if it is beneficial to do so.

Step 7

Prepare the final path as a string joining the origin node to the destination

node through the set of specified nodes.

4.4.2 Analysis and results

Let us reconsider the example solved by Saksena and Kumar (1966). Figure

4.9 shows the network diagram and the problem is to find the shortest path

joining the origin node O to node 9, passing through the set of specified nodes

{2, 4, 6, 8}.
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Figure 4.9: A connected graph and arc distances (Saksena and Kumar, 1966)

The shortest path using the Step 1 is given by:

{O −→ 7 −→ 5 −→ 6 −→ 3 −→ 2 −→ 4 −→ 9}. The length of the above string is

14. Note that there are alternative paths, for example, the path:

{O −→ 7 −→ 5 −→ 3 −→ 2 −→ 4 −→ 9} is of the same length, but we chose the

previous one since it has {2, 4, 6} three specified nodes and the alternative path

has only two specified nodes {2, 4}.

Step 2: The specified node not visited by the selected shortest path is node 8.

Thus the set k = {8}.

From Step 3, the MST starting from the node 8 will be comprised of the fol-

lowing links in the order of selection:

{(8, 6), (6, 3), (3, 2), (2, 4), (4, 9), (6, 5), (5, 7), (7, O), (O, 1)}.

From Step 4, the union of SP and ’MST’ is given as:

{(8, 6), (6,3),(3,2),(2,4), (4,9),(6,5), (5,7),(7,O), (O, 1)}, where the common links

are in bold.

Using Step 5, starting from the node O, we form as many strings as possible.

These strings are given as follows:

String 1: O −→ 1

String 2: O −→ 7 −→ 5 −→ 6 −→ 3 −→ 2 −→ 4 −→ 9.
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String 3: O −→ 7 −→ 5 −→ 6 −→ 8

From Step 6, we notice that the string 1 can be deleted as the node 1 is neither

the specified node nor the destination node. The other node O has been covered

in other strings. String 3 is common to string 2, except node 8. Therefore, we

have a choice of either forming a loop 6→ 8→ 6 or merging the node 8 with the

path of string 2. In this case both possibilities will increase the cost equally.

Thus there are two answers to the problem: A path with a loop, or path without

a loop.

A path with a loop is: O → 7→ 5→ 6→ 8→ 6→ 3→ 2→ 4→ 9, with a cost of

14 +6 = 20

A path without a loop is: O → 7→ 8→ 6→ 3→ 2→ 4→ 9, with a cost of 14 –

5 + 8 +3 = 20.

Another Consideration

Suppose node 1 is also a specified node. In that case string 1 will not be dis-

carded. Two alternative paths would be given as:

Alternative 1: O → 1 → O → 7 → 5 → 6 → 8 → 6 → 3 → 2 → 4 → 9, and the

cost will be 20 + 2 = 22.

Alternative 2: O → 1→ O → 7→ 8→ 6→ 3→ 2→ 4→ 9, and the cost will be

20 +2 = 22.

Note that node 1 cannot be absorbed on any path as the cost associated with a

loop is only two units against 10 for moving out of node 1 other than the nodeO.

4.4.3 Concluding remarks

In this section, we considered the routing problem through ′k′ specified nodes.

The requirement of including multiple nodes in the computation of end-to-end

routing paths has many applications in real-life networks. For example, in op-
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tical, Ethernet, and mobile networks. The Canadian traveller problem and the

stochastic shortest path problem are generalisations where either the graph

is not completely known to the mover, changes over time, or where actions

(traversals) are probabilistic. The need for the calculation of a path from a

source node to a target node, which must visit a given set of nodes may arise

due to network management constraints. It is easy to see that in the proposed

approach, one can easily establish lower and upper bounds on path length. For

example, the lower bound on the path length is the unconstrained path length,

and the upper bound is the length of the path one can get from the union set in

Step 5. It is desirable to establish a procedure of moving the bounds, and thus,

establishing optimality of the solution.

4.5 Summary of the Chapter

In this chapter we have developed two algorithms which are key in solving

some of the NP-hard problems. The key point of these algorithms was to re-

duce the node index ni to a number which is less than or equal to 2. The un-

derlining theorems that enable the node index to be changed were presented.

A MST path was defined and its applications were also highlighted. Alterna-

tive interpretation of the MST-path is a shortest route passing through all the

nodes. This has also been identified in this chapter. Numerical examples that

illustrate the two algorithms were presented and the results were found to be

in line with the results obtained by other researchers. The route through ′k′

specified nodes algorithm was also formulated in this chapter. The complex-

ity of this problem depends on the number of specified nodes. This problem

has several applications in real life, which include the TSP and the Canadian

traveller’s problem all of which have several applications in real life.



Chapter 5

The Travelling Salesman

Problem

The world is a book, and those who do not travel read only one page.

Saint Augustine

5.1 Introduction

The travelling salesman problem (TSP) is an NP-hard combinatorial optimi-

sation model that has applications in OR and many other fields, for exam-

ple computer science, genetics, electronics and logistics (Garg and Shah, 2011;

Saranya and Vaijayanthi, 2014). The TSP belong to the NP (non-deterministic

polynomial) class of difficult problems. No efficient general purpose algorithm

for this problems is known. In other words, these types of problems cannot be

solved in polynomial time (P). The TSP is one of the problem of P versus NP

which is one of the seven Millennium Prize Problems in mathematics that were

stated by the Clay Mathematics Institute in 2000 (Delvin, 2003; Calson et al.,
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2006). A correct solution to any of the seven problems will earn a US $1M prize

(sometimes called a Millennium Prize) being awarded by the Institute. Out of

the seven very difficult problems, only one was solved by the Russian mathe-

matician Grigori Perelman in 2003 (Wiles, 2006).

Even though the TSP is computationally difficult, many heuristic and exact

methods have been developed. In some instances, models have been solved in-

volving tens of thousands of cities. In computational complexity theory the TSP

belongs to the class of NP-complete problems, which means that in the worst-

case, running time for the TSP algorithm may increase exponentially with the

number of cities (Nadef, 2002). Currently we are not aware of any efficient ex-

act method for the TSP model. Heuristics have been used to approximate the

TSP, but the problem is that heuristic approaches do not tell us about the qual-

ity of the solution with respect to the optimal solution (Razali and Geraghty,

2011). The TSP has so many variants and so many applications in real life that

it has demanded attention of many researchers.

5.1.1 The problem

Könisberg was a town in Prussia which was divided into four land regions by

the river Pregel. The regions were connected with seven bridges as shown in

Figure 5.1. The problem was to find a tour through the town that crosses each

bridge exactly once. Leonhard Euler gave a formal solution for the problem

and as it is believed, established the graph theory field in mathematics. The

TSP is a problem of finding a way of moving from an origin node and return

to it in such a way that each and every node is visited once and the total dis-

tance travelled is minimal. The TSP can also be represented as a mathemati-

cal programming model. A tour is a loop that connects all nodes in a travelling

salesman model. The loop becomes an optimal tour if the total length is the
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Figure 5.1: The seven bridges of Könisberg (a) and corresponding graph (b)

smallest of all possible tours. The tour is sometimes called a Hamiltonian cy-

cle, and finding the optimal tour is known to be NP-complete.

5.2 Literature Review

Saranya and Vaijayanthi (2014) highlighted that the TSP is an NP-hard prob-

lem in combinatorial optimisation and it is important in research and theoret-

ical computer science. The authors used Bio-inspired algorithms such as ant

colony optimisation, bee colony optimisation and cuckoo search optimisation to

obtain a solution to the TSP. Their main objective was to find a cyclic permu-

tation that minimises the cost of visiting every node only once and reduce the

complexities faced in existing techniques in providing the optimal solution for

the TSP.

Doringo and Gambardella (1997) described an artificial ant colony capable of

solving the TSP. They highlighted that ants of the artificial colony were able
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to generate successively, shorter feasible tours by using information accumu-

lated in the form of a pheromone trail deposited on the edges of the TSP graph.

In their research, computer simulations demonstrated that the artificial ant

colony is capable of generating good solutions to both symmetric and asymmet-

ric instances of the TSP. Their method, just like simulated annealing, neural

networks and evolutionary computation, showed the successful use of a natu-

ral metaphor to design an optimisation algorithm.

Cickova et al. (2008) described the application of self-organising migrating

algorithm (SOMA) to the TSP. According to the authors, SOMA was a rela-

tively new optimisation method that was based on Evolutionary Algorithms

(EAs) that are originally focused on solving non-linear programming problems

that contain continuous variables. The use of EA to solve the TSP requires

some special approaches to guarantee feasibility of solutions. In their article,

two concrete examples were given to demonstrate the practical use of SOMA.

Firstly, they applied the penalty approach as a simple way to guarantee fea-

sibility of the solution. Then, they presented a new approach that works only

on feasible solutions. The results of their study showed that SOMA gave rela-

tively good solution for large TSPs.

5.3 The TSP through MST

Given the TSP ‘n′ node completely connected network, a spanning tree is a

group of arcs that connects all the nodes of the network and contains no loops.

A spanning tree connecting all nodes of a network becomes a minimum span-

ning tree (MST) when the sum of the selected arcs is smallest. There are many

algorithms for finding the MST of a given network as explained in Section 4.3

of this thesis. The advantage of using the MST within the context of a TSP is

that the MST can be obtained in linear time and its convergence is guaranteed.
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Theorem 4.1 and Theorem 4.2 will be applied in this section in order to reduce

or increase the node index (degree) of any node. An MST path is a MST such

that the number of basic arcs on all nodes is less than or equal to 2. Note that

Theorem 4.1 is applicable to every node, hence when this theorem is applied

to a high degree node in the original MST of the given network; degree of that

node can be reduced. Thus, by repeated applications of this theorem, given

arc lengths can be modified so that an MST path is generated in a modified

network. An MST in the form of a path is said to be desirable if the start and

finish of the path is separated by a single arc, which is called a jumber (λ). If

the jumber is the smallest of all the non-basic arcs, then it is called a bridge.

Figure 5.2 is an example of a desirable path and bridge. Thus, when the bridge

is combined with the desirable path, it results in a very important outcome,

i.e. it can be used to solve the TSP model. Repeated applications of the two

theorems can help to create a desirable MST path. The MST in Figure 5.2

Figure 5.2: Desirable MST path, jumber and bridge.

is an example of a desirable path where the head (node 7) is separated from

the tail (node 5) by the jumber (arc (5,7)). Note that there is no non-basic arc

smaller than the arc (5,7), hence it becomes a bridge, which implies that an
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optimal tour is available. Bridges are not readily available. Theorem 4.1 has

to be applied to certain nodes to make all non-basic arcs bigger than or equal

to the length of the jumber arc.

5.3.1 Optimality of the tour - Theorem 5.1

The optimality of the tour obtained as above can be established by combining

the desirable MST path and the bridge.

Proof by contradiction

Suppose there exists τ0 such that:

L[τ0] ≤ L[MST ] + L[λ] (5.1)

L[MST ] is the smallest connection of all the nodes. There is no other connection

smaller than this. The length of the bridge is the smallest length which is not

part of the MST. Then by contradiction

L[τ0] ≥ L[MST ] + L[λ] (5.2)

Thus both equation (5.1) and (5.2) can hold only when

L[τ0] = L[MST ] + L[λ] (5.3)

The TSP tour can be obtained when it is possible to create a desirable MST

path and a bridge; otherwise only bounds are possible.

Reduction in arc length representing the jumber – Theorem 5.2

When an MST path has been obtained and the jumber arc-length is longer than

the arc-lengths that are non-basic, optimality of the solution is not established.

In that case we can alter the arc lengths by subtracting a constant µ from all

the arcs emanating from that node, such that the altered arc lengths are non-

negative. Proof is similar to theorem 5.1.
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5.3.2 The TSP tour algorithm based on the MST

The algorithm to find the TSP tour for a given network is comprised of the

following steps.

Step 1:

Find the MST of the given TSP network diagram by any known method. Since

MST determination can be initiated from any node of the network, apply the

MST algorithm starting from the node that contains the largest arc length. In

the MST development process, if there is a tie, always select the arc that does

not increase degree of a node beyond 2. Go to Step 3.

Step 2:

Find the MST of the modified network and go to Step 3. Once again as in Step

1, the MST is initiated and ties are resolved as in Step 1. As arc lengths are

modified, more and more ties are observed. Always select an arc that does not

increase the degree of a node beyond 2, if possible.

Step 3:

Is the MST in the form of a path (i.e. all nodes in the MST have degree less

than or equal to 2)? If the answer is “no”, go to Step 4 else go to Step 5.

Step 4:

Select a node ‘k′ with degree 3 or more. With the help of the neighbouring arcs,

find the minimum value µ to reduce the degree at the node ‘k′. Reduction in

degree is achieved by adding an appropriate minimum quantity µ to all arcs

emanating from the selected node ‘k′. This way one can create an alternative

and change the basic arc to reduce the degree of the node ‘k′ in the new MST.

Go to Step 2.

Step 5:

The arc joining the head and tail is known as a jumber. Find if this jumber is

smallest of all non-basic arcs? If the answer is “yes”, go to Step 6, else, go to

Step 7.

Step 6:
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Establish if the required TSP tour in the modified network is comprised of arcs

forming the MST path and the bridge. Go to Step 8.

Step 7:

Since the jumber is not minimum, the bounds on the optimal TSP tour L[τ0]

can be established as follows:

L[MST ] ≤ L[τ0] ≤ L[MST ] + L[Jumber]

The length of the MST and the jumber are obtained with reference to the orig-

inal data before any modification. Now reduce the length of the jumber arc by

subtracting a constant so that the modified lengths are non-negative. Return

to Step 2 if bounds are improved, else go to Step 9.

Step 8:

Find arc lengths of the selected arcs from the original TSP network and the

length of this tour is the sum of the arc lengths of these selected arcs.

Step 9:

If in any iteration a cycle is observed, select arbitrarily the row with highest arc

length and select two smallest elements. Build the connected graph on those

two selected arcs. Re-establish the bounds. If bounds have been improved,

terminate the process and give the best possible tour obtained so far with its

bounds.

5.3.3 Results and analysis

Reconsider the 6-node completely connected network used by Cowen (2011).

The corresponding network diagram is shown in Figure 5.3.
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Figure 5.3: Arc-distances of the example considered by Cowen (2011)

The corresponding table is shown in Table 5.1. The optimal tour as obtained

Table 5.1: Arc-distances of the example considered by Cowen (2011)

From\To 1 2 3 4 5 6
1 − 11 9 9∗ 15 16
2 11∗ − 14 10 10 15
3 9 14 − 6 13 11∗

4 9 10 6∗ − 9 10
5 15 10∗ 13 9 − 8
6 16 15 11 10 8∗ −

by Cowen (2011) was as follows:

1 → 4 → 3 → 6 → 5 → 2 → 1 and the optimal tour is given by {9 + 6 + 11 + 8 +

10 + 11 = 55}.

Now the algorithm discussed in this paper is applied to this problem in Table
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5.1. The largest arc length is 16, so we connect nodes 6 and 1. If we start from

node 6, the first arc to be selected as part of the MST will be the arc (6,5). Next

selected arc will be either from node 5 or node 6. The next selected arc is (5,4).

We continue similarly, and select the third arc as (4,3). At the next stage, we

have a tie. Two possibilities arise, they are arc (3,1) or arc (4,1). Note the arc

(4,1) together with the existing selected arcs will create three basic arcs (degree

3) from node 4, whereas the arc (3,1) does maintain balance of basic arcs i.e.

degree of 2. Hence the arc (3,1) is selected. Thus the selected arcs so far are:

{(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4}. One more arc has to be selected to connect node

2, which is still an isolated node. This is either link (4,2) or (5,2). If (4,2) is

selected, it will increase the number of basic arcs at node 4, and similarly if the

link (5,2) is selected, it will increase the number of basic arcs at node 5. Hence

in either case imbalance of basic arcs will arise at nodes 4 or 5. Therefore, all

links emanating from nodes 4 and 5 are altered by adding 1. These modified arc

lengths are shown in Table 5.2. Once again, starting from node 6, the MST from

Table 5.2: Modified arc lengths in rows 4 and 5

From\To 1 2 3 4 5 6
1 − 11 9 10M4 16M5 16
2 11 − 14 11M4 11M5 15
3 9 14 − 7M4 14M5 11
4 10M4 11M4 7M4 − 11M4, 5 11M4
5 16M5 11M5 14M5 11M4, 5 − 9M5
6 16 15 11 11M4 9M5 −

Table 5.2 will be comprised of the arcs: {(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4}. Now there

are three possibilities to connect node 2 to be part of the MST. They are links

(1,2), (4,2) or (5,2). Note once again that link (4,2) will increase the number of

basic arcs at node 4, and the link (5,2) will increase the number of basic arcs

at node 5, hence the link selected for the MST is (1,2). Thus, the required MST

will be given by: {(6, 5)1, (5, 4)2, (4, 3)3, (3, 1)4, (1, 2)5}. These selected arcs in the
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MST will give rise to the MST path as follows:

2 → 1 → 3 → 4 → 5 → 6. The arc (2,6) is the jumber with length 15. Thus, the

bounds are:

L[MST ] ≤ L[τ0] ≤ L[MST ] + L[Jumber] that is to say, TSP tour is greater than

the MST, which is 43 and the TSP is less than the MST+ Jumber, which is 58.

The minimum non-basic arc has length 10 units. Hence we modify the jumber

row, i.e. row 2 and reduce each element by 5 units to bring the jumber length

equal to the minimum non-basic arc length. This is given in Table 5.3.

Table 5.3: Modified arc lengths from Table 5.2

From\To 1 2 3 4 5 6
1 − 11 9 10M4 16M5 16
2 6M2 − 9M2 6M4, 2 6M5, 2 10M2
3 9 9M2 − 7M4 14M5 11
4 10M4 6M4, 2 7M4 − 11M4, 5 11M4
5 16M5 6M4, 2 14 11M4, 5 − 9
6 16 10M2 11 11M4 9 −

The first two elements of the MST from Table 5.3 are given by: {(5, 6)1, (5, 2)2}.

The next element has a tie, i.e. it can be either (2,1) or (2,4). Thus, three el-

ements of the two alternative MSTs will be given by {(5, 6)1, (5, 2)2, (2, 1)3} and

{(5, 6)1, (5, 2)2, (2, 4)3}. For the fourth element, we consider two cases separately.

Case 1

Consider the string {(5, 6)1, (5, 2)2, (2, 1)3}. The fourth element in the above

string will be given by (2,4). Thus the updated string will be {(5, 6)1, (5, 2)2, (2, 1)3, (2, 4)4},

and the final element to be added to form the MST will be (4,3); resulting in

{(5, 6)1, (5, 2)2, (2, 1)3, (2, 4)4, (4, 3)5}. This selection of arcs in the MST does not

form a path. There are three basic arcs at node 2. Before investigating it fur-

ther, let us consider the other string.

Case 2

Consider the string {(5, 6)1, (5, 2)2, (2, 4)3}. The fourth element will be (2,1) and
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the final element will be (4,3). The full string will be {(5, 6)1, (5, 2)2, (2, 4)3, (2, 1)4, (4, 3)5}.

Both alternatives have resulted in the same MST. The nearest neighbour is arc

(1,4). Adding 4 to all arcs emanating from node 2 gives the results shown in

Table 5.4. The MST is comprised of the following arcs: {(6, 5), (6, 4), (4, 3), (3, 1)}

Table 5.4: Modified arc lengths from Table 5.3

From\To 1 2 3 4 5 6
1 − 11 9 10M4 16M5 16
2 11M2 − 13M2 10M4, 2 10M5, 2 14M2
3 9 13M2 − 7M4 14M5 11
4 10M4 10M4, 2 7M4 − 11M4, 5 11M4
5 16M5 10M4, 2 14M5 10M5 − 9M5
6 16 14M2 11 11M4 9M5 −

The last link has a tie between (4,2) and (5,2). The link (5,2) is selected as it

will give rise to an MST path. The MST path is given by:

1→ 3→ 4→ 6→ 5→ 2 with a length of (9 + 6 + 10 + 8 + 10 = 43). The jumber

is (1,2) with length 11. The length of the TSP is given by L[MST ] + L[Jumber]

where MST length = 43 and and length of the jumber = 11. Therefore, the

TSP tour length = 54. Our solution is less that the solution obtained by Cowen

which was 55.

5.3.4 Concluding remarks

The approach proposed in this thesis is likely to give new directions for re-

search in search for an efficient algorithm to solve the difficult TSP model. The

strength of the proposed approach is that it is based on the MST tours. In addi-

tion, the proposed method does not generate sub-problems that can explode as

is the case with most of the branch and bound related methods (Padberg and Ri-

naldi, 1991). The proposed approach uses only MST and addition/subtraction

operations which are very simple. The MST path used in this approach also
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has a very important real life application. It can be used to find quickest routes

when time is the most important factor. It was assumed that the given network

is a completely connected network. It may be desirable to extend this idea to

connected graphs. The method discussed in this section can result either in an

optimal solution or bounds on the TSP tour. It would be desirable to develop a

procedure to improve bounds, when optimal solution is not known.

5.4 A Heuristic for the TSP based on the MST

Technique

Let a connected network of n nodes and m edges be denoted by G(n,m). After

excluding a node p and all edges that emanates from the node p, the remaining

network is denoted by G′(n− 1,m− dp), where dp is the number of arcs that are

emanate from the node p. Note that the networkG′(n−1,m−dp) is a (n−1)-node

connected network. The MST of the network G′(n−1,m−dp) will be comprised

of (n− 2) arcs. Let the length of the MST be denoted by LMSTG′(n− 1,m− dp).

Observation 1: The MST can be converted to a MST path by repeated appli-

cations of the index-balancing theorem discussed in Section 4.3 of this thesis.

After i iterations of the index-balancing theorem (i = 1, 2, . . . , l), let the length

of the MST be denoted by LiMSTG′(n− 1,m− dp), where:

LMSTG′(n− 1,m− dp) ≤ L1MSTG′(n− 1,m− dp) ≤ ... ≤ LiMSTG′(n− 1,m− dp) ≤

... ≤ LlMSTG′(n− 1,m− dp)
(5.4)

i.e. each iteration of the index-balancing theorem leads to an increase in the

MST length. At the lth iteration, when the index at each node is ≤ 2, the MST

becomes a path. The imbalance of index numbers in the MST with regard to

the MST path will always be an even number, i.e. the high and low index val-

ues will be equal and the total index value will be 2(n− 2).
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Observation 2: The number of arcs in a TST in G(n,m) will be n. The sum of

the two selected arcs together with the MST of G′(n− 1,m− dp) will constitute

a collection of n arcs, but a feasible TST solution will be realised only when

the length of the selected two arcs is added to the MST path that starts and

finishes at the nodes q and k. Since we are interested in a path between the

nodes q and k, which passes through all the other remaining nodes, we can set

the link (q, k) = ∞, if it exists. Simply, the link (q, k) will form a loop with the

links (p, q) and (p, k). Let the length of this MST path be LlMSTG′(n−1,m−dp).

Thus, a feasible TST will be formed by the two selected links and the MST path

giving an upper bound on the TST.

Observation 3: After establishing a feasible TST for a particular q and k node

combination, the search for a better tour commencing from any other combina-

tion of two links emanating from the node p can be fathomed at the ith iteration

(i = 0, 1, 2, . . . , l). The index-balancing theorem gives:

L(p, q) + L(p, k) + LiMSTG′(n− 1,m− dp) ≥ LTSTG(n,m) (5.5)

where LTSTG(n.m) is the current upper bound.

5.4.1 The three components of the heuristic

Component One: Determination of a MST path joining nodes q and k

For the given networkG(n,m), the node p ∈ n and two associated links {(p, q), (p, k)} ∈

m, the focus is to find the MST path joining the nodes q and k passing through

all the remaining nodes in the network G′(n − 1,m − dp). Note that the short-

est path joining the nodes q and k can be determined by any method, and that

path has an alternative interpretation of the MST path (i.e. all intermediate

nodes on the path have an index 2 and the nodes q and k have index 1). Let
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the number of nodes on the shortest path be given by K, then the number of

isolated nodes of the network G′(n− 1,m− dp) are given by (n− 3−K). Using

the greedy approach, all these isolated nodes can be connected to the shortest

path between the nodes q and k, thus forming a connected tree. Since each

node in the shortest path is balanced with regard to its index value when an

additional arc is connected to it; it will give rise to index imbalance by making

it a high degree node with index value less than 2 for all nodes other than q

and k, and for the nodes q and k, imbalance will arise if node index is less than

1. All these high index nodes will have to be treated one by one to reduce the

node index so that the node index for the nodes q and k is 1 and for all other

nodes, the index is 2. This objective can be achieved in many ways. One simple

procedure is described next:

Step 1:

In the network G′(n− 1,m− dp), set the link (q, k) =∞, if it exists .

Step 2:

Find the MST of the network G′(n−1,m−dp), which will be comprised of (n−2)

links. The sum of these edges gives the MST length, denoted by LMSTG′(n −

1,m− dp).

Step 3:

Using the index-balancing theorem, convert this spanning tree to a MST path

joining the nodes q and k, passing through all the remaining nodes in G′(n −

1,m− dp).

Step 4:

The TST length will be: LTSTG(n,m) = L(p, q)+L(p, k)+LlMSTG′(n−1,m−dp).

Since this is a feasible TST, it becomes an upper bound. Note that it may not

be an optimal TST solution.
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Component two: Identification of the node p

The basic arc have already been defined as the arc that belongs to the TST or

MST otherwise it is non-basic. We have also defined the index of a node as

the number of basic arcs emanating from that node in the given TST or MST.

The node with lowest index value in G(n,m) is selected as the node p. If lowest

index nodes are more than one, we calculate the penalty associated with all the

tied nodes and select lowest index and highest penalty node.

Since only two arcs emanating from a node will be members of the TST (or

basic) and the rest will be non-basic, the best combination from any particular

node will be to include the minimum and the second minimum arcs in the TST.

However, since the TST has to satisfy many other conditions, it would not be

feasible to include the two minimum from each node in the TST. In that case,

one has to include arcs of lengths greater than the minimum and the second

minimum. Thus, the third minimum arc length from that node will be an alter-

native that can be used for minimising an increase in the total length. When

the third best arc is used, the penalty pni
associated with the node ni is defined

as follows:

pni
= 3rd Minimum arc length− 2nd Minimum arc length. (5.6)

Thus, given the network, the penalties can be easily calculated for each node

and it will be infinity if a node has only two arcs emanating from it. In other

words, the two arcs must belong to the TST. A node associated with lowest in-

dex and high penalty is a potential candidate for the proposed TST, yet there is

no guarantee that it will lead to the optimal tour. The selected node p and the

two associated links with minimum cost are denoted by (p, q) and (p, k). The

complexity of the proposed approach will depend on the index value of the se-

lected node p. If the lowest index value in the given network is r, where r ≥ 2,
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the optimum TST will require determination of rC2 number of travelling sales-

man tours for different combinations of two arcs from the node p. Thus, in a

completely connected network G(n,m), the maximum number of problems that

will be solved is given by (n−1)C2.

Identification of the two links from the node p is done by establishing all pos-

sible combinations and arranging them in an increasing order with respect to

the cost. Combination 1 will be associated with the two minimum. If there is a

tie, we arrange them in non-decreasing order and call them 1, 2, . . . , l.

Component three: The index balancing theorem

The MST of an (n − 1) node network will have (n − 2) links, and a total of

2(n − 2) index values. In a MST, the index values can be a number such that

each node can have index between 1 ≤ ni ≤ (n − 1) and the total will be equal

to 2(n − 2). An application of the index balancing theorem can decrease the

index value at a high index value node and increase the index value at a node

of low index value. According to Theorem 4.1, adding the same constant to

all arcs emanating from the same node does not change their relative merit,

but can create alternatives for the MST. Thus, additional quantity can create

alternatives to obtain new MSTs which balance the indexing.

5.4.2 Determination of an optimal TST in the networkG(n,m)

The following steps are followed.

Step 1:

For the given network, identify the following:

1. The node p.

2. The index of the node p, let it be r, for r ≥ 2.
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3. The number of combinations, two at a time, is given by rC2 = 1, 2, . . . , l.

Let us denote as a function of length, these combinations by C1, C2, . . . , Cl

and their corresponding lengths by L(C1) ≤ L(C2) ≤ .... ≤ L(Cl).

4. Identify the nodes q and k associated with the least cost combination, C1.

5. Set the link (q, k) =∞ in the network G′(n− 1,m− dp).

6. Find the MST of the network G′(n− 1,m− dp), where the link (q, k) =∞.

7. The length of the MST is denoted by LMSTG′(n− 1).

8. The number of index-imbalances in theMSTG′(n−1) is denoted byNoMSTG′(n−

1) = N , for i = 1, 2, . . . , N .

9. Apply the index-balancing until the MST becomes the MST path between

the nodes q and k for the combination C1.

10. Find a feasible TST and denote its length by LTSTG(n) = L(p, q)+L(p, k)+

LMSTPG′(n− 1).

11. The UB = LTSTG(n).

12. Set k = 1.

Step 2:

Set k = k + 1. If k + 1 > k, the current UB is the required optimal TST.

Step 3:

For the kth combination from the node p, identify:

1. The two associated arcs with the kth combination.

2. The two nodes that will have the index 1 in this kth combination. Call

these two nodes q and k.

3. Set the link (q, k) =∞ in the network G′(n− 1,m− dp).
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4. Find the MST of the G′(n− 1,m− dp), from Step 3.3.

5. The number of index imbalances in 4 above.

6. Set i = 0

7. For the current combination, check if:

LArc1 + LArc2 + LiMSTG′(n− 1) ≤ LTSTG(n) If satisfied, go to 8. If not,

go to Step 2.

8. Set i = i+ 1

9. Apply the ith index balancing.

10. If the MST is a path satisfying the node index requirement, check Step

3.7

Step 4:

Terminate the search for this combination and go to Step 5.

Step 5:

If a feasible TST is obtained and it is less than the current upper bound, replace

the existing UB by the new value and return to step 2.

5.4.3 Results and analysis

Example 1

To find the TST for the network G(9, 15) given in Figure 5.4, we apply the

techniques highlighted in Section 5.4. For the network given in Figure 5.4, we

calculate node index of each node. These index values are given in Table 5.5.

From Table 5.5, the minimum index is on node 7, hence node 7 is selected as the

node p. Although penalties are not required, however, just for completeness,

these penalties are as given in Table 5.6. Once again, note that node 7 is

associated with a penalty of infinity. The two links will be (7, 5), (7, 8). Thus,
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Figure 5.4: Network to determine the TST

Table 5.5: Index values of nodes

Node 1 2 3 4 5 6 7 8 9
Index 3 3 5 4 3 4 2 3 3

Table 5.6: Penalties associated with each node

Node 1 2 3 4 5 6 7 8 9
Penalty 0 1 3 3 4 3 ∞ 1 1

the network G′(8, 13) is given in Figure 5.5. Note that the link (5, 8) does not

exist.
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Figure 5.5: The network G′(8, 13), that excludes node 7

The problem is to find the MST path in Figure 5.5 joining the nodes 5 and 8,

and passing through nodes 1, 2, 3, 4, 6 and 9. The MST of the network in

Figure 5.5 will be as shown in Figure 5.6. The length of this MST, denoted by

LMST = 13. Hence the LB = 13 + 1 + 2 = 16, which is not feasible. From

the MST network in Figure 5.6, it is clear that nodes 1 and 8 are high degree

nodes. The index at node 1 is 3, which should be 2 and the index at node 8 is 2,

which should be 1 as it is a terminal node. Nodes 3 and 6 are low degree nodes

as their current degree is 1.
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Figure 5.6: The MST of G′(8, 7)

Adding 1 to all arcs emanating from node 1 will change the MST selection of

arc (2,1) to arc (2,3) and balance of degree at nodes 1 and 3 will be satisfied.

Similarly, adding 1 unit to all arcs emanating from node 8 will change the MST

selection to the arc (9,6) replacing the arc (9,8). This change will fix up the

degrees at nodes 6 and 8. Thus, the final selection will be as shown by dark

solid lines in Figure 5.7.
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Figure 5.7: The modified MST path is shown in dark lines

The TST will be comprised of arcs {(7, 5), (7, 8)} giving the TST as

{(5, 2), (2, 3), (3, 1), (1, 4), (4, 9), (9, 6), (6, 8)}. The length of the TST will be 18,

which is optimal and is shown in Figure 5.8.
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Figure 5.8: The optimal TST shown in dark lines

Example 2

Let us consider again the example that was considered in Section 5.3.3 which

was also solved by Cowen (2011). The network diagram is as shown in Figure

5.9.
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Figure 5.9: The network considered by Cowen (2011)

The node index and associated penalties for the network in Figure 5.9 is given

in Table 5.7. The index is lowest at node 1, therefore it is selected as the

Table 5.7: Node index and penalties for the network in Figure 5.9

Node 1 2 3 4 5 6
Index 3 5 5 5 4 4

Penalty 2 1 2 1 1 1
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starting node p. For full investigation, the number of combinations will be

3 given by {(1, 3).(1, 4)} with distance 18; {(1, 2), (1, 3)} with distance 20; and

{(1, 2), (1, 4)} with distance 20. The network in Figure 5.10 is obtained after

removing the node 1 and all the arcs emanating from this node. Since arcs

(1,4) and (1,3) are the two minimum arcs from node 1, we first set the link (3,4)

to be infinity and find the MST path joining nodes 3 and 4 passing through all

the remaining nodes, which are nodes 2, 5 and 6.

Figure 5.10: Network G′(5, 10)
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The MST is comprised of links {(4, 5)1, (5, 6)2, (5, 2)3 and (6, 3)4}. The total dis-

tance is 38. Note that node 5 is a high index node as its index value is 3, which

should be 2. Similarly, node 2 is a low index node with index value 1, which

should be 2. If we add 1 unit to all links emanating from node 5, an alternative

will be created and we can select (2, 4), replacing the link (4, 5). Thus, the MST

will be (4, 2), (2, 5), (5, 6) and (6, 3). Total distance will be 39, which is a feasible

TST. The length of this TST will be 18 + 39 = 57, resulting in the UB = 57. For

optimality, one has to investigate the remaining two more combinations, i.e.

{(1, 2), (1, 3)} with a distance of 20 and {(1, 2), (1, 4)} with a distance of 20.

Investigate {(1, 2), (1, 3)} with a distance of 20. Set the link (2, 3) equal to infin-

ity and find the MST, which will be formed of links (2, 5), (5, 6), (6, 4) and (4, 3)

as shown in Figure 5.11.
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Figure 5.11: The MST path

The TSP will be given by L(1, 3)+L(1, 2)+MST path. This will be (1, 3), (1, 2), (2, 5), (5, 6), (6, 4),

(4, 3) with length 9 + 11 + 10 + 8 + 10 + 6 = 54. Thus, the UB is replaced by its

new value of 54. This solution is as shown in Figure 5.12 with the TSP solution

as 1− 2− 5− 6− 4− 3− 1 giving a total distance of 54.
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Figure 5.12: The TST solution

5.4.4 Concluding remarks

The index value plays a major role in the proposed approach. The proposed

approach is best when at least one node has a low index value. If the low-

est index value is m, the number of sub-problems solved will be given by mC2.

In a completely connected n node network, the worst case will have (n−1)C2

combinations. The proposed heuristic converts the problem in three parts to

establish an upper bound. Real test for the proposed approach is to develop a

software and apply it to a large number of randomly generated data and com-
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pare the proposed approach with existing approaches. The approach discussed

in this section uses link-weight modification to obtain alternative MSTs, which

eventually have a TST interpretation. The link-weight modification was used

earlier by Munapo et al. (2008) for a directed network, and later Kumar et

al. (2013) applied the link-weight modification idea for the determination of a

shortest path in a non-directed network.

5.5 Summary of the Chapter

This chapter presented an MST approach that can solve the TSP. The index

value of a node played a major role in the proposed approach. The proposed ap-

proach is best when at least one node has a low index value. If the lowest index

value is m, then the number of sub-problems solved will be given by mC2. In a

completely connected n node network, the worst case will have (n−1)C2 combi-

nations. The approach discussed in this chapter uses link-weight modification

to obtain alternative MSTs, which eventually have a TST interpretation. The

worst case situation will arise in the case of a completely connected n node net-

work when each node will have an index value of n− 1. The proposed approach

will work more efficiently when a node in the given network happen to have a

low index value.

The MST approach was extended and a heuristic to find the travelling sales-

man tour (TST) in a connected network was formulated. The approach first

identifies a node and two associated arcs that are desirable for inclusion in the

required TST. If we let this node be denoted by p and two selected arcs emanat-

ing from this node be denoted by (p, q) and (p, k), then we find a path joining

the two nodes q and k passing through all the remaining nodes of the given

network. A sum of these lengths, i.e. length of the links (p, q) and (p, k) along
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with the length of the path that joins the nodes q and k passing through all the

remaining nodes will result in a feasible TST. A simple procedure was outlined

to identify: (1) the node p, (2) the two corresponding links (p, q) and (p, k), and

(3) the path joining the nodes q and k passing through all the remaining nodes.

The approach is based on the MST; hence the complexity of the travelling sales-

man tour is reduced. The network in the present context has been assumed to

be a connected with at least two arcs emanating from each node.



Part II

Resource Allocation and

Distribution Models



Chapter 6

Transportation and Assignment

Problems

To cross the seas, to traverse the roads, and to work machinery by

galvanism, or rather electro-magnetism, will certainly, if executed,

be the most noble achievement ever performed by man.

Alfred Smee

6.1 Introduction

The assignment problem is one of the fundamental combinatorial optimisation

problems which has been modified, extended and applied many times (Pentico,

2007). Degeneracy in a linear programming (LP) model can cause difficulties,

as the value of the objective function may not improve in successive degener-

ate iterations. Sometimes a solution may be optimal but the test for optimality

fails to recognise optimality of that solution due to wrong selection of degener-

ate variables. Since the transportation and assignment models are degenerate
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LP models, where order of degeneracy varies from 1 to n (n is the number of

supply or demand points) within the context of a LP model. Special methods

were developed to deal with these special degenerate models. A feasible so-

lution in a balanced assignment model of order n is a degenerate solution by

order n− 1 in the context of a transportation model.

Degeneracy in LP problems has been extensively studied since it can cause cy-

cling in simplex-type algorithms, unless special rules are enforced (Hung et al.,

1986). Degeneracy has been considered a ’bad’ phenomenon in the folklore of

LP. Degeneracy is also found even in specialised areas of LP, such as network

flow problems, transportation problems and assignment problems. Hung et al.

(1986) pointed out that the more degenerate a transportation problem is the

fewer extreme points (vertices) it contains in its polytope. The authors further

stated that the more degenerate a transportation problem is the more feasible

bases it contains. Therefore, degeneracy may affect the efficiency of a primal

simplex algorithm. Thus far, however, there has been no systematic study of

the effects of degeneracy on a primal code. To isolate the effects of degeneracy

on an algorithm, it is necessary to generate problems with a controlled amount

of degeneracy. This however has proved difficult. Chandrasakaran et al. (1982)

proved that verifying whether a given transportation problem is degenerate is

itself an NP-complete problem. Perhaps the best known, most widely used, and

most written about method for solving the assignment problem is the Hungar-

ian method. Originally suggested by Kuhn (1955), variants of the Hungarian

method were developed by Balinski and Gomory (1964). Therefore, one objec-

tive of this thesis is to present a method for solving degenerate problems.

Over the past decade, company operations have increasingly emphasised de-

mand and revenue management, as firms seek to exploit sources of supply and

demand flexibility to increase profit margins. This has led to a number of new
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models that focus on profit maximisation by accounting for both the costs and

revenue implications associated with operations decisions. Models for profit-

maximising extension of the generalised assignment problem (GAP) in which

both the assignments of jobs to available agents and the degree of resource

consumption associated with each assignment must be determined, have been

developed. Sales and advertising planning involves similar trade-offs between

revenue generation, resource constraints and costs. In sales-force planning

contexts, for example, the sales-force serves as a set of resources, where each

salesperson has a limited amount of time and/or effort that they can allocate to

customers. It is often the case that the greater the amount of effort a salesper-

son allocates to a given customer, the greater the return from that customer

in terms of sales (Rainwater et al., 2009). The planning phase therefore in-

volves determining the assignment of sales-force to customers and the degree

of effort a salesperson should devote to each assigned customer in order to

maximise the total return from customers (or expected return, when the rela-

tionship between effort and sales is not deterministic). Sales setting may be

interpreted more generally as applying to a set of available marketing instru-

ments, where an allocation of capacity-constrained marketing instruments to

customers must be determined in order to maximise profit.

This chapter developed two models that dealt with resource allocation and dis-

tribution with the aim of minimising costs. The models developed can also be

used to maximise revenue by considering optimal transportation combinations

and optimal assignments. The major problem that traditional transportation

and assignment problems faced is the problem of degeneracy. The two models

that are formulated in this chapter have tried to eliminate this problem of de-

generacy.



Resource allocation using transportation and assignment models 141

6.2 Literature Review

Shmoys and Tardos (1993) came up with an algorithm for the generalised as-

signment problem that extended the assignment problem to a variant problem

that solved a range of possible processing times for each machine job pair. They

concluded that the cost linearly increased as the processing time decreased.

The main result from their study presented a polynomial-time algorithm that,

given values of C and T , the algorithm finds a schedule of cost at most C and

make-span of at most 2T , if a schedule of cost C and make-span T exist.

Caggiani et al. (2012) proposed a meta-heuristic dynamic traffic assignment

algorithm that was used in conjunction with a bee colony optimisation (BCO)

that is capable of solving high-level combinatorial problems with fast conver-

gence performances. Their model allowed overcoming classical demand-flow

relationships drawbacks. They concluded that reliability and effectiveness of

traffic assignment models depend on other important elements such as origin-

destination O −D travel demand, which is the core input of traffic assignment

models. Other researchers like Cascetta and Postorino (2001) and Yang et al.

(2001), pointed out that the most general form of solving the estimation of

O −D matrix using traffic counts, is to formulate the problem as an optimisa-

tion problem.

Munapo et al. (2010) revisited the GAP and came up with an ascending hyper-

plane approach through network flows. The GAP model was first relaxed to

form a transportation model which is easier to handle than the original model.

The relaxed model was then formulated as a minimum-cost network flow prob-

lem (MCNFP) and an efficient network simplex method was applied to solve

the relaxed problem. The optimal solution of the relaxed model gave a lower

bound (LB) to the given GAP. The LB becomes an optimal solution to the GAP,

if all resource constraints are satisfied. However, if any resource constraint is
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not satisfied, that violation is used to determine the new LB which is greater

than the previous one, and hence the ascending hyper-plane approach. These

violated resource constraints, which are in the given GAP model, are used to

modify the MCNFP diagram before resolving the flow problem. This proce-

dure is repeated until all resource constraints are satisfied in the original GAP

model. The proposed method is efficient for the GAP.

Kumar and Murugesan (2012) presented a modified revised simplex method

for minimising a fuzzy transportation problem in which the supplies and de-

mands are triangular fuzzy numbers. A fuzzy transportation problem (FTP) is

a transportation problem in which the transportation cost, supply and demand

quantities are fuzzy quantities. The objective of the FTP is to determine the

shipping schedule that minimises the total fuzzy transportation cost while sat-

isfying fuzzy supply and demand limits. They obtained an optimal solution of

FTP in which the number of constraints equalled the number of occupied cells.

Alaei et al. (2012) presented a competitive algorithm for the online stochastic

GAP under the assumption that no item can take up more than a fraction of

the capacity of any bin. Items arrived online, and each item had a value and a

size. Upon arrival, an item can be placed in a bin or discarded. The objective

was to maximise the total value of the placement. Both the value and size of

an item may depend on the bin in which the item is placed. The size of an item

was revealed only after it had been placed in a bin. Distribution information

about the value and size of each item was available in advance. However items

arrived in adversarial order (non-adaptive adversary). The authors presented

an application of their results to subscription-based advertising where each

advertiser, if served, required a given minimum number of impressions. The

proposed algorithm initially computed an optimal solution for a linear program

corresponding to a fractional expected instance. In the online stage, the algo-
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rithm tentatively assigned each item upon arrival to one of the bins at random

with probabilities proportional to the fractional LP solution. This ensured that

the expected total size of the items that were assigned tentatively to each bin

does not exceed its capacity. However, once a bin becomes full, any item which

gets tentatively assigned to that bin will have to be discarded.

According to Rainwater et al. (2009), the GAP seeks an allocation of jobs to

capacitated resources at minimum total assignment cost, assuming a job can-

not be split among multiple resources. They considered a generalisation of this

broadly applicable problem in which each job must not only be assigned to a

resource, but its resource consumption must also be determined within job-

specific limits. In their profit-maximising version of the GAP, a higher degree

of resource consumption increased the revenue associated with a job. Their

model permits a job’s revenue per unit resource consumption to decrease as

a function of total resource consumption, which allowed modelling quantity

discounts. The objective of their study was to determine job assignments and

resource consumption levels that maximise total profit. The authors then de-

veloped a class of heuristic solution methods, and demonstrated the asymptotic

optimality of this class of heuristics in a probabilistic sense. Rainwater et al.

(2009) computational study demonstrated that their heuristic performed very

well, particularly for large ratios of the number of jobs to the number of agents.

When additional improvement strategies that they proposed in their research

were considered, the heuristic was successful on instances with smaller ratios

as well. They observed that the time required to obtain solutions of comparable

quality was considerably less for their heuristic than for the commercial solver

CPLEX. The fact that their heuristic obtained quality solutions so quickly was

encouraging for further research directions. Specifically, they believe that the

heuristic may be very valuable when solving more general related optimisation

problems for which the GAP arises as a sub-problem that needs to be solved re-
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peatedly.

Motivated by practical applications, various generalisations of GAP have been

proposed. The multi-resource generalised assignment problem (MRGAP), in

which more than one resource constraint were considered for each agent, is a

natural generalisation of the GAP. The MRGAP has many practical applica-

tions, for example, in distributed computer systems and in the trucking indus-

try (Gavish and Pirkul, 1986).

Adlakha and Arsham (1998) proposed a single unified algorithm that solves

both the transportation problem and the assignment problem. The algorithm

provides useful information to perform cost-sensitivity analysis to a decision

maker. Similar to the simplex method and its variants, their algorithm was

pivotal. The algorithm initiates the solution with a warm-start and does not

require any slack/surplus variables. Unlike the Hungarian method, the algo-

rithm can solve higher than a 2-dimensional assignment problem. Their pro-

posed solution algorithm also facilitated incorporation of side constraints which

are frequently encountered in real life. Their algorithm revealed the full power

of LP’s sensitivity analysis extended to handle an optimal degenerate solution.

In contrast to other methods, the method proposed by Adlakha and Arsham

(1998) provided ranges for which the current solution remains optimal, for

simultaneous dependent or independent changes of the cost coefficients from

their normal values. The computational results from their algorithm demon-

strated that the algorithm is more efficient than the simplex method in terms

of the number of iterations and size of the tableaux.

In this chapter we came up with a unified approach to solve transportation

and assignment problems. A mathematical support for the development of the

unified approach is outlined step by step. A transportation branch and bound
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algorithm for solving the generalised assignment problem is also outlined in

this chapter. Numerical examples have also been presented that explain and

demonstrate the applicability of the two techniques that are developed in this

chapter.

6.3 A Unified Approach to Solve Transportation

and Assignment Problems

In this section a unified approach to solve both the transportation and assign-

ment models, which is independent of degeneracy, is presented. The proposed

unified approach is similar to the Hungarian method of assignment, where

solutions are not subject to any test of optimality, but it has the distinct advan-

tage of dealing with degeneracy. The new method is a unified pivotal solution

algorithm designed for both transportation and assignment problems. The al-

gorithm is free of pivotal degeneracy which may cause cycling and does not

require any extra variables such as slack, surplus or artificial variables that

are used in dual and primal simplex methods. The algorithm allows higher

order assignment problems and side constraints. The proposed algorithm has

the further advantages of being computationally practical, being easy to un-

derstand and providing useful information for decision makers.

6.3.1 Mathematical support for development of the Uni-

fied Approach

A mathematical model for a balanced transportation is given by:
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Minimise Z0 =
m∑
i=1

n∑
j=1

cijxij,

subject to,

n∑
j=1

Xij = ai for i = 1, 2, ...,m,

m∑
i=1

Xij = bi for j = 1, 2, ..., n,

n∑
i=1

ai =
m∑
j=1

bj = K,

xij ≥ 0 ∀ i, j.



(6.1)

Note that K is a known constant integer value. A feasible solution to an as-

signment model has many degenerate basic variables in the context of a LP and

transportation model. The m sources and n destinations assignment model is

degenerate by order n in an LP context and by order n − 1 in the context of a

transportation model. This means that there are n or (n− 1) degenerate basic

variables in the context of the LP and transportation model, respectively. These

degenerate basic variables do cause wasted iterations when applying the sim-

plex or the transportation iterations. In this section a special algorithm has

been proposed that tackles these problems and converge to a solution faster

and more accurately. Without any loss of generality, it has been assumed that

the transportation model satisfies equation (6.2)

q∑
i=1

ai =

q∑
i=1

p∑
j=1

Xij =

p∑
i=1

bj (6.2)
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A balanced transportation problem can be viewed as a balanced assignment

problem by duplicating the row i for ai number of rows, where i = 1, 2, 3, ..., q

and after that duplicating also the column j for bj number of columns, j =

1, 2, 3, ..., p. Thus, the problem will convert to a balanced assignment problem

of dimension K. Let us call this equivalent assignment matrix as an enlarged

matrix. With this background we now discuss a few concepts in the context of

a transportation cost matrix.

Concept of a line in a transportation cost matrix

In a transportation cost matrix, a horizontal line in row i represents ai number

of lines and a vertical line in column j represents bj number of lines. A zero

in cell (i, j) represents a sub-matrix of dimension (ai, bj) with ai x bj number

of zero elements. These zero elements can be covered either by ai number of

horizontal lines or by bj number of vertical lines.

Counting zeros corresponding to more than one zero element in row i

Suppose row i has p number of zero elements in columns c1, c2, ..., cp. Then

the number of zeros in an equivalent enlarged assignment matrix is equal to∑p
i=1 bi. Similarly, if column j has q number of zero elements in rows r1, r2, ..., rq,

then the number of zero elements in this column is equivalent to
∑q

i=1 ai.

Covering zero elements with minimum number of lines

For each row i = 1, 2, ..., q and for each column j = 1, 2, ..., p, let the number of ze-

ros calculated as discussed above be represented by: zr1, zr2, ..., zrq and zc1, zc2, ..., zcp
respectively. Thus zri and zcj are integer values greater or equal to zero for all

i and j. The procedure of covering all zero elements in the transportation cost

matrix is as follows:

Find maximum {zr1, zr2, ..., zrq and zc1, zc2, ..., zcp}.

(i) If the maximum corresponds to a row, then draw through the zero elements,
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a horizontal line.

(ii) If the maximum corresponds to a column, then draw a vertical line through

the zero elements.

(iii) If there is a tie, resolve it arbitrarily. Delete the row or the column corre-

sponding to the vertical or horizontal line and recalculate the number of zeros

in the remaining rows and columns, and repeat the above steps until all zero

elements are covered. Here we are not making any allocation, hence the values

of ai and bj remain the same in un-deleted rows and columns for counting the

number of zero elements in each row and column.

6.3.2 Steps of the algorithm

The unified method is similar to the Hungarian method for assignment prob-

lem, the notable difference being its ability to handle the problem of degener-

acy. Without any loss of generality, all transportation and assignment models

can be assumed balanced, and all transportation models can, in principle, be

seen as an assignment model. The algorithm consists of four steps, which are

as follows:

Step 1

Reduce the given transportation matrix in such a way that each row and each

column has at least one zero element. This is achieved in a fashion to the usual

Hungarian method of assignment.

Step 2

Cover the zero elements with a minimum number of lines. If the number of

lines are equal to K, then an optimal solution is available. Go to Step 4. If the

minimum number of lines is less than K, then proceed to Step 3.

Step 3

In the reduced cost matrix, find the smallest non-zero element that is uncov-

ered by a line and represent this value by h > 0. Add this value to every
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intersection of lines, and subtract h from all elements that are not covered by

a line. Other elements that are covered by a line remain unchanged. Return to

Step 2.

Step 4

Since the total number of lines is equal to K, it is possible to establish a fea-

sible allocation restricted to zero elements only. By arguments similar to the

Hungarian method, that solution is optimal.

Justification

In this method, we are viewing the transportation matrix as a version of a

large assignment matrix where several rows and columns are identical. Since

the relative cost matrix of assignment does not change by performing Step 3,

we are generating an equivalent cost matrix with more number of independent

zeros. Hence convergence of this process is guaranteed in a finite number of

steps. Solution is optimal because allocation is restricted to zero elements only.

This unified approach, which is a modification of the Hungarian method, is

applicable to both the assignment and transportation problems. Furthermore,

the process does not depend on the number of allocated cells which in the trans-

portation method must be equal to (m + n− 1) in independent cells. Thus, the

proposed unified method is efficient to solve all transportation and assignment

models.

6.3.3 Analysis and results

Consider the transportation problem in Table 6.1 whose objective is to min-

imise costs. The objective is to find the minimum cost solution for the problem.

Note that the problem, if solved by the transportation method, results in de-

generacy. Thus, the test of optimality will require one more independent cell

to be basic with ′0′ allocation. However, we illustrate that the proposed unified
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approach has no such requirement.

Table 6.1 illustrates the transportation problem.

Table 6.1: Illustrative Transportation Problem

Source Costs Total Supply
1 2 3

A 3 6 7 60
B 8 5 7 30
C 4 9 11 30

Total Demand 35 55 30 120

Applying the row reduction, we get the 3× 3 matrix.


0 3 4

3 0 2

0 5 7


After column reduction, we get the matrix.


0 3 2

3 0 0

0 5 5


Table 6.2 gives the results of using the concept of covering the zero elements.
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Table 6.2: Determining number of zeros

Row or Column
where the zero ap-
pears

Row or Col-
umn where
the zeros are
found

Number of zeros
in equivalent en-
larged matrix

R1 C1 35
R2 C2, C3 55 + 30 = 85
R3 C1 35
C1 R1, R2 60 + 30 = 90
C2 R2 30
C3 R2 30

To cover all the zeros in Table 6.2, the maximum number of lines are found in

C1 (90) and R2 (85). We then draw draw a horizontal line in row 2 and a vertical

line in column 1. The total number of lines used is 35 + 30 = 65 < 120, so we go

to Step 3. The minimum un-lined element is 2. Application of Step 3 results in

the following 3× 3 matrix: 
0 1 0

5 0 0

0 3 3


Table 6.3 gives the results of using the concept of covering the zero elements.

Table 6.3: Results of covering zeros

Row or Column
where the zero ap-
pears

Row or Col-
umn where
the zeros are
found

Number of zeros
in equivalent en-
larged matrix

R1 C1, C3 35 + 30 = 65
R2 C2, C3 55 + 30 = 85
R3 C1 35
C1 R1, R3 60 + 30 = 90
C2 R2 30
C3 R1, R2 60 + 30 = 90
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To cover all the zeros using Table 6.3, the maximum number of lines are found

in C1, C3 and R2. We then draw a horizontal line in row 2 and vertical lines in

column 1 and column 3. The total number of lines used is 35+30+30 = 95 < 120,

and we go to Step 3. The minimum unlined element is 1. Application of Step 3

results in the following matrix:


0 0 0

6 0 0

0 2 3


Table 6.4 gives the results of the concept of covering the zero element.

Table 6.4: Final table for covering zeros

Row or Column
where the zero ap-
pears

Row or Col-
umn where
the zeros are
found

Number of zeros
in equivalent en-
larged matrix

R1 C1, C2, C3 35 + 55 + 30 = 120
R2 C2 55
R3 C1 35
C1 R1, R3 60 + 30 = 90
C2 R1, R2 60 + 30 = 90
C3 R1 60
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To cover all the zeros using Table 6.4, the maximum number of lines are found

in R1, C1 and C2. We then draw a horizontal line in row 1, vertical lines in

column 1 and column 2. The total number of lines used is 120 + 90 + 90 > K,

hence an optimal solution can now be found. We therefore, stop and determine

the feasible solution confined to zero elements, which is as displayed in Table

6.5. The total transportation cost is 645.

Table 6.5: Results of the final transportation problem

Source Costs in $ Total Supply
1 2 3

A 5 25 30 60
B 30 30
C 30 30

Total Demand 35 55 30 120

6.3.4 Concluding remarks

The proposed approach was able to deal with a transportation model in which

the first p1 rows (where p1 ≤ p) have equal supply r, and similarly q1 (where

q1 ≤ q) have the same equal demand r. It could also be seen that the pro-

posed approach was able to deal with the modification that was made to the

transportation problem, but conventional transportation approaches will face

difficulties due to degeneracy. It is desirable to develop a software for the pro-

posed approach and test the proposed approach on larger problems to gauge its

real computational efficiency.
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6.4 A Transportation Branch and Bound Algo-

rithm for Solving the Generalised Assignment

Problem

6.4.1 Introduction

This section presents a transportation branch and bound algorithm for solv-

ing the GAP. This is a branch and bound technique in which the sub-problems

are solved by the available efficient transportation techniques rather than the

usual simplex-based approaches. The GAP is the problem of assigning n jobs

to m agents such that the total cost is minimal and that each job is assigned

to exactly one agent and the agent’s capacity is also satisfied. GAP is NP-hard

(Nauss, 2004) and has had many approaches proposed in the past 60 years.

The GAP model is the general case of the assignment problem in which both

jobs and agents have an equal size and the cost associated with each job-agent

combination may have different values. GAP has many applications in real life.

These include vehicle routing (Toth and Vigo, 2001), resource allocation (Win-

ston and Venkataramanan, 2003), supply chain (Yagiura, 2004, 2006), machine

scheduling and facility location (Munapo et al., 2010) among others.
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6.4.2 Generalised assignment problem

A mathematical formulation of the GAP may be represented as shown in equa-

tion (6.3).

Minimise ZGAP =
m∑
i=1

n∑
j=1

cijxij,

subject to,

n∑
j=1

rijxij ≤ bi for i = 1, 2, ...,m,

m∑
i=1

xij = 1 for j = 1, 2, ..., n,

xij ≥ 0 ∀ i, j.



(6.3)

where i = 1, 2, ...m is a set of agents, j = 1, 2, ..., n is a set of jobs, cij is the cost of

assigning agent i to job j, rij is the resource needed by agent i to do job j, and

bi is the resource available to agent i.

6.4.3 Relaxing the GAP

The GAP can be relaxed to become an ordinary transportation problem. The

GAP constraints representing resource restrictions are given in equation (6.4).

n∑
j=1

rijxij ≤ bi ∀ i. (6.4)

The GAP model can be relaxed by replacing these constraints with other forms

of inequalities given in equation (6.5).

n∑
j=1

xij ≤ γi ∀ i. (6.5)



Resource allocation using transportation and assignment models 156

where γi is obtained by solving the knapsack problem in equation (6.7). Thus

the model becomes a transportation model as presented in equation (6.6).

Minimise ZGAP =
m∑
i=1

n∑
j=1

cijxij,

subject to,

n∑
j=1

xij ≤ γi for i = 1, 2, ...,m,

m∑
i=1

xij = 1 for j = 1, 2, ..., n,

xij ≥ 0 ∀ i, j.



(6.6)

The values of γi are obtained by solving the following knapsack problem:

γi = Maximise
n∑
j=1

xij,

subject to,

n∑
j=1

rijxij ≤ bi

xij = 0 or1



(6.7)

Solving the knapsack problem

The optimal solution to the knapsack solution can be obtained by arranging

the resource coefficients in row i in ascending order, i.e., r′i1, r
′
i2, ..., r

′
in where

r
′
i1 ≤ r

′
i2 ≤ ... ≤ riγi ... ≤ r

′
in are the arranged coefficients. The knapsack objec-
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tive value γi, is the largest integral value such that bi ≥ r
′
i1+r

′
i2+ ...+r

′
iγi

, where

1 ≤ γi ≤ n. The integral value γi is now the supply in the transportation model.

6.4.4 The transportation model

The optimal solution to the transportation model will act as a lower bound

to the GAP and is usually infeasible to the original GAP model. The relaxed

problem is shown in Table 6.6.

Table 6.6: Transportation problem

Supply
... ... ... γ1

... ... γ2
... ... ... ... ...
... ... ... ... γm

Demand 1 1 ... 1

This transportation problem is not a balanced model. In most cases
∑m

i=1 γi 6= n.

If
∑m

i=1 γi < n, then equation (6.3) becomes infeasible, that is, at least one of the

constraints
∑m

i=1 = 1 will be violated. If
∑m

i=1 γi = n, then the relaxed model

can be solved directly without balancing. The solution to the relaxation model

is optimal if it satisfies equation (6.3).

If
∑m

i=1 γi > n, then the relaxed model requires balancing before applying trans-

portation techniques. To balance the transportation problem, a dummy column

is added when we have inequality of the form (>). When the transportation is

balanced, then the optimal solution can be found by using network codes for

transportation models. These are efficient and recommended, and the sub-

problems are not solved from scratch. The current solutions are used as start-

ing solutions in the next iterations. Lagrangian or linear programming (LP)
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relaxations are not readily useful to this procedure. With this approach, it is

only possible to branch if the relaxation gives an integer optimal solution, and

this is not possible with LP or Lagrangian relaxations.

Branch and bound approach

A branch and bound method can be used to ascend from the lower bound to

an optimal solution of the GAP. The lower bound obtained by solving the re-

laxed model is usually infeasible to equation (6.3). A row i that is not feasible

can be selected, a clique inequality generated and used to create branches.

Suppose from row i, the following variables are basic and they make up an in-

feasible solution: xif1 , xif2 , ..., xifl, where xifj is a basic variable. We also have

rif1 + rif2 + ...+ rifl > bi, where rifj is its corresponding resource coefficient with

j = 1, 2, ..., l. From the last inequality, we deduce that some of these basic vari-

ables are not supposed to be basic. One or more of these basic variables may

not be the required basic feasible solutions and the exact number is only known

for the specific given problem. Branching does not necessarily mean that the

transportation sub-problem has to be resolved from scratch. The sub-problem

is solved by improving the current solution. The previous solution is used as a

starting solution in the next iteration.

The order of branching is very important as it can affect the size of the search

tree. Strategies are required to determine a branching order that results in

the smallest search tree. In this thesis it is recommended that branching starts

with those rows that have the least number of choices. In other words, the most

restricted rows are used in creating branches (Kumar et al., 2007). Thus the

branching starts with the most restricted row, which in this thesis is defined

as the row where the least number of branches can be generated.
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6.4.5 Transportation branch and bound algorithm for GAP

The transportation branch and bound algorithm for the GAP consists of the

following steps;

Step 1

Relax GAP to obtain a lower bound.

Step 2

Select the most restricted row to come up with branching variables.

Step 3

Branch using the selected variables. Return to Step 2 until the best transporta-

tion solution is feasible.

Best solution: A solution is said to be the best solution if it is the smallest

optimal solution available.

Optimality

Suppose that the terminal nodes are given as ZT
1 , Z

T
2 , ..., Z

T
n . The upper bound

is selected from the node giving the best solution so far. Then

ZGAP = min[ZT
1 , Z

T
2 , ..., Z

T
n ] (6.8)

Thus, ZGAP is optimal. In the branching tree, a node is said to be a terminal

node if (i) an optimal solution to the transportation model is feasible to the

original GAP model, (ii) transportation model does not have a feasible optimal

solution or (iii) an optimal solution to the transportation model is bigger than

a given upper bound.

NB: Generation of clique inequalities and using them as cuts is not a new idea.

Clique constraints used in this research are in fact a simple type of knapsack

constraints generated from single constraints of the original problem. Knap-

sack constraint generators are very common in modern MIP solvers. What is

new is the fashion of using these inequalities to form branches and solving the
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sub-problems generated as transportation problems. This is effective for GAP

models. Branching is done on a node with the smallest objective value.

6.4.6 Analysis and results

Table 6.7 shows a transportation model that was used to illustrate the GAP

model.

Table 6.7: Transportation model for numerical illustration

Costs Resources
(28, 24) (76, 38) (M,L) (52, 22) (28, 36) 56
(98, 12) (M,L) (40, 22) (92, 30) (98, 36) 56
(M,L) (90, 20) (32, 28) (20, 44) (M,L) 56

Jobs 1 1 1 1 1

The letter M is a large cost to discourage assignment and L shows that an as-

signment is not possible in that cell.

The transportation model is given in equation (6.9).

Minimise ZGAP = 28x11 + 76x12 + 52x14 + 28x15 + ...+ 32x33 + 20x34.

subject to,

24x11 + 3812 + 22x14 + 36x15 ≤ 56

12x21 + 22x23 + 30x24 + 36x25 ≤ 56

20x32 + 28x33 + 44x34 ≤ 56

x11 + x21 = 1

x12 + x32 = 1

x23 + x33 = 1

x14 + x24 + x34 = 1

x15 + x25 = 1

xij = 0 or 1, for all i, j.



(6.9)
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Arranging the resource coefficients of constraints (first three constraints of

equation (6.9)) in ascending order, we have {22, 24, 36, 38} , {12, 22, 30, 36} and

{20, 28, 44}. The γi values are easily calculated from equation (6.9) and the

arranged resource coefficients generate equation (6.10).

22 + 24 = 46 ≤ 56 ⇒ γ1 = 2

12 + 22 = 34 ≤ 56 ⇒ γ2 = 2

20 + 28 = 48 ≤ 56 ⇒ γ3 = 2

 (6.10)

The transportation model becomes as shown in Table 6.8.

Table 6.8: Transportation model for numerical illustration

Supply
28 76 L 52 28 2
98 L 40 92 98 2
L 90 32 20 L 2

Demand 1 1 1 1 1

A dummy column is introduced to balance the transportation problem as shown

in Table 6.9.

Table 6.9: Balancing the transportation model (by adding a dummy column)

Supply
28 76 L 52 28 0 2
98 L 40 92 98 0 2
L 90 32 20 L 0 2

Demand 1 1 1 1 1 1

Any efficient transportation technique can be used to solve the model, and an

optimal solution to the relaxed model is obtained as presented in Table 6.10.
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The solution in Table 6.10 is a second order degenerate solution. The optimal-

ity solution can be easily verified by using cells (1, 6) and (3, 3) as basic with

zero allocation. Using the resource constraints, one can easily verify that row

one is infeasible, since 24+36 = 60 > 56, that is to say x11+x15 ≤ 1. This implies

that, either x11 = 0 or x15 = 0.

Table 6.10: Optimal solution to the relaxed model (lower bound)

Supply
28[1] 76 L 52 28[1] 0 2
98 L 40[1] 92 98 0[1] 2
L 90[1] 32 20[1] L 0 2

Demand 1 1 1 1 1 1

From Table 6.10, Zrelaxed = 206. Similarly the third row is also infeasible be-

cause 90 + 20 = 110 > 56, that is x32 + x34 ≤ 1. This implies that either x32 = 0

or x34 = 0. We select the branches from row 3 as it is more restricted compared

to row 1. This results in Figure 6.1.
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Figure 6.1: Initial branching with respect to cells (3,2) and (3,4)

Now let us consider the case when x32 = 0. The transportation problem shown

in Table 6.10 is modified by replacing the assignment cost of 90 in the cell

(3, 2) by L. This is given in Table 6.11. Once again, for the above solution, the

resource constraint 3 is not satisfied because 28 + 44 = 72 > 56. Hence, either

x33 = 0 or x34 = 0. This will lead to nodes 4 and 5, respectively.

Table 6.11: Node corresponding to the restriction of no assignment in cell (3,2)

Supply
28[1] 76[1] L 52 28 0 2
98 L 40 92 98[1] 0[1] 2
L L 32[1] 20[1] L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 254.

Similarly, at node 3 we deal with the restriction that allocation in the cell (3,4)

is restricted to zero, in other words, we modify Table 6.10 and replace the cost

element in the cell (3,4) by L. This is shown in Tables 6.12, 6.13, 6.14, 6.15,
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6.16 and 6.17.

Table 6.12: Node corresponding to the restriction that allocation in cell (3, 4) is
zero

Supply
28[1] 76 L 52 28[1] 0 2
98 L 40[1] 92 98 0[1] 2
L 90[1] 32 L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 270.

Table 6.13: Node 4

Supply
28[1] 76[1] L 52 28 0 2
98 L 40[1] 92 98[1] 0 2
L L L 20[1] L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 262

Table 6.14: Node 5

Supply
28[1] 76[1] L 52 28 0 2
98 L 40 92[1] 98[1] 0 2
L L 32[1] L L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 326
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Table 6.15: Node 6

Supply
28[1] 76 L 52[1] L 0 2
98 L 40 92 98[1] 0[1] 2
L 90[1] 32[1] L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 300

Table 6.16: Node 7

Supply
L 76 L 52[1] 28[1] 0 2

98[1] L 40 92 98 0[1] 2
L 90[1] 32 L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 300

Table 6.17: Node 9

Supply
28 76[1] L 52 28[1] 0 2

98[1] L 40[1] 92 L 0 2
L L L 20[1] L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 262

From the solution obtained in Table 6.12, it is noted that the resource con-

straint 1 is not satisfied, since for the allocation in cells (1, 1) and (1, 5) resource

requirement is 24 + 36 = 60 > 56. Hence branching from node 3, we will get

either x11 = 0 or x15 = 0. These restrictions lead to nodes 10 and 11 in Figure

6.2. We have given the transportation cost tables under various restrictions as
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shown in the tree diagram in Figure 6.2. These results have been summarised

in the tree diagram of Figure 6.2, where the following interpretations have

been used:

(i) A terminal node is said to be feasible if the optimal solution to the trans-

portation sub-problem is feasible to the original GAP problem.

(ii) A terminal node is said to be infeasible if the optimal solution to the trans-

portation is infeasible to the GAP model.

(iii) DNE means the transportation sub-problem does not have a feasible opti-

mal solution.

(iv) The numbers in the circles denote the order of solution.

Figure 6.2: Full search tree for the given numerical illustration
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From the search tree given in Figure 6.2 the optimal solution to the GAP prob-

lem is given as shown in equation (6.11) and (6.12).

ZGAP = min[ZT
1 , Z

T
2 , Z

T
3 , Z

T
4 , Z

T
5 , Z

T
6 ] = 300 (6.11)

The minimum value of 300 emanates from ZT
3 which corresponds to Table 6.15.

The corresponding decision variables from this table are as follows;

x11 = x14 = x25 = x32 = x33 = 1

and,

x12 = x15 = x21 = x23 = x24 = x34 = 0

 (6.12)

Node 1 is an optimal solution to the relaxed model, and is given in Table 6.10.

Thus, a total of 10 nodes (starting from node 2) are required to verify the opti-

mal solution value.

6.4.7 Concluding remarks

The proposed approach has the advantage that the individual, γi values can

be found independently allowing the much needed use of parallel processors.

The sub-problems resulting from the search trees are transportation models

and can be solved efficiently by the available network approaches. The sub-

problems that result from the usual branch and bound related approaches are

NP-hard integer models which are very difficult to solve. The only nuisance to

this approach is that like the simplex-based approaches, it is also not spared by

degeneracy. It may be desirable to use the approach discussed by the authors in

an earlier publication (Munapo et al., 2012). In the search tree diagram given

in Figure 6.2, it may be noted that there is no change in the objective value

from node 4 to node 7. The degeneracy drawback can be alleviated by noting

all alternate optimal solutions at every node and then branching in such a way
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that the objective value does not remain static. Attempts will be made in future

to use cuts in branching, compare its efficiency with the available approaches

and explore for better strategies that can significantly improve the selection of

branching variables.

6.5 Summary of the Chapter

This chapter studied at two new approaches that can be used to solve the trans-

portation and assignment problems. The major advantage of these two tech-

niques is that they take the problem of degeneracy into consideration. The

algorithm for the unified approach to solve the transportation and assignment

problems, fully exploits the sub-problem’s structure and has very favourable

re-optimisation capabilities. Both these properties are necessary for achieving

optimality. This unified approach, which is a modification of the Hungarian

method is applicable to both the assignment and transportation problems. Fur-

thermore, the process does not depend on the number of allocated cells which

in transportation method must be equal to (m + n − 1) in independent cells.

Thus, the proposed unified method is efficient to solve all transportation and

assignment models. This approach is free of pivotal degeneracy which may

cause cycling, and does not require any extra variables such as slack, surplus

or artificial variables, that are used in dual and primal simplex methods.

The generalised assignment problem (GAP), deals with assigning a set of n

items to a set of m knapsacks, where each item must be assigned to exactly one

knapsack and there are constraints on the availability of resources for item

assignment. The GAP is a classical combinatorial optimisation problem that

models a variety of real world applications including flexible manufacturing

systems, facility location and vehicle routing problems. The GAP is known to
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be NP-hard, since the partition problem of a given set of positive integers into

two equal sized subsets can be reduced to GAP with m=2.

In the method proposed in this thesis, the GAP was relaxed to become an or-

dinary transportation problem by replacing the ordinary constraints with in-

equalities obtained by solving the knapsack problem. In the new method the

current solutions to the transportation problem are used as starting solutions

in the next iterations. With this approach, it is only possible to branch if the

relaxation gives an integer optimal solution, and this is not possible with LP or

Lagrangian relaxations. The order of branching is very important as it can af-

fect the size of the search tree. In this method, we recommended that branching

starts with those rows that have the least number of choices, which we defined

as the row where the least number of branches can be generated from. What is

new is the fashion of using these inequalities to form branches, and solving the

sub-problems generated as transportation problems. This is effective for GAP

models.



Chapter 7

Linear Programming based

Model for solving some NP-hard

Problems

Good judgement comes from experience; experience comes from bad

judgement

F. Brooks

7.1 Introduction

The chapter presents two linear programming (LP) based techniques for solv-

ing some NP-hard problems. Section 7.2 reviews some literature that is related

to the work that is covered in this chapter, that is, large-scale LP problems and

the mixed integer problems. Section 7.3 considered a large-scale LP model with

non-negative coefficients and develops a new strategy that is an iterative hy-

brid process. The approach uses the conventional simplex iterations for search
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along the extreme points of the convex region. The procedure generates an in-

terior point using these extreme points and moves from the interior point in

the direction of the normal to the given objective function hyper-plane. The ap-

proach is a modification of the Munapo-Kumar strategy (Munapo and Kumar,

2013) where they determined two unknown distances to be travelled from a

current position on the boundary of a constraint in two known directions in the

convex polyhedron space of the given LP model.

Section 7.4 presents a method for the general large-scale LP model which has

extended the method discussed in Section 7.3 by considering a general large-

scale LP without restrictions on non-negative coefficients.

In Section 7.5 we have developed a heuristic for solving a mixed integer pro-

gramming (MIP) problem using the characteristic equation (CE) approach.

While most LP problems can be solved in polynomial time, pure integer pro-

gramming (PIP) and MIP problems are NP-hard, hence there are no known

polynomial time algorithms to solve them (Bertacco et al., 2007). The method

discussed in this section makes use of the CE which is obtained from the final

tableaux of the relaxation problem. The CE proved to be a very useful and effi-

cient method for solving MIP problems. The major advantage of using the CE

is that convergence to the optimal solution is guaranteed, and the CE can be

used to obtain ordered optimal solutions, even for NP-hard problems.

7.2 Literature Review

Bixby et al. (1991) formulated a procedure that combined the simplex method,

an interior point method and a hybrid interior point/simplex approach. The

procedure solved a 12 753 313-variable LP relaxation of a set partitioning

problem arising from an airline crew scheduling application. Their method
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discussed the characteristics of the set partitioning problems, the sifting pro-

cedure, a new pricing rule and the experience with the sifting procedure using

the simplex method and an interior point method. Their method illustrated the

power of an interior point/simplex method combination for solving very large-

scale linear programs.

Munapo and Kumar (2013) developed a method for solving large-scale LP prob-

lems with non-negative coefficients. Their method was an iterative one, in

which the search-point move from one boundary of the convex region to an

improved point on the boundary of the LP convex region. Their method was

suited for large-scale LP problems. The advantage of the procedure was that

the n-variable problem was reduced to a two-variable LP problem, which was

easier to solve.

According to Lesaja (2009), the introduction and development of interior-point

methods have had a profound impact on optimisation theory as well as practice,

influencing the field of operations research and related areas. Development of

these methods has quickly led to the design of new and efficient optimisation

codes particularly for LP problems. The author further highlighted that there

has been an increasing need to introduce theory and methods of this new area

in optimisation into the appropriate undergraduate and first year graduate

courses such as introductory operations research and/or linear programming

courses, industrial engineering courses and mathematical modelling courses.

Zhang (1996) described an implementation of a primal-dual infeasible-interior-

point algorithm for large-scale LP under the MATLAB environment, and came

up with a software called Linear-programming Interior-Point SOLvers (LIP-

SOL). Under the MATLAB environment, LIPSOL inherited a high degree of

simplicity and versatility in comparison to its counterparts in Fortran or C
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language. Their extensive computational results demonstrated that LIPSOL

also attains an impressive performance comparable with that of efficient For-

tran or C codes in solving large-scale problems. The author further discussed

in detail a technique for overcoming numerical instability in Cholesky factori-

sation at the end-stage of iterations in interior-point algorithms.

Sherali and Adams (1994) came up with a tight equivalent representation for

mixed integer zero-one programming problems. For the linear case, they pro-

posed a technique which first converts the problem into a non-linear, polyno-

mial mixed integer zero-one problem by multiplying the constraints with some

suitable d-degree polynomial factors involving the n binary variables, for any

given d ∈ (0, . . . , n), and subsequently linearises the resulting problem through

appropriate variable transformations. As d varies from zero to n, they obtained

a hierarchy of relaxations spanning from the ordinary LP relaxation to the con-

vex hull of feasible solutions. The facets of the convex hull of feasible solutions

in terms of the original problem variables were available through a standard

projection operation. They also suggested an alternate scheme for applying this

technique which gives a similar hierarchy of relaxations, but involving fewer

“complicating” constraints. Techniques for tightening intermediate level re-

laxations, and insights and interpretations within a disjunctive programming

framework, are also presented. The methodology readily extends to multi-

linear mixed integer zero-one polynomial programming problems in which the

continuous variables appear linearly in the problem.

According to Codato and Fischetti (2006) (MIPs) involving logical implications

modelled through big-M coefficients are notoriously among the hardest to solve.

In their paper, they proposed and analysed computationally, an automatic prob-

lem reformulation of quite general applicability, aimed at removing the model

dependency on the big-M coefficients. Their solution scheme defined a master
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ILP with no continuous variables, which contains combinatorial information

on the feasible integer variable combinations that can be “distilled” from the

original MIP model. The master solutions were sent to a slave linear pro-

gram, which validates them and possibly returns combinatorial inequalities to

be added to the current master ILP. The inequalities were associated with min-

imal (or irreducible) infeasible subsystems of a certain linear system, and were

separated efficiently in case the master solution is integer. The overall solu-

tion mechanism closely resembled the Benders’ Cuts, but the cuts produced by

their method were purely combinatorial and did not depend on the big-M val-

ues used in the MIP formulation. This produces an LP relaxation of the master

problem which can be considerably tighter than the one associated with origi-

nal MIP formulation. Computational results on two specific classes of hard-to-

solve MIPs indicated that the new method produced a reformulation which can

be solved with some orders of magnitude faster than the original MIP model.

7.3 Solving a Large-scale LP Model with Non-

negative Coefficients: A Hybrid Search over

the Extreme Points and the Normal Direc-

tion to the Given Objective Function

This section develops a hybrid search process for a large-scale LP problem.

The hybrid approach uses the normal simplex iterations for search over the

extreme points of the convex region, generates an interior point using these

extreme points, and moves from the interior point in a known direction, which

is normal to the given objective function. This approach is suitable only for a

large-scale LP model.
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Consider the problem given by equation (7.1).

Maximise Z = CX,

subject to,

AX ≤ B.

 (7.1)

where

A =


a11 ... a1n

... ... ...

am1 ... amn

 B =


b1

...

bm

C =
[
c1 ... cn

]
X =


x1

...

xn


xij ≥ 0 ∀ i = 1, 2, ...,m, j = 1, 2.., n bi ≥ 0 ∀ i, and cj ≥ 0 ∀ j.

7.3.1 Preliminary work, Munapo-Kumar strategy

Before we discuss the proposed hybrid approach, it would be desirable to briefly

review the Munapo-Kumar strategy (Munapo and Kumar, 2013). The authors

determined two unknown distances to be travelled from a current position on

the boundary of a constraint in two known directions in the convex polyhedron

space of the given LP in equation (7.1). One of the two unknowns was the op-

timal distance moved in the direction of the normal to the objective function,

and the other distance was the normal to the plane containing the point at

the present location. The normal direction of the given objective function was

the best direction for attaining maximum increase in the value of the objec-

tive function. For a known feasible point in the space defined by the given LP

in (7.1), the two directions were known. The unknowns were the optimal dis-

tances to be moved in those two known directions. The known coefficients of

the given unknown n variables in the given LP gave them all the required nor-

mal directions. The optimal value of these two unknowns was determined by

formulating and solving a ‘2′ variable LP model from the given n variable LP
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model in (7.1), hence transforming a given n unknown LP into a two-variable

LP. The optimal solution to the two-variable LP, gave them the required opti-

mal distances to be moved in those two known directions. The two moves in

two known directions, take the search point from the initial point Pi on the sur-

face of a constraint to an improved point Pi+1, which was also on the surface of

another constraint. The purpose of this journey from Pi to Pi+1 was to improve

the value of the objective function as much as possible. The value of the objec-

tive function at the point Pi+1 has improved compared to its value at the point

Pi. If optimality conditions were not satisfied at the point Pi+1, then this point

takes the role of the point Pi and the search for a new improved point Pi+2 will

be carried out. Thus, the process was an iterative one.

7.3.2 The hybrid strategy

Let the initial extreme point be denoted by IP0. We propose two options:

Option one is to move from the point IP0 in the direction normal to the ob-

jective function. The intention is to move as far as possible within the feasible

region. Let this new position be denoted by IP1, which will either be an ex-

treme point of the feasible region or alternatively it may be a boundary point

of the convex region of the LP in equation (7.1).

Option two is to carry out a few simplex iterations in search of an optimal

solution and if an optimal solution has not been identified at these extreme

points, it is proposed to use these extreme points to generate an interior point

in the feasible region. From the interior point we move as far as possible in the

direction of the normal to the given objective function.

Whichever approach we take, after moving in the direction of the normal to the

objective function, we arrive at a known point. Since location of the new point

is known, one can easily find the value of the objective function at that point.

Let us denote the new point by the symbol IP1, and the corresponding value

of the objective at this point be denoted by ZIP1. If IP1 is not an optimal solu-
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tion, an additional condition (2) can be added to the LP in (7.1) for the optimal

solution. The condition is:

Z =
n∑
j=i

cjxj ≥ ZIP1 (7.2)

A consequence of the equation (7.2) is that the feasible search region is reduced.

One can easily return back to the conventional simplex iterations for determi-

nation of the optimal solution of the LP in equation (7.1) by using the LP given

by equation (7.3).
Maximise Z = CX,

subject to,

AX ≤ B
n∑
j=1

cjxj ≥ ZIP1


(7.3)

where A,B,C and X are as defined in equation (7.1). The process terminates

at any point when simplex optimality conditions are satisfied, else one has to

carry out at least three simplex iterations to obtain at least three new feasible

extreme points. Using these extreme points one can find an interior feasible

point IPi for (i = 2, 3, ...) of the reduced convex polyhedron given by equation

(7.3). Once again from the interior point IPi, one moves in the direction of

the normal to the hyper-plane of the objective function. Thus, repeated appli-

cations of the above process will lead us to the optimal extreme point where

optimality conditions are satisfied. Note that the problem (7.3) will change

each time the constraint in (7.2) is replaced by a new constraint. Thus, one can

accommodate the new constraint in (7.2) in the simplex tableau by using the

ideas of information recycling discussed by Kumar (2005, 2006).

Without loss of generality, if we let the initial point be denoted by IPi, and the

point at the end of a move in the normal direction by IPi+1. The corresponding

value of the objective function at that point is denoted by ZIPi
. The additional
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constraint in the equation (7.3) is replaced by the constraint in equation (7.4).

CX ≥ ZIPi+1
for i = 0, 1, 2, ... (7.4)

Since ZIP0 < ZIP1 < ... < ZIPr , we are dealing with sub-sets of the feasible di-

minished or reduced size, and the process must terminate after a finite number

of such iterations of linear move in the normal direction together with the sim-

plex iterations.

The above process is summarised as follows:

1. Either find at least three extreme points by the simplex method and de-

velop an interior point or from the initial feasible point IP0 move as far

as possible within the feasible region in the normal direction of the given

objective function at the improved point IP1.

2. Find the coordinated of the point IP1 and the corresponding value of the

objective function denoted by ZIPi
.

3. If IP1 is not the required optimal solution, find at least three new feasible

extreme points of the convex polyhedral of the problem given by equa-

tion (7.3). These points are obtained by using the conventional simplex

method and exploiting the fact that the active constraints at the point IP1

are known to us.

4. If the optimal solution was not identified while developing the extreme

points; an interior point is established, a feasible move in the normal

direction is carried out and the feasible space is further reduced.

5. The process is repeated unless simplex optimality conditions are satisfied.

Note that the constraint in equation (7.2) increases the size of the basis from m

to m+1, where m is the number of constraints in the given LP of equation (7.1).
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Thus, the constraint in equation (7.2) in one way helps to reduce the feasible

search region, but at the same time increases the number of extreme points,

which may not be the extreme points of the original convex polyhedron of the

given LP generated by equation (7.1). When the optimal solution is identified,

the additional constraint will not be an active constraint, hence back to the

extreme point defined by equation (7.1). However, the other role of extreme

points is to locate an interior feasible point. Therefore, it has no significance

whether the extreme points used for locating an interior point is of the original

convex polyhedron (7.1) or that of the modified problem given by (7.3). Until

the optimal solution has been identified, the role of the extreme point is to

reduce the search region. Our detailed procedure is discussed in Section 7.3.3.

7.3.3 The hybrid process

Some observations

A few simple observations are presented here, which are useful for developing

the hybrid process for solving large-scale LP models of the type shown in equa-

tion (7.1). Observation 1: Location of a feasible interior point

An interior feasible point can be easily generated by averaging r ≥ 3 extreme

points of the convex polyhedron of a given LP. Let these r extreme points be

represented by EPi for (i = 1, 2, ..., r . The interior point as a function of these r

extreme points will be given by equation (7.5).

IPk =
1

r

r∑
i=1

EPi (7.5)

The extreme points EPi can easily be located by r iterations of the simplex

method. Let the coordinates of the ith known extreme point of the convex poly-

hedron be given by:
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EPi =


xi1

...

xin


where xij, for i = 1, 2, ..., r and j = 1, 2, ..., n are known values. Note that the

location given by equation (7.5) will be an interior feasible point of the convex

polyhedron defined by equation (7.3), since the location given by equation (7.5)

is a convex combination of known r extreme points of the convex space gen-

erated by the LP shown in equation (7.3). Furthermore, the purpose of equa-

tion (7.5) is to generate a known interior feasible point where each element

value can be rounded up or down to avoid dealing with fractions, provided the

rounded location still remains feasible and continue to represent a feasible in-

terior point.

Observation 2: A consequence of the rounding process

Note that rounding up to next integer point may not always lead to a feasible

point, hence when the interior point is rounded up, it must be checked for fea-

sibility. However, rounding down will always lead to a feasible point.

Proof

Let the co-ordinates of the interior point as obtained from equation (7.5) be de-

noted by xj = (αj + βj), where αj is an integer part and βj is the fractional part

of the value of the variable xj, for j = 1, 2, ..... Since an interior point is a feasi-

ble point, all constraints at this point must be satisfied. Note that the process

of rounding down means the βj values are set equal to zero for all j = 1, 2..., n,

and since βj ≥ 0, all constraints in equation (7.3) would still hold. However, it

may not always be of advantage to round these values down. This process is

discussed in the numerical illustration in Section 7.3.5.

Observation 3: Maximise the value of the objective function

Since the location of IPk or its rounded version is a known interior point, the

value of the objective function at this point is also known. The known value

of the objective is denoted by ZIPk
. In order to achieve maximum increase in



LP based models for solving some NP-hard models 181

the value of the objective function, it is proposed to move from this location in

the normal direction of the given objective hyperplane. Thus the new location

is given by equation (7.6). Note that CT is the normal direction of the given

objective function.

IPk + αCT ≥ 0 (7.6)

where α ≥ 0. The scalar α has to be calculated as the largest value such that

Z = CX is maximised subject to A(IPk + αCT ) ≤ B, and (IPk + αCT ) ≥ 0 or

equivalently as shown in equation (7.7).

Maximise Z = C(IPk + αCT )

subject to,

αACT ≤ B − AIPk
αCT ≥ −IPk


(7.7)

The problem in equation (7.7) is a one-variable LP, where the value of α is given

by:

α = minimum

{
(B − AIPk)

ACT

}
. (7.8)

Once the value of α is known the new point with an improved value of the

objective function is a known point. The new improved feasible location may

be an extreme point or may be a point on the boundary of a constraint of the

given LP in equation (7.1). It is denoted by IPk+1, and can be determined from

equations (7.6) and (7.8). It is expressed in equation (7.9).

IPk+1 = IPk + αCT (7.9)
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The new LP given in equation (7.10) is developed, and the process is repeated.

Maximise Z = CX

subject to,

αAX ≤ B

Z ≥ ZIPk+1

X ≥ 0


(7.10)

Here X = IPk+1.

Note that if α as obtained from (7.8) is equal to zero, it means that one has

reached to the end of the feasible space in the normal direction. If the optimal

solution has not been identified, one has to change the search direction, which

is easily achieved by the simplex method.

Observation 4: The new point

The new point X = IPk+1 will always be an extreme point of the convex space

defined by equation (7.10). In other words, the problem defined by equation

(7.10) has a feasible region.

Proof Note that the point defined by equation (7.9) will remain feasible to

equation (7.10) as all constraints of equation (7.1) are satisfied at this point,

and the additional constraint in equation (7.2) is also satisfied. Furthermore,

it may be noted that at this point at least one of the constraints in equation (7.1)

is active, and also the additional constraint in equation (7.2) is active. Thus, it

is an extreme point at the intersection of at least two active constraints of the

model in equation (7.10).

7.3.4 The hybrid algorithm for solving large-scale LP with

non-negative coefficients

From the above discussion, one can generate the following steps for the hybrid

algorithm for solving a large-scale LP of the equation (7.1) type.
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Step 1

Obtain an initial feasible point IP0 given by:

IP0 =


x1

...

xn

 =


0

...

0


and move as far as possible in the direction of the normal to the objective func-

tion. Find the new feasible point with an improved value of the objective func-

tion. In other words, find the value of α such that αACT ≤ B and α ≥ 0.

Alternatively develop r(r ≥ 3) extreme points by using the simplex method,

find an interior point and move as far as possible in the direction of the normal

to the given objective function. The initial feasible point IP0 will be given by

equation (7.5).

Step 2

For i = 1, find IP1 and ZIP1 . If optimal, go to Step 7, else go to Step 3.

Step 3

Formulate the problem:

Maximise Z = CX

subject to,

αAX ≤ B

CX ≥ ZIP1

X ≥ 0


(7.11)

Set i = 1, and find a feasible solution to equation (7.11). If optimal, go to Step

7, else go to Step 3.1.

Step 3.1

Set i = i+ 1, and go to Step 3.2.

Step 3.2

If i < 3, find the improved feasible solution using the simplex method. If opti-
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mal, go to Step 7, else return to Step 3.1. If i = 3, go to Step 4.

Step 4

Set i = i+1. Using the last three feasible extreme points, find the interior point

using equation (7.5). Call it interior point IPi.

Step 4.1

Round up all co-ordinates to integer values and check for feasibility. If the

rounded up solution is feasible, find the improved point in the direction of the

normal. If not feasible, go to Step 4.2.

Step 4.2

Round all values down, which have been obtained from equation (7.5). This

point will always be feasible but check if rounding is of advantage. (This point

has been clearly explained in Section 7.3.5. Once again using equation (7.8),

find the value of α and the new location, IPk+1, else go to Step 4.3.

Step 4.3

Retain the point IPk as was determined from equation (7.5), and determine the

value of α from equation (7.9) and the new location, IPk+1.

Step 5

If the solution is optimal at the new point IPk+1, then go to Step 7, else go to

Step 6.

Step 6

Find the value of the objective function at the point IPk+1, and replace the ad-

ditional constraint in equation (7.3). However, before returning back in search

of three new extreme points, also check the dual simplex values. If the solution

is not optimal due to one or two shadow prices, it may be worth continuing with

the simplex method as the solution is likely to conclude to the optimal solution

in a couple of iterations. Return to Step 3.

Step 7

Conclude the search process as the optimality condition has been satisfied.
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7.4 Development of the Method for a General

Large-scale LP Model

Let the number of variables and the number of constraints in the LP model

of equation (7.1) be denoted by n and m respectively. Without any loss of

generality, let us assume that n1 of the n variables (n1 < n) have positive

coefficients in the objective function and the remaining (n − n1) coefficients

in the objective function have negative values. We further assume, for ease

of presentation, that the positive coefficients are associated with the first n1

variables and the negative coefficients are associated with the remaining vari-

ables (n1 + 1, n1 + 2, . . . , n.). Furthermore, it is assumed that the variables

(n1 + 1, n1 + 2, . . . , n2) are such that the corresponding constraint columns Aj

are such that one of the element aij < 0 for at least one i, (i = 1, 2, . . . ,m and

the columns Aj for the variables (n2 + 1, n2 + 2, . . . , n) are such that aij ≥ 0 for

all i. Thus, without any loss of generality, the LP model of equation (7.1), can

be expressed as given by equation (7.12).

Maximise Z =

n1∑
j=1

cjxj −
n2∑

j=n1+1

cjxj −
n∑

j=n2+1

cjxj

subject to,

n1∑
j=1

Ajxj +

n2∑
j=n1+1

Ajxj +
n∑

j=n2+1

Ajxj ≤ B

xj ≥ 0, ∀ ,

cj ≥ 0 for j = 1, 2, ..., n1,

cj ≤ 0 for  = n1 + 1, n1 + 2, ..., n2, n2 + 1, ..., n,

Aj ≥ 0 for j = n2, n2 + 1, ..., n



(7.12)
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where

A =


a11 ... a1n

... ... ...

am1 ... amn

 =
[
A1 A2 ... An

]
, B =


b1

...

bm

 , C =
[
c1 ... cn

]
, X =


x1

...

xn


From equation (7.12) a sub-problem is developed as given in equation (7.13).

Maximise Z =

n1∑
j=1

cjxj

subject to,

An1Xn1 ≤ B
n1∑
j=1

cjxj ≥ 0, for  = 1, 2, ..., n1,

xj ≥ 0 for j = 1, 2, ..., n1,


(7.13)

where

A =


a11 ... a1n1

... ... ...

am1 ... amn1

B =


b1

...

bm

 , C =
[
c1 ... cn1

]
, Xn1 =


x1

...

xn1


Note that in the sub-problem of equation (7.13), all objective function coeffi-

cients are non-negative. Therefore the non-negative requirement is satisfied

for the model in equation (7.13). A movement in the direction of the normal to

the objective function of model (7.13) will be confined to the positive quadrant

in the n1 dimensional space. Also note that when we deal with the model in

equation (7.13) instead of the model in equation (7.1), we are dealing with less

number of variables.

Let us use the symbol CR to denote the convex region defined by the linear con-

straints of equation (7.1). In the hybrid approach, one finds the interior point
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by averaging three successive extreme points obtained by the usual simplex

iterations. These three interior points will also form a convex region. Let us

call the first convex region obtained from the first set of three extreme points

as CR1. It may also be noted that subsequent interior points will be based on

other three extreme points, therefore, in a similar way we denote these sub-

sequent convex region by CRi, for i = 1, 2, . . .. All these convex regions may

not have any relationship among them but they all share a common relation-

ship with the CR that is each CRi is a sub-space of CR. The direction of the

normal, which is a function of the given coefficients of the objective function,

will increase the value of the objective function only if it can cross through the

hyper-plane that shares the boundary with feasible region on either side. This

is possible by searching at least three extreme points which are all adjacent to

the current extreme point in different directions.

Thus, instead of finding three consecutive extreme points from the current lo-

cation, we find r number of extreme points from the same location, where r ≥ 3.

Note that these extreme points from the same location in r random directions

can be obtained in much less computational effort. Also the normal will also be

facing the boundary, which is feasible on either side.

7.4.1 A few observations from the sub-problem of (7.13)

Observation 1: Since the coefficients cj in equation (7.13) are non-negative,

the normal direction to the hyper-plane representing the objective function

of the sub-problem (7.13) will be confined to the positive quadrant in the n1-

dimensional space defined by the equation (7.13).

Observation 2: Consider that a feasible extreme point of the convex region

defined by the given LP of equation (7.13) is a known extreme point. If that

point is not optimal the non-optimality may be reflected by a large number of
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non-basic variables, each such variable reflecting non-optimality can generate

a feasible extreme point of the convex region of (7.13). A random selection of r

variables can generate r extreme points in different directions. An average of

the selected extreme points will give rise to an interior point from where the

direction of the normal will always be in the positive quadrant increasing the

value of the objective function. Thus, instead of successive extreme points (like

in the simplex approach), it is better to generate two or more extreme points,

which are adjacent to the same feasible extreme point. Selection of these en-

tering variables is random among those which qualify for entry to the basis.

Also note that the computational effort required to generate the interior point

in the above manner will require much less computational effort.

Observation 3: A known result in LP is that an LP is unbounded if the min-

imum positive ratio does not exist and cj > 0. A similar, but inverse property

of a LP could be that if a variable xj is such that Aj ≥ 0 and cj ≤ 0, then the

optimal value of the variable xj = 0. In other words, that variable will consume

resources without giving any positive return. Thus, it will never qualify to en-

ter the basis. Let us label this variable as a permanent non-basic variable

which can can be removed from the LP model. Therefore, some variables in the

equation (7.1) may qualify to be permanent non-basic variables.

Observation 4: Since in the LP model in equation (7.13), the requirement

of non-negative coefficients on the constraints set is not imposed, these coef-

ficients may be positive or negative quantities, hence rounding up as well as

rounding down will have to be checked for feasibility. Thus, rounding in this

general model may not be desirable.

Observation 5: Let the location of a known interior point be IPk and assume

that the value of the objective function at this point is also known, which may
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be denoted by ZIPk
. In order to achieve maximum increase in the value of

the objective function, it is proposed to move from this location in the normal

direction of the given objective hyper-plane. Thus, the new location is given by

IPk + αCTni , where α ≥ 0. Note that CTni is the normal direction of the given

objective function of the model in equation (7.13). The scalar α ≥ 0 has to be

calculated as the largest value such that Z = CTniXni
is maximised subject to

A(m×ni)(IPk + αCTni ) ≤ B and IPk + αCTni ≥ 0 where:

IPk+1 = IPk + αCTni (7.14)

The constant α is given by:

α = min

{
B − A(m×ni)IPk

ACTni

}
(7.15)

and also αCTni ≥ −IPk.

Once the value of α is known the new point with an improved value of the

objective function is a known point. The new improved feasible location may

be an extreme point or may be a point on the boundary of a constraint of the

given LP equation (7.13). It is denoted by IP(k+1) and it can be determined from

equation (7.16).

IPk+1 = IPk + αCTni (7.16)

The new LP is given by equation (7.17).

Maximise Z = CTniXni
= IPk+1

subject to,

A(m×n1)Xn1 ≤ B

Z ≥ ZIPk+1

Xni
≥ 0


(7.17)
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Here Xni
= IPk+1. Note that if α as obtained from (7.14) is equal to zero, it

means one has reached to the end of the feasible space in the normal direction

of the objective function. If an optimal solution has not been identified, one has

to change the search direction, which is easily achieved by:

1. Identifying the current extreme point of the convex space of (7.17). This can

be achieved by Phase 1 calculations of the simplex method on the model (7.17).

2. From this extreme point, either continue the usual simplex iterations to

reach the optimal point, or repeat the above steps to reduce the feasible space

to the next improved point IPk+2 from the point IPk+1.

Observation 6: The new point X = IPk+1 will always be the extreme point

of the convex space defined by (7.17). In other words, the problem defined by

(7.17) has a feasible region.

Proof: Note that the point defined by equation (7.14) will remain feasible to

the model of equation (7.13) as all constraints of equation (7.13) are satisfied

at this point and the additional constraint in the LP model of equation (7.13)

is also satisfied. Furthermore, it may be noted that at this point at least one

of the constraint of (7.13) is active, and also the additional constraint in the

model (7.13) is also active. Thus, it is an extreme point at intersection of at

least two active constraints of the model (7.13).

Observation 7: Once an optimal solution to the LP in equation (7.13) is estab-

lished, that solution can be used to establish the optimal solution to the model

of equation (7.1) by the application of column generation rule for the rest of the

variables with negative coefficients in the objective function.

Observation 8: For a given m constraint n1 variable LP, the optimal solution

of the LP comprised of n1 variables where n1 ≤ n, will form a lower bound on

the optimal value of the given LP. The proof is obvious as any other additional

given variable not among the n1 variables can either increase the value of the

objective function, or remain non-basic at zero value.
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7.4.2 An algorithm for solving the general large-scale LP

model

From the above discussion, one can generate an algorithm for solving a general

large-scale LP.

Step 1

Consider an LP model of equation (7.12). Check the objective function for pos-

itive coefficients. If all Cj ’s are non-negative, then n1 = n and n − n2 = 0. Go

to Step 2. If some of these coefficients are negative quantities, rearrange the

given LP model in the structure of LP model (7.12), i.e. separating positive and

negative coefficients of the objective function and rearranging the constraints

accordingly, to develop a sub-LP model of the form (7.12), and then develop the

LP model of equation (7.13). Go to Step 2.

Step 2

Set k = 0.

Step 3

Obtain an initial feasible point IPk of the LP, which is given by

X =


x1

...

xn1

 =


0

...

0


If the number of entering variables are more than a pre-assigned value r ≥ 3,

create at random, r feasible extreme points, which lead to an improved value of

the objective function. From these r extreme points, develop an interior point

by averaging their values. Call this point IPk+1.

Step 4

Move from the initial point IPk+1 in the direction of the normal to the objective

function within the feasible space as far as possible. Let this new feasible point

be denoted by IPk+2, and the value of the objective function at this point is de-
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noted by ZIPk+2
.

Step 5

Formulate a new LP problem of equation (7.17) i.e.

Maximise Z = CTniXni

subject to,

A(m×n1)Xn1 ≤ B

CTn1Xni
≥ ZIPk+2

Xni
≥ 0


(7.18)

where IPk+2 = IPk+1 + αCTn1

Step 6

Set k = k + 1

Step 7

Using any of the existing LP software, find a feasible extreme point IPk+2, and

return to Step 3. Develop the simplex tableau corresponding to the point IPk+2

as a basic feasible solution. Check the number of variables that may qualify

for entry to the basis. If the number of non-basic variables that qualify for en-

try is greater or equal to the pre-assigned value r, continue with the simplex

iterations, and when an optimal solution has been identified, go to Step 8, else

go to Step 3.

Step 8

Conclude the search process as the optimality condition has been satisfied.

Print the optimal solution to model (7.12). Consider the original LP model

of (7.12) and select a variable xj for which cj < 0 for j = n1 + 1, . . . , n.

Step 9

Since cj ≤ 0, use column generation to find Zj−cj = CBB
−1Aj−cj. If Zj−cj < 0,

carry out the usual simplex iteration, and if Zj − cj ≥ 0, go to Step 10.

Step 10
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Set j = j + 1. If j < n, go to Step 9, else go to Step 11.

Step 11

Print the optimal solution to the given LP model.

7.4.3 Analysis and results

Example 1 (See Page 196 for example 2)

Consider the Klee-Minty Cube example given as:

Maximise Z =
n∑
j=1

10n−jxj

subject to,

2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1

xj ≥ 0, for i = 1, 2, ..., n and j = 1, 2, ..., n


(7.19)

For n = 3 the problem will be given by:

Maximise Z = 100x1 + 10x2 + x3

subject to,

x1 ≤ 1, 20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10 000

x1, x2, x3 ≥ 0,


(7.20)

In general, the simplex method can solve the Klee-Minty model in (2n−1) iter-

ations. For n = 3, it will require seven iterations. The optimal solution can be

easily verified as: x3 = 10 000, x1 = x2 = 0 and z = 10 000. Now, we apply the
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proposed method discussed in this thesis. The initial extreme point is

EP0 =


x1

x2

x3

 =


0

0

0


Let r = 3. The three possible extreme points from the initial point that can be

reached are given by:


1

0

0

 ,


0

100

0

 ,


0

0

10000


The interior point generated by these three points will be given by:

IP0 =


1
3

100
3

10000
3


and the objective value at this point will be given by:

ZIP0 =
11100

3
= 3700.

To find the value of α, we have:

A =


1 0 0

20 1 0

200 20 1

 , B =


1

100

10000

 , CT =


100

10

1

 , IP1 =


x1

x2

x3

 =


1
3

100
3

10000
3


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We therefore obtain

AIP0 =


1
3

40

7400

 , ACT =


2010

100

20201

 , B − AIP0 =


0.67

60

2600


Resulting in

α = min


100α ≤ 0.67

2010α ≤ 60

20201α ≤ 2600

 = min


0.0067

0.0298

0.1287


= 0.0067.

Therefore, the improved interior point is:

IP2 = IP1 + αCT =


1
3

100
3

10000
3

 + 0.0067


100

10

1

 =


1.0

33.4

3333.34


The new constraint to be added will be:

100x1 + 10x2 + x3 ≥ ZIP1 = 3767.34.

Thus, the modified problem becomes:

Maximise Z = 100x1 + 10x2 + x3

subject to,

x1 ≤ 1, 20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10 000

100x1 + 10x2 + x3 ≥ 3767.34x1, x2, x3 ≥ 0,


(7.21)

The feasible solution to the model of equation (7.21) can be obtained by any

method and it is given in Table 7.1.

For the optimal solution, one more pivotal iteration will give the optimal

solution shown in Table 7.2, which is x3 = 10000, x1 = x2 = 0 and Z = 10000
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Table 7.1: Feasible solution to model in equation (7.21)

i\j x1 x2 x3 S1 S2 S3 S4 RHS
s1 1 0 0 1 0 0 0 1
x2 20 1 0 0 1 0 0 100
x3 −100 0 0 0 −10 1 1 5332.66
x3 −100 0 1 0 −10 0 −1 2767.34

Z − cj 0 0 0 0 0 0 −1 3767.34

Table 7.2: Feasible solution to model in equation (7.21)

i\j x1 x2 x3 S1 S2 S3 S4 RHS
s1 1 0 0 1 0 0 0 1
s2 20 1 0 0 1 0 0 100
x3 0 20 1 0 0 1 0 10000
s4 100 10 0 0 0 1 1 2189.7

Z − cj 0 10 0 0 0 0 0 10000
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Example 2

Consider a LP model as given in equation (7.22)

Maximise Z = 2x1 + 5x2 + 3x3 + 4x4 + 2x5 + 3x6 + 2x7 + x8 + 2x9 − x10 − 2x11 − 3x12

subject to,

x1 + 0x2 − x3 + 8x4 − 2x5 + 4x6 + 0x7 + 3x8 + x9 + 4x10 − 2x11 + 0x12 ≤ 24

2x1 + 2x2 + 0x3 + 3x4 + 3x5 + 0x6 + 0x7 + 4x8 + 0x9 + 0x10 + x11 + x12 ≤ 32

4x1 + 5x2 + 0x3 + 0x4 + 0x5 + 4x6 + 0x7 + 0x8 + 2x9 + 0x10 + 5x11 + x12 ≤ 30

3x1 + 0x2 + 3x3 + 2x4 + 3x5 − 2x6 + 4x7 + 2x8 + 0x9 + 1x10 + x11 + 0x12 ≤ 30

0x1 + 4x2 + 0x3 − 2x40x5 − 0x6 + 0x7 − 2x8 + 0x9 + 2x10 + 3x11 + x12 ≤ 22

2x1 + 1x2 + 4x3 + 1x4 + 2x5 + 02x6 + 5x7 + x8 + 0x9 + 0x10 + 2x11 + 3x12 ≤ 12

0x1 + 0x2 + x3 + 0x4 + 1x5 + 2x6 + 0x7 + 4x8 + 5x9 + 2x10 + 2x11 + 0x12 ≤ 28

1x1 + 0x2 + 0x3 + 3x4 + 0x5 + x6 + x7 + 2x8 + 6x9 + 1x10 + x11 + 2x12 ≤ 36

3x1 + 2x2 + 2x3 + x4 − 2x5 + 0x6 − x7 + 0x8 + 3x9 + 0x10 + 4x11 + 2x12 ≤ 18

x1, x2, ..., x12 ≥ 0


(7.22)

Using a LP package, the optimal solution to the above LP is given by Z =

46.64, with x2 = 4.72, x4 = 3.12, x5 = 2.08, x9 = 3.2 and x1 = x3 = x6 = x7 =

x8 = x10 = x11 = x12 = 0. We can now apply the method developed in this

chapter. Note that variables with positive coefficients in the objective function

are given by: (x1, x2, x3, x4, x5, x6, x7, x8, x9) and negative coefficients variables

are (x10, x11, x12). The value of n1 is 9. A sub-problem of nine or less variables

can be developed. Let us consider all these nine variables to form a LP model
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similar to equation (7.13). This is given by equation (7.23) as follows:

Maximise Z = 2x1 + 5x2 + 3x3 + 4x4 + 2x5 + 3x6 + 2x7 + x8 + 2x9

subject to,

x1 + 0x2 − x3 + 8x4 − 2x5 + 4x6 + 0x7 + 3x8 + x9 ≤ 24

2x1 + 2x2 + 0x3 + 3x4 + 3x5 + 0x6 + 0x7 + 4x8 + 0x9 ≤ 32

4x1 + 5x2 + 0x3 + 0x4 + 0x5 + 4x6 + 0x7 + 0x8 + 2x9 ≤ 30

3x1 + 0x2 + 3x3 + 2x4 + 3x5 − 2x6 + 4x7 + 2x8 + 0x9 ≤ 30

0x1 + 4x2 + 0x3 − 2x40x5 − 0x6 + 0x7 − 2x8 + 0x9 ≤ 22

2x1 + 1x2 + 4x3 + 1x4 + 2x5 + 02x6 + 5x7 + x8 + 0x9 ≤ 12

0x1 + 0x2 + x3 + 0x4 + 1x5 + 2x6 + 0x7 + 4x8 + 5x9 ≤ 28

1x1 + 0x2 + 0x3 + 3x4 + 0x5 + x6 + x7 + 2x8 + 6x9 ≤ 36

3x1 + 2x2 + 2x3 + x4 − 2x5 + 0x6 − x7 + 0x8 + 3x9 ≤ 18

x1, x2, ..., x9 ≥ 0



(7.23)

For the LP model (7.22), we have:

A =



1 0 −1 8 5 −2 4 3 1

2 2 0 3 3 0 0 4 0

4 5 0 0 0 4 0 0 2

3 0 3 2 3 −2 4 2 0

0 4 0 −2 0 0 0 −2 0

2 1 4 1 2 0 5 1 0

0 0 1 0 1 2 0 4 5

1 0 0 3 0 1 1 2 6

3 2 2 1 −2 0 −1 0 3



, B =



24

32

30

30

22

12

28

36

18



, CT =



2

5

3

4

2

3

2

1

2



, XT =



x1

x2

x3

x4

x5

x6

x7

x8

x9


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The initial extreme point is

EP0 =



x1

x2

x3

x4

x5

x6

x7

x8

x9



=



0

0

0

0

0

0

0

0

0


Let r = 3. From this initial extreme point, we generate three extreme points

with respect to variables x2, x3 and x4. These points, expressed in variables

(x1, x2, . . . , x9), are given by:

EPx2 =



0

5.2

0

0

0

0

0

0

0



, EPx3 =



0

0

3

0

0

0

0

0

0



, EPx4 =



0

0

0

3

0

0

0

0

0


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resulting in

IP0 =



x1

x2

x3

x4

x5

x6

x7

x8

x9



=



0

1.8

1

1

0

0

0

0

0


The objective value at this point is ZIP0 = 1.8(5) + 1(3) + 1(4) = 16. Since CT is

the normal direction of the given objective function, we need to find the value

of α. We first find AIP0, AC
T and B − AP0 as:

AIP0 =



1 0 −1 8 5 −2 4 3 1

2 2 0 3 3 0 0 4 0

4 5 0 0 0 4 0 0 2

3 0 3 2 3 −2 4 2 0

0 4 0 −2 0 0 0 −2 0

2 1 4 1 2 0 5 1 0

0 0 1 0 1 2 0 4 5

1 0 0 3 0 1 1 2 6

3 2 2 1 −2 0 −1 0 3



.



0

1.8

1

1

0

0

0

0

0



=



7

6.6

9

5

5.2

6.8

1

3

6.6



,
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and

ACT =



1 0 −1 8 5 −2 4 3 1

2 2 0 3 3 0 0 4 0

4 5 0 0 0 4 0 0 2

3 0 3 2 3 −2 4 2 0

0 4 0 −2 0 0 0 −2 0

2 1 4 1 2 0 5 1 0

0 0 1 0 1 2 0 4 5

1 0 0 3 0 1 1 2 6

3 2 2 1 −2 0 −1 0 3



.



2

5

3

4

2

3

2

1

2



=



48

36

49

33

10

40

25

33

26


Also

B − AP0 =



24

32

30

30

22

12

28

36

18



−



7

6.6

9

5

5.2

6.8

1

3

6.8



=



17

25.4

21

25

16.8

5.2

27

33

11.2


Since

α = min{(B − IPk
ACT

)} =



17/48

25.4/36

21/49

25/33

16.8/10

5.2/40

27/25

33/33

11.2/26



=



0.35

0.71

0.43

0.76

1.68

0.13

1.08

1.00

0.43



= 0.13
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Using equation (7.15) and moving in the normal direction of the objective hyper-

plane, the improved interior point is:

IP1 = IP0 + αCT =



0

1.8

1

1

0

0

0

0

0



+ 0.13



2

5

3

4

2

3

2

1

2



=



0.26

2.45

1.39

1.52

0.26

0.39

0.26

0.13

0.26


and ZIP1 = 2(0.26)+5(2.45)+3(1.39)+4(1.52)+2(0.26)+3(0.39)+2(0.26)+1(0.13)+

2(0.26) = 26.88.

Thus, a basic feasible solution to equation (7.23) is required in presence of the

additional constraint given by equation (7.24) which is:

Z = 2x1 + 5x2 + 3x3 + 4x4 + 2x5 + 3x6 + 2x7 + x8 + 2x9 ≥ 26.88(ZIP1) (7.24)

The 9-variable problem of equation (7.23) was solved using the LIPS package

and the results were, as expected, the same as for the given 12-variable prob-

lem of equation (7.22). These results are: x2 = 4.72, x4 = 3.12, x5 = 2.08, x9 = 3.2

and x1 = x3 = x6 = x7 = x8 = 0 giving Zopt = 46.64. Although the solution is

optimal, to establish the optimality of equation (7.22), we need inverse of the

basic matrix of the 9-variable problem. From the LIPS package, the inverse of

the matrix B and set of basic variables were obtained as given in Table 7.3.
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Table 7.3: Basic variables, solution and inverse of matrix B

Basic S13 S14 S15 S16 S17 S18 S19 S20 S21 RHS
S17 2/75 0 −4/3 0 1 68/75 0 0 0.89 9.36
S14 −31/150 1 −1/6 0 0 −229/150 0 0 0.18 6.96
x4 0.12 0 0 0 0 0.08 0 0 −0.04 3.12
S16 0.02 0 0.5 1 0 −1.82 0 0 −0.34 17.52
x2 4/75 0 1/3 0 0 −14/75 0 0 −0.24 4.72
x5 −13/150 0 −1/6 0 0 83/150 0 0 0.14 2.08
S19 113/150 0 11/6 0 0 −433/150 1 0 −3.14 9.92
S20 0.44 0 2 0 0 −3.04 0 1 −3.48 7.44
x9 −2/15 0 −1/3 0 0 7/15 0 0 0.6 3.2

Zj − cj 23/75 0 2/3 0 0 107/75 0 0 0.12 46.64

From Table 7.3, one can, for optimality, get values of Zx10 −C10 = 167/75, Zx11 −

C11 = 604/75, Zx12 − C12 = 614/75, which confirms optimality of the given prob-

lem of equation (7.22).

7.4.4 Concluding remarks

The above method is suitable for a large-scale LP of the type of equation (7.1).

Advantages, if any, can be assessed only after developing an appropriate soft-

ware and comparing computational efforts required by the simplex method and

the proposed hybrid method. From the initial point, a linear move in the nor-

mal direction is desirable if the increase in the objective function value can

reduce the number of simplex iterations. The proposed method is likely to con-

verge to the solution faster than the simplex method by utilising movements

in the normal direction to the objective function. A few iterations of moving

in the normal direction give an approximate solution, which is not provided

by any other method. Instead of dealing with the given problem of dimension

m× (n+m), in the proposed method we are dealing with n1× (n1 +m) problem,

thus reducing pivoting computations in each iteration.
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7.5 A Heuristic for a Mixed Integer Program us-

ing the Characteristic Equation Approach

7.5.1 Introduction

An integer linear program is a linear program which is further constrained

by integer restrictions on some or all variables. When all variables are inte-

ger restricted, it is called a pure integer program (PIP) model and when only

some of the variables are restricted to integer values, it becomes a mixed inte-

ger programming model. Integer programming (IP) models frequently arise in

human resource planning, facility location, assignment problems, production

planning, time-tabling, warehouse location, scheduling and capital budgeting,

just to mention a few. While most linear programming (LP) problems can be

solved in polynomial time, PIP and MIP are NP-complete problems, which have

no known polynomial time algorithm to solve them (Bertacco et al., 2007).

In this thesis, the PIP model is solved by using the characteristic equation

(CE) with the hope that this approach may provide insight into MIP solution

procedures and applications. Generally, MIP problems have been solved using

the LP-based branch and bound (BB) solvers or with stochastic search-based

solvers (Noraini and Geraghty, 2011). In reality MIP solvers have implemented

more sophisticated versions denoted by branch and cut (BC) algorithms (Sen

and Sherali, 2006). With the increase in the application of both PIP and MIP

models, it is of paramount importance that methods sought are capable of

finding a global optimal solution. The major disadvantages of existing meth-

ods, like round off errors, and creation or emergence of many sub-problems

(branches), is the time taken to obtain the optimal solution and failure to ob-

tain global optimal solutions. These justify the need to find better approaches

for MIP problems.
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In this thesis, a hybrid of the existing approaches for solving the LP and PIP

models has been used for solving the MIP model. A PIP has been solved by us-

ing a descending hyper-plane that was developed by Kumar et al. (2007), which

was later renamed a characteristic equation by Kumar and Munapo (2012). For

the MIP model, the LP solution acts as an upper bound (UB) and the PIP so-

lution as the lower bound (LB). In a MIP model, one has to deal with integer

restricted variables as well as continuous variables, requiring distribution of

the available resources for these two types of variables. This aspect of distri-

bution has been addressed by the CE, since ordered optimal solutions can be

obtained by the CE for a PIP model. The proposed method generates a good

feasible solution with bounds, and eliminates rounding off errors and dealing

with sub-problems, as is commonly required in existing BB methods.

7.5.2 Mathematical development for the proposed method

Consider a general mixed integer programming problem:

Minimise or Maximise Z = CTX,

subject to,

AX ≤ / = / ≤ B

X ≥ 0

XI ∈ Z


(7.25)

where CT is 1×n, X is (n×1), A is (m×n) and B is (m×1). Let nI < n represent

integer restricted non-negative variables. The remaining (n−nI) variables are

such that xj ≥ 0. In equation (7.25), XI represents integer restricted non-

negative variables in X, implying that XI ≥ 0. The MIP relaxation, i.e. LP of
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the model in equation (7.25) is given by:

Minimise or Maximise Z = CTX,

subject to,

AX ≤ / = / ≤ B

X ≥ 0


(7.26)

The pure integer programming model of (7.21) is given by:

Minimise or Maximise Z = CTX,

subject to,

AX ≤ / = / ≤ B

X ≥ 0 and integer


(7.27)

After obtaining the PIP solution to (7.27), one can also develop a modified LP

from the given MIP (equation 7.25) when all integer restricted variables are

replaced by their values and the problem reduces to (n − nI) variables, where

all these variables are non-negative restricted real variables. Here onwards,

we will call it a modified LP model. The three problems (7.25), 7.26) and (7.27),

and the modified LP have close relationships among themselves, which can be

used to develop a method for solving the MIP model of (7.25). Some of these

relationships that may be of immediate interest to us are discussed next.

Observation 1

The LP relaxation model (7.26) is a least constrained model among the three

models: (7.25), (7.26) and (7.27), hence the LP optimal solution of model (7.26)

will be an upper bound to the MIP model (7.25).

Observation 2

A feasible solution to the PIP model (7.27) will also be feasible to the MIP model

(7.25).

Proof

Since a feasible solution X to model (7.27) will also satisfy the requirement for
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the MIP model (7.25), where nI of the n variables are required to have integer

restricted values, it then follows that all feasible solutions to the PIP model

(7.27) will also be feasible to the MIP model (7.25). Therefore, the PIP optimal

solution will act as a lower bound to the MIP model (7.25).

Observation 3

The MIP model involves a two-way distribution of resources. The first distri-

bution of resources involves the division of the resource vector B among the

integer and continuous variables, and the second distribution gives rise to val-

ues of the basic variables. The distribution of the resource vector B is achieved

by determining ordered optimal solutions to the PIP model. These ordered op-

timal solutions can be obtained by using the CE developed by Kumar et al.

(2007), and Kumar and Munapo (2012). The distribution of resources to con-

tinuous variables is obtained by the LP model.

Observation 4

The optimal PIP solution XPIPopt has a property that if xj = βj is an element

of this optimal integer solution, then xj = βj + 1 along with other variables at

their optimal values will always lead to an infeasible solution.

7.5.3 The problem

In the proposed approach, for the given MIP model, we first develop two par-

allel LP and PIP models. The optimal value of the relaxed objective is denoted

by ZLP , which acts as the upper bound to the given MIP model. For any op-

timisation problem Z, let F (Z) denote its set of feasible solutions. The only

requirement for ZLP to be a valid relaxation of Z is F (Z) ⊆ F (ZLP ) which is

true in this case. The relaxed problem is easier to solve than the original prob-

lem, and the ZLP gives the upper bound (Geoffrion and Marsten, 1972).
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From the optimal solution of ZLP a characteristic equation (CE) is formed to

resolve the PIP model (7.27), where all variables are restricted to integer val-

ues. The advantage of the CE is that it can provide the best, second best, third

best solutions, etc. for the PIP model (7.27). The optimal PIP solution acts

as the LB to the given MIP model. The gap between the UB given by ZLP

and the LB given by ZPIP can be decreased by the LP modified model that can

be formulated by substituting values of the integer restricted variables in the

MIP model (7.25), and solving the remaining model as a LP model in (n − nI)

variables. The combined solution will be a feasible solution to the MIP model

(7.25). This will give rise to an improved LB, denoted by ZMIP . If the difference

(ZLP −ZMIP ) is insignificant or is zero, then either the optimal solution or near

optimal solution to the MIP is obtained.

7.5.4 The characteristic equation

The CE is obtained from the final tableau of the LP relaxation. It is a mapping

of the integer hyper-plane on feasible integer points and the mapping of the

objective function on interior integer points in a descending order. The CE is

based on the following three basic ideas:

1.The objective value must be an integer.

2. Non-basic variables are either zero (as in the LP solution) or if some of them

are not zero, they must be an integer quantity.

3. Basic variables are also functions of the non-basic variables, and for the non-

zero non-basic variables, the basic variables must also become integer values

in a PIP model.

The major advantage of using the CE is that convergence is guaranteed and it

can be used to obtain ordered optimal solutions for the PIP problem. However,
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the solution of the CE can be a challenge, and also if there are more than one

solution to the CE, all those solutions have to be tested for integer solutions.

The LP extreme points are an intersection of at most m constraints and the LP

optimal solution is an intersecting point of one more hyper-plane represented

by the objective function. The CE is a mapping of the hyper-plane on feasible

integer points. From the optimal relaxation LP solution, one can write the

objective function row as:

D

D
Z +

β1s1 + β2s2 + ...+ βksk
D

=
R + iD

D
(7.28)

where k represents the number of non-basic variables, βj represents the integer

coefficients, D is the lowest common factor for all terms and R is the remainder

in the RHS value. The CE is then given by:

β1s1 + β2s2 + ...+ βksk = R + iD for i = 0, 1, 2, 3..... (7.29)

When the LHS of equation (7.29) is equal to the RHS, the objective function Z

is guaranteed to be an integer value. Since we are looking for an integer solu-

tion to the CE, we also got the condition (2) in Section 7.5.4 satisfied. For the

solution to be an acceptable feasible solution, the solution of the CE solution

must also convert the values of the basic variables to non-negative integer val-

ues. The next best solution is obtained by further reduction in the value of the

objective function, which is possible by increasing the value of i. It may also

be noted that when the PIP model of equation (7.27) is solved for the optimal

solution, all variables have non-negative integer values. We substitute from

this solution, values of n1 integer restricted values in the MIP model (7.25) and

get a modified LP in (n − n1) real variables, which is a LP model and can be

solved by any known method. The combined integer restricted values from the

PIP and LP solutions for the modified LP gives a feasible solution to the MIP,

hence acts as a LB.
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7.5.5 Algorithmic steps of the method

The method is comprised of the following steps:

Step 1:

Solve the relaxed LP model (7.26), and find the value of ZLP which will be an

UB to the given problem.

Step 2:

Obtain the characteristic equation (CE) from the solution of ZLP . Set k = 1.

Step 3:

Solve the CE and obtain kth best integer solution for minimum i. This will be a

solution to the PIP, i.e. when all are integer restricted variables.

Step 4:

The PIP solution from Step 3 will be a lower bound (LB) to the given MIP. Let

this LB be denoted by ZPIP .

Step 5:

If ZLP − ZPIP is equal to zero, or approximately equal to zero, go to Step 10.

Else go to Step 6.

Step 6:

Substitute the integer solution for the integer restricted variables obtained

from Step 3 into the original MIP model (7.25), and get a modified LP in (n−nI)

variables.

Step 7:

Solve the LP in (n− nI) real variables obtained at Step 6.

Step 8:

Combine the integer solution of Step 3 for the integer variables and real so-

lution for the real variables from Step 7 to get a feasible solution to the MIP.

This value is likely to be less than the UB and more than the LB, and if the

difference is insignificant, one can stop the search; else one has to improve the
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feasible solution. Check if this solution can be declared as the optimal solution.

If “yes”, go to Step 10, else go to Step 9.

Step 9:

Set k = k + 1 and go to Step 3.

Step 10:

Conclude the search process as the optimality condition has been satisfied.

7.5.6 Analysis and results

This example is taken from Hillier and Lieberman (2001).

Maximise Z = 4x1 − 2x2 + 7x3 − x4,

subject to,

x1 + 5x3 ≤ 10

x1 + x2 − x3 ≤ 1

6x1 − 5x2 ≤ 0

−x1 + 2x3 − 2x4 ≤ 3

x1, x2, x3 ≥ 0 and integer

x4 ≥ 0



(7.30)

Using LIPS program the LP relaxation solution found is shown in Table 7.4

and the final simplex solution is shown in Table 7.4.

Table 7.4: Relaxed solution to problem in equation (7.30)

Variable Value Obj. cost Reduced cost
x1 1.25 4 0
x2 1.5 −2 0
x3 1.75 7 0
x4 0 −1 1

For the solution ZLP = 14.5, it means the UB = 14.25, for the given MIP problem



LP based models for solving some NP-hard models 212

of equation (7.30). Now solve (7.30) again as a PIP model, for which the CE will

be required, and it is obtained from equation (7.31):

Table 7.5: Final table of the simplex iterations for solution to problem in equa-
tion (7.30)

Basis x1 x2 x3 x4 s5 s5 s7 s8 RHS
x2 0 1 0 0 0.1 0.5 −0.1 0 1.50
S8 0 0 0 −2 −17

60
7
12

7
60

1 0.75
x1 1 0 0 0 1

12
5
12

1
12

0 1.25
x3 0 0 1 0 11

60
− 1

12
− 1

60
0 1.75

Obj. 0 0 0 −1 −17
12
− 1

12
− 5

12
0 14.25

12x4 + 17s5 + s6 + 5s7 = 3 + 12i for i = 1, 2, ..., 14 (7.31)

The non-basic variables x4, s5, s6 and s7 have to move from the current value

of zero to some non-negative integer value such that (7.31) remains satisfied

for the minimum i and also converts the current basic variables from the real

values to integer values. From Table 7.5, the relations between the basic and

non-basic variables are given by:

x1 = 1, 25− (
1

12
)s5 − (

5

12
)s6 − (

1

12
)s7

x2 = 1.5− 0.1s5 − 0.5s6 + 0.1s7

x3 = 1.75− (
11

60
)s5 − (

1

12
)s6 − (

1

60
)s7

s8 = 0.75 + 2x4 + (
17

60
)s5 − (

7

12
)s6 − (

7

60
)s7


(7.32)

For i = 0, equation (7.27) becomes:

12x4 + 17s5 + s6 + 5s7 = 3 (7.33)

The only integer solution from equation (7.33) is x4 = 0, s5 = 0, s6 = 3 and
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s7 = 0. Putting this solution in (7.32), we have x1 = x2 = x4 = 0, x3 = 2, s8 = −1,

which is not feasible, hence one has to try the next value for i which is i = 1.

The CE is:

12x4 + 17s5 + s6 + 5s7 = 15 (7.34)

Equation (7.30) has five integer solutions given in Table 7.6. From Table 7.6

Table 7.6: Relaxed solution to problem in equation (7.30)

Solution Comment
s5 = 0, s6 = 15, s7 = 0, x4 = 0 No feasible integer solution
s5 = 0, s6 = 5, s7 = 2, x4 = 0 x1 = x2 = 0, x3 = 2, x4 = 1 and Z = 13
s5 = 0, s6 = 15, s7 = 0, x4 = 0 No feasible integer solution
s5 = 0, s6 = 10, s7 = 1, x4 = 0 No feasible integer solution
s5 = 0, s6 = 0, s7 = 3, x4 = 0 No feasible integer solution

the best integer solution gives a Z value of 13. This value forms a LB. The UB

is 14.25. Substituting the integer values for the integer restricted variables

from the above solution (x1 = x2 = 0, x3 = 2) into MIP problem of (7.30) we

obtain a modified LP in x4 given by:

Maximise Z = 14x1 − x4,

subject to,

4− 2x4 ≤ 3

x4 ≥ 0


(7.35)

Solving (7.35) trivially gives x4 = 1
2
. Combining the integer solution and the

above continuous solution we have an improved solution to the given MIP

model. It is given by x1 = x2 = 0, x3 = 2, x4 = 0.5 and Z = 13.5.

The above solution can be concluded as an optimal solution to the given MIP, as

currently we have 13 ≤ ZMIP ≤ 14.25 and a feasible solution of 13.5. Note the

only variation possible is to increase the values of the variables x1, x2 and x4
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which will exceed the current UB. Similarly, increase in x4 will will worsen the

current solution. Hence an optimal solution has been obtained and the search

is terminated.

7.5.7 Concluding remarks

The proposed method will have several advantages over existing techniques

and some of them include, but are not limited to:

• There are no round off errors since rounding leads to non-optimal or non-

feasible solutions.

• The dimension of the matrix A, where A is the coefficients of the decision

variables in the constraints, remains unchanged.

• There are no sub-problems as is in the case of BB or BC methods.

• The method does not depend on the initial relaxed solution, but it uses

the relaxed solution as the upper bound.

• The method searches the optimal solution using the simplex method, but

moves over the integer polyhedron.

• This approach is suitable for changes in the input values, and utilises the

characteristic equation to adjust the lower bound.

The solution of a CE can be demanding for larger values of i. Further work

is required on how to solve a CE. The method uses the concept of ordered so-

lutions, but for most of the ordered solutions, the value of i will be high. For

higher values of i, a solution to CE becomes more demanding. In the BB ap-

proach, for a MIP, when a large number of variables are integer restricted, the

number of sub-problems can be very high. Sometimes even a feasible solution
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is not easily obtainable. However, the proposed approach guarantees determi-

nation of a feasible solution, and also gives its bounds. The proposed approach

works better when integer restricted variables are relatively large. Branch and

bound may work better if integer restricted variables are only a few in number.

In fields like machine learning, computer vision, advertising, and statistics, it

is quite common to encounter MIP formulations with millions of binary deci-

sion variables. These algorithms can yield good results in practice, but do not

offer any theoretical bounds on runtime and solution quality. The proposed

method may prove to be useful for these problems.

7.6 Summary of the Chapter

This chapter concentrated on two linear programming based methods for solv-

ing NP-hard problems. Section 7.3 modified the Munapo and Kumar (2013)

strategy which considered a LP model with non-negative coefficients, and de-

veloped an iterative procedure to solve a large-scale LP by transforming the

given ‘n′ variable LP to a ‘2′ variable LP. The new method developed in Section

7.3 reconsidered a similar large-scale LP model with non-negative coefficients

and developed a new strategy that is an iterative hybrid process. The approach

uses the conventional simplex iterations for search along the extreme points

of the convex region; generates an interior point using these extreme points

and moves from the interior point in the direction of the normal to the given

objective function hyper-plane. The new procedure calculates a scalar α ≥ 0

that is used to identify a new location with an improved Z value. If α = 0,

it means that one has reached to the end of the feasible space in the normal

direction to the objective function. If an optimal solution has not been iden-

tified, one has to change the search direction, which is easily achieved by the

simplex method. The new point identified will always be an extreme point of
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the convex space. In other words, the problem defined has a non-void feasible

region. The approach concludes the search when an optimal solution has been

identified. Computational experiments indicated that the approach performed

better with regard to a large number of randomly generated large LP problems.

Section 7.4 further improved the procedure discussed in Section 7.3 by remov-

ing the restriction of non-negative coefficients. A general large-scale LP has

been considered without any restriction on the coefficients, since in many real-

life applications of the LP model, the condition of non-negative coefficients may

not always be satisfied.

In Section 7.5 a new heuristic for a mixed integer program using the charac-

teristic equation was formulated. This new method is a hybrid of the exist-

ing approaches for solving the LP and PIP models, and it has been developed

to solve MIP problems. The characteristic equation which was defined as a

mapping of the integer hyper-plane on feasible integer points and the map-

ping of the objective function on interior integer points in a descending order,

was used to obtain the LB. The proposed new method has several advantages

over existing techniques, some of which include, eradication of round off errors

since rounding leads to non-optimal or non-feasible solutions; there are no sub-

problems as is in the case of branch and bound or branch and cut methods;

and the approach is also, suitable for changes in the input values. The pro-

posed approach guarantees determination of a feasible solution, and gives its

bounds. The new approach also works better when integer restricted variables

are relatively large.



Chapter 8

Summary, Conclusion and

Recommendations

After all is said and done, more needs to have been done than said.

Neil Mason

8.1 Summary and Conclusion

This thesis has managed to modify and develop eight new techniques of solv-

ing different types of problems in line with the principal aim of modifying and

developing new OR techniques that can be used to solve emerging problems

encountered in the areas of linear programming, integer programming, mixed

integer programming, network routing and travelling salesman problems. Five

of the new models were in the section of network models and the other three

are in the section of resource allocation and distribution models.

A new minimum weight labelling method for determination of the shortest
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route in a non-directed network was formulated. The major contribution of this

method for determining a shortest route in a non-directed network is that, for

an m-node network, the algorithm finds an optimal solution in at most (m− 1)

iterations. For large networks, this method is likely to perform better than the

traditional methods because of its convergence property. A few important and

desirable investigations for further research could be:

1. Develop an appropriate software for the proposed method.

2. Solve many large randomly generated problems and compare with exist-

ing methods.

3. Investigate if ideas can be extended to generate ordered optimal solution,

as they have applications in disaster management.

If the best shortest path cannot be used, then the second best can be imple-

mented. Xu et al. (2012), went further to evaluate the K shortest paths in

a schedule-based network, an algorithm that has several applications in com-

puter science.

Another model that was formulated was that of the calculation of maximum

reliability in both directed and non-directed networks. In the case of a non-

directed network, the order of label indicated that the path reliabilities are

in non-increasing order. Since virtual directions are dependent on labels, the

formulated approach can be used for the determination of all reliability paths

from a given node to all other nodes in that network. Using these virtual direc-

tions, a labelling technique was developed and illustrated. Information recy-

cling is useful for protean networks. The protean system deals with changes in

the model and recycling deals with extracting information that may be avail-

able from the system before occurrence of a change. In waste management,

recycling reduces the bulk of solid waste and provides cheap resource to in-

dustry. Similarly, information recycling is intended to minimise unnecessary
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computations when that information can be extracted by earlier computations.

These situations can arise also in reliability networks and when possible, one

should take advantage.

Traditionally directed networks are relatively easy to analyse compared to non-

directed networks as directions have inbuilt additional information that has

been exploited from time to time in various forms. Using the formulated max-

imum reliability technique, we have attempted to use other properties of the

given network and identified virtual directions based on those other properties

of the given network. We used those virtual directions to establish a labelling

method when link weights are deterministic values representing cost, distance

or time. Similarly, in a probability network where link weights are represented

by probabilities, the network has been analysed for directed and non-directed

networks for finding the maximum reliability and the route in these reliability

networks. Since the proposed method concludes in n − 1 iterations, where n

represents the number of nodes in the given network, the computational re-

quirement remains under control, even for the non-directed network.

The concept of identifying virtual directions is a challenge which is worth fur-

ther investigations for other variants of routing problems, and this will be the

subject of subsequent investigations.

Two algorithms which are key in solving some of the NP-hard problems like the

TSP were developed. The algorithms are; MST with index less than or equal

to 2, and routing through ′k′ specified nodes. The key point of these algorithms

was to reduce the node index ni to a number which is less than or equal to

2. The underlining theorems that enable the node index to be changed were

presented. A MST path was defined and its applications were highlighted. Al-

ternative interpretation of the MST-path is a shortest route passing through
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all the nodes. Numerical examples that illustrate the two algorithms were pre-

sented, and the results were found to be in line with the results obtained by

other researchers. The route through ′k′ specified nodes algorithm was also for-

mulated in this thesis. The requirement for a path to pass through ′k′ specified

nodes arises when one may be interested in either saving a separate trip to the

given specified node or attempting to take care of a future eventuality that is

likely to arise in that situation. The complexity of this problem depends on the

number of specified nodes. This problem has several applications in real life,

which include the TSP and the Canadian traveller’s problem, all of which have

several applications in real-life.

A heuristic for the TSP based on the MST technique was also developed. The

index value plays a major role in the proposed approach. The proposed ap-

proach is best when the network has at least one node with a low index value.

If the number of lowest index value is m, then the number of sub-problems

solved will be given by mC2. In the completely connected n node network, the

worst case will have (n−1)C2 combinations. The proposed heuristic converts the

problem in three parts to establish an upper bound. The approach discussed

used link-weight modification to obtain alternative MSTs, which eventually

have a TST interpretation. The proposed heuristics was compared to some

well-known algorithms, and it produced better solutions for problems dealing

with networks with smaller number of nodes.

Two new approaches that can be used to solve the transportation and assign-

ment problems were developed. The major advantage of these two techniques

is that they can handle the problem of degeneracy without any special consid-

eration. The algorithm for the unified approach to solve transportation and

assignment problems fully exploits the sub-problem’s structure and has very

favourable re-optimisation capabilities, both these properties are necessary for
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achieving optimality. The unified approach, which is a modification of the Hun-

garian method is applicable to both the assignment and transportation prob-

lems. Furthermore, the process does not depend on the number of allocated

cells, which in transport method must be equal to (m + n − 1) in independent

cells. Thus, the proposed unified method is efficient in solving all degenerate

transportation models. This approach is free of pivotal degeneracy which may

cause cycling and does not require any extra variables such as slack, surplus

or artificial variables that are used in dual and primal simplex methods. The

generalised assignment problem (GAP), deals with assigning a set of n items to

a set of m knapsacks, where each item must be assigned to exactly one knap-

sack and there are constraints on the availability of resources for item assign-

ment. In the method proposed in this thesis, the GAP was relaxed to become

an ordinary transportation problem by replacing the ordinary constraints with

inequalities obtained by solving the knapsack problem. In the new method the

current solutions to the transportation problem are used as starting solutions

in the next iterations. With this approach it is only possible to branch if the

relaxation gives an integer optimal solution, and this is not possible with LP

or Lagrangian relaxations. The GAP is a classical combinatorial optimisation

problem that models a variety of real world applications including flexible man-

ufacturing systems, facility location and vehicle routing problems. The GAP is

known to be NP-hard, since the partition problem of a given set of positive in-

tegers into two equal sized subsets can be reduced to GAP withm=2 knapsacks.

The last chapter of the thesis looked at two LP based methods for solving NP-

hard problems. The first method developed an iterative procedure to solve a

large-scale LP by transforming the given ‘n′ variable LP to a ‘2′ variable LP.

The new method developed in this thesis reconsiders a similar large-scale LP

model with non-negative coefficients and developed a new strategy that is an

iterative hybrid process. The approach uses the conventional simplex itera-
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tions for search along the extreme points of the convex region, generates an

interior point using these extreme points, and moves from the interior point

in the direction of the normal to the given objective function hyper-plane. The

new procedure calculates a scalar α ≥ 0 that is used to identify a new location

with an improved Z value. If α = 0, it means one has reached to the end of

the feasible space in the normal direction to the objective function. If an op-

timal solution has not been identified, one has to change the search direction,

which is easily achieved by the simplex method. We further improved the pro-

cedure by removing the restriction of non-negative coefficients and came up

with a general large-scale LP without any restriction on the coefficients since

in many real-life applications of the LP model, the condition of non-negative

coefficients may not always be satisfied.

It will be desirable to develop an appropriate software and compare the pro-

posed method with existing methods for many randomly generated problems.

Finally, a new heuristic for a mixed integer program using the characteristic

equation was formulated. This new method is a hybrid of the existing ap-

proaches for solving the LP and PIP models and it has been developed to solve

MIP problems. The characteristic equation which was defined as a mapping of

the integer hyper-plane on feasible integer points and the mapping of the objec-

tive function on interior integer points in a descending order was used to obtain

the lower bound. The proposed new method has several advantages over exist-

ing techniques which include the eradication of round off errors since rounding

leads to non-optimal or non-feasible solutions. The new procedure does not

create sub-problems as is in the case with branch and bound or branch and

cut methods, and the approach is also suitable for changes in the input val-

ues. The proposed approach guarantees determination of a feasible solution

and also gives its bounds. The approach is likely to work better when integer-
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restricted variables are relatively large in number.

8.2 Recommendations

This thesis recommends that as the global environment is gradually chang-

ing, there is need also to continuously come up with new techniques of solving

emerging problems. The new techniques can be formed by developing, com-

bining and modify existing models in order to encounter these challenges in

terms of the speed at which the solution is obtained, or in terms of the costs

of obtaining the solutions. The development of software packages to the pro-

posed algorithms is key especially if we are to test them on larger problems

and compare them with existing methods.

8.3 Considerations for Further Studies

Most of the techniques that have been developed in this thesis need to be pro-

grammed so that their comparisons with existing techniques can be compared

at all levels of complexity. It was observed that all the new techniques devel-

oped are performing comparatively well with existing methods. For them to be

effectively compared in solving large problems, computational experiments of

all the new techniques must be carried out. This aspect has been left as further

studies to these techniques.
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