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ABSTRACT 

This study investigates the potential of using graphemes, instead of phonemes, as 

acoustic sub-word units for monolingual and cross-lingual speech recognition for some 

of the under-resourced languages of the Limpopo Province, namely, IsiNdebele, Sepedi 

and Tshivenda. The performance of a grapheme-based recognition system is compared 

to that of phoneme-based recognition system.  

For each selected under-resourced language, automatic speech recognition (ASR) 

system based on the use of hidden Markov models (HMMs) was developed using both 

graphemes and phonemes as acoustic sub-word units. The ASR framework used 

models emission distributions by 16 Gaussian Mixture Models (GMMs) with 2 mixture 

increments. A third-order n-gram language model was used in all experiments. Identical 

speech datasets were used for each experiment per language. The LWAZI speech 

corpora and the National Centre for Human Language Technologies (NCHLT) speech 

corpora were used for training and testing the tied-state context-dependent acoustic 

models. The performance of all systems was evaluated at the word-level recognition 

using word error rate (WER). 

The results of our study show that grapheme-based continuous speech recognition, 

which copes with the problem of low-quality or unavailable pronunciation dictionaries, is 

comparable to phoneme-based recognition for the selected under-resourced languages 

in both the monolingual and cross-lingual speech recognition tasks. The study 

significantly demonstrates that context-dependent grapheme-based sub-word units can 

be reliable for small and medium-large vocabulary speech recognition tasks for these 

languages. 
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1. INTRODUCTION 

1.1. Background 

Within the realm of human language technologies (HLTs), there has been an increase 

in speech processing technologies over the last few decades (Barnard et al., 2010; 

Besacier et al., 2014). Modern speech technologies are commercially available for a 

limited but interesting range of man-machine interfacing tasks. These technologies 

enable machines to respond almost correctly and reliably to human voices, and provide 

numerous useful and valuable e-services. It remains a puzzle to develop technologies 

that can enable a computer-based system to converse with humans on any topic. 

However, many important scientific and technological advances have taken place, 

thereby bringing us closer to the “Holy Grail” of computer-driven mechanical systems 

that generate, recognise and understand fluent speech (Davis et al., 1952). 

At the core of speech processing technologies lies the automatic speech recognition 

(ASR), also known as speech-to-text (STT) conversion, Speech synthesis, commonly 

referred to as text-to-speech (TTS) synthesis, and Spoken language understanding 

(SLU) technology. Huang et al. (2001) describes ASR as a technology that allows 

computers to identify the words that a person speaks into a microphone or telephone 

and convert them to written text. TTS as a technology that allows computers to generate 

human-like speech from any text input to mimic human speakers. And SLU as one 

comprises of a system that typically has a speech recogniser and a speech synthesiser 

for basic speech input and output, sentence interpretation component to parse the 

speech recognition results into semantic forms – which often needs discourse analysis 

to track semantic context and to resolve linguistic ambiguities. A dialog manager is the 

central component of the SLU module that communicates with applications to perform 

complicated tasks such as discourse analysis, sentence interpretation, and response 

message generation (Huang et al., 2001).  

The speech processing research community is continually striving to build new and 

improved large vocabulary continuous speech recognition (LVCSR) systems for more 
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languages and continuous speech recognition (CSR) systems for more existing under-

resourced languages in different communities and countries. One of the essential 

components in building ASR systems is a pronunciation dictionary, which provides a 

mapping to a sequence of sub-word units for each entry in the vocabulary (Stuker et al., 

2004). The sub-word units in the pronunciation dictionary are used to model the 

acoustic realisation of the vocabulary entries. Phonemes, basic contrastive unit of 

sound in a language, are the most commonly used sub-word units and have shown a 

notable success in the development of ASR systems (Kanthak et al., 2003; Stuker et al., 

2004). However, the use of graphemes, letters or a combination of letters that represent 

the orthography of a word, as sub-word units have achieved comparable recognition 

results (Schukat-Talamazzini et al., 1993; Kanthak and Ney, 2002; Kanthak et al., 2003; 

Stuker et al., 2004; Sirum and Sanches, 2010; Basson and Davel, 2013; Manaileng and 

Manamela, 2014). 

1.2. Research Problem 

As the development of LVCSR systems continues to improve, the performance of 

continuous speech recognisers has steadily improved to the point where even high CSR 

accuracies are becoming achievable. However, the optimum recognition accuracy of 

continuous speech recognisers remains a challenge when dealing with some of the 

local under-resourced African languages such as Sepedi, IsiNdebele, IsiXhosa, 

Xitsonga and Tshivenda (van Heerden et al., 2012; Barnard et al., 2010). 

The performance of ASR systems is heavily influenced by the comprehensiveness of a 

pronunciation dictionary used in the decoding process (Stuker et al., 2004). The best 

recognition results are usually achieved with hand-crafted, i.e., manually created, 

pronunciation dictionaries (Kanthak et al., 2003; Killer et al. 2003). Human expert 

knowledge about the targeted language is usually required for crafting a pronunciation 

dictionary and thus making it a labour-intensive, time-consuming and expensive task. If 

no such expert knowledge is available or affordable, new methods are needed to 

automate the process of creating the pronunciation dictionary. However, even the 
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automatic tools often require hand-labelled training materials and rely on manual 

revision. 

The methods used to build LVCSR systems for lucrative languages require enormous 

amount of linguistic resources which makes it impractical to use the same methods for 

languages with little or no such resources (Badenhorst et al., 2011; van Heerden et al., 

2012). For example, the use of hand-crafted dictionaries raises problems when dealing 

with rare and under-resourced languages since many of these languages have very 

little or no computational linguistic tools (Stuker et al., 2004). It therefore becomes 

impractical or nearly impossible to sustain the creation of hand-crafted dictionaries. 

Moreover, linguistic experts are often unavailable, unaffordable or even worse, non-

existent for most under-resourced languages. This is indeed the case with the most of 

the official under-resourced indigenous languages of South Africa (Barnard et al., 2010). 

Our research study focuses on three of the official under-resourced indigenous 

languages of South Africa, namely, Sepedi, IsiNdebele and Tshivenda. 

Furthermore, there are two kinds of problems that can be introduced by a crafted 

pronunciation dictionary. The first one can be introduced during the training phase by a 

false mapping between a word and its modelling units, resulting in the contamination of 

the acoustic models. The models will as a result not describe the actual acoustics that 

they ought to represent. Secondly, the incorrect mapping will falsify the scoring of 

hypotheses by applying the wrong models to the score calculation. 

1.3. Motivation for the Research Study 

The practitioners of human language technologies (HLTs) tend to find some spoken 

natural languages more attractive and popular than others. For this reason, what they 

find as unattractive and unpopular languages are often deserted, undeveloped and 

prone to extinction (Crystal, 2000). Crystal (2000) estimates that on average, one 

language dies every two weeks. It is for this and other reasons that the development of 

speech recognition systems and related technologies such as machine translation 
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systems for literally all spoken languages in the world is highly desirable (Besacier et 

al., 2014). 

South Africa has eleven official languages which have, or are at least intended to have, 

equal economic relevance and value. Very little documented knowledge exists about 

most of these languages and hence advanced modern linguistic and computational 

tools are scarce in their day-to-day usage. This situation makes it very difficult to build 

the required LVCSR systems for all these official languages (Badenhorst et al., 2011). 

This study is therefore motivated by the need to use methods which require few 

linguistic and computational resources to build LVCSR systems with acceptable levels 

of recognition accuracies. 

We suggest adopting an approach of developing ASR systems that rely solely on 

graphemes rather than phonemes as acoustic sub-word units. The mapping in the 

pronunciation dictionary now becomes completely trivial, since every word is simply 

segmented into its constituent alphabetic letters. Intensive linguistic expert knowledge is 

therefore no longer needed. Using graphemes instead of phonemes as acoustic sub-

word units for ASR will reduce the cost and time needed for the development of 

satisfactory ASR systems for our targeted languages. 

1.4. Research Aim and Hypothesis 

The purpose of the study is to address the problem of creating pronunciation 

dictionaries in a non-optimal manner with respect to cost and the duration of time. The 

study aims to investigate the potential of using graphemes, instead of phonemes, as 

acoustic sub-word units for the ASR of the three under-resourced languages of Limpopo 

Province.  

The research hypothesis is formulated as follow: the grapheme-based acoustic sub-

word units achieve acceptable levels of CSR accuracies when compared to phoneme-

based units. 
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1.5. Research Questions and Objectives 

Our research questions are framed as follows: 

i. Can we use graphemes, instead of phonemes, as acoustic sub-word units for 

continuous speech recognition of Sepedi, Tshivenda and IsiNdebele? 

ii. How do graphemes perform as compared to phonemes in monolingual and 

multilingual speech recognition for these languages? 

 

The objectives of the study are to: 

i. Develop baseline phoneme-based speech recognition systems using the available 

hand-crafted and automatically created pronunciation dictionaries.  

ii. Create grapheme-based dictionaries from the available phoneme-based 

pronunciation dictionaries, which should require less effort since we only need to 

extract the word lists and then separate every word into its constituent alphabetic 

letters.  

iii. Develop grapheme-based speech recognition systems using the new grapheme-

based pronunciation dictionaries.  

iv. Compare the recognition results attainable in both speech recognition experiments 

for each language and observe whether or not graphemes have the potential of 

being similarly used as acoustic sub-word units in the decoding process of an 

ASR.  

v. Build a multilingual speech recognition system using the two approaches and then 

compare the results.  

1.6. Research Method 

The ASR experiments conducted in our study used two secondary speech corpora. The 

first corpus used was the Lwazi ASR corpus (van Heerden et al., 2009) and the National 

Centre for Human Language Technologies (NCHLT) ASR corpus (Barnard et al., 2014). 

Both corpora are freely available on the Resource Management Agency (RMA) 
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website1. The phoneme-based pronunciation dictionaries were also obtained from the 

RMA website. The monolingual acoustic models were trained with an average of 6.5 

hours of speech training data for the Lwazi ASR corpus and an average of 41.9 hours 

for the NCHLT ASR corpus. The models were further tested on an average of 1.6 and 

3.1 hours of speech data for the Lwazi and NCHLT ASR corpus, respectively. The 

multilingual acoustics models, a combination of the monolingual acoustic models trained 

with the Lwazi speech data, were trained with 19.58 hours of speech data, and tested 

with 4.85 hours. 

The Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features 

and enhanced with the cepstral mean variance normalization (CMVN). For each 

language, a third order language model was trained from a corpus of the sentential 

transcriptions of the training data.  

The tools used to conduct our experiments involve, the hidden Markov modelling toolkit 

(HTK) (Young et al., 2006) to train acoustic models, the HDecode tool for evaluating the 

recognition systems, and the SRILM language modelling toolkit (Stolcke, 2002) to train 

and evaluate the language models. 

1.7. Significance of the Study 

This study essentially investigates the potential of grapheme-based speech recognition 

for selected under-resourced languages. The recognition results obtained will provide 

insight into the potential of using graphemes rather than phonemes for monolingual and 

multilingual speech recognition of the three targeted languages.  

Should such a potential be found to be reasonably acceptable in relation to the current 

typical ASR performance measures, then the local speech processing research 

community can adopt the proposed method. This will reduce the cost and time required 

                                            

1
 http://rma.nwu.ac.za/index.php/resource-catalogue.html 
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to build CSR systems for more under-resourced languages and possibly their dialects. 

Such a development will potentially benefit communities that use most of these heavily 

under-resourced languages on daily basis by ensuring the development and delivery of 

the much needed automatic computational linguistic tools.  

These tools may significantly help with issues of language preservation, elevation, 

advancement and modernisation, thereby eliminating or drastically reducing threats of 

the extinction of under-resourced African indigenous languages. Being a multilingual 

society, linguistic and digital e-inclusion is vital for South Africa to ensure that e-service 

delivery can be achieved in any of the eleven official languages across the country. 

Furthermore, based on some of the results of this research project, two papers (one full 

and one short) have been published and presented at conferences. Their details are 

indicated in Appendix G. Moreover, some short papers were presented at Workshops 

and Masters and Doctoral (M&D) Symposiums. 

1.8. Structure of Dissertation 

The rest of the dissertation is organized as follows:  

 Chapter 2 provides the theoretical background literature on ASR. The chapter 

begins by providing a historical perspective and theoretical framework of ASR. It 

further outlines the basic components, classifications and approaches to ASR. 

 Chapter 3 discusses some of the previous studies on grapheme-based speech 

recognition, which forms a basis for the proposed research study. The chapter 

further discusses CSR for under-resourced languages, the approaches and also 

the challenges. 

 Chapter 4 presents and discusses the research method used to conduct the 

research study. A detailed description of the design of the experiments is 

provided. 

 Chapter 5 presents the experimental results of the research study. ASR 

performance evaluation metrics are discussed, the optimum evaluation 
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parameters are outlined and the evaluation procedure is also described. 

Furthermore, analysis of the results is presented. 

 Chapter 6 summarises the findings of the research study, give a synopsis of the 

envisioned future work, recommends potential directions of the future and further 

gives a general conclusion of the research study.  
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2. THEORETICAL BACKGROUND ON ASR 

2.1. Introduction  

This chapter discusses some historical perspective on some key inventions and 

developments that have enabled significant progress in ASR research. We briefly 

review the current state of ASR technology and also enumerate some of the challenges 

that lie ahead of the speech processing research community. The statistical framework 

and basic components of ASR systems are also discussed in detail. 

2.2. Historical Background of ASR  

The ASR technology has been a topic of great interest to a broad general population 

since it became popularised in several blockbuster movies of the 1960’s and 1970’s. 

The most notable was the movie “2001: A Space Odyssey” by Stanley Kubrick (Juan et 

al., 2004). However, early attempts to design ASR systems came in the 1950’s and 

were mostly guided by the theory of acoustic-phonetics. This theory describes the 

phonetic elements of speech (the basic sounds of a language) and attempts to explain 

how they are acoustically realised in a spoken utterance (Juan et al., 2004). 

What makes ASR research most appealing is the fact that speech is the most natural, 

easiest, effortless and convenient way to achieve inter-human communication (Juan et 

al., 2004). With the rapid increase and uptake of information and communication 

technology in everyday life, there is an increasing need for the communities in 

computing to adapt and embrace computational devices endowed with some 

semblance of human behaviour traits, thereby making man-machine interfacing easy to 

use. 

In 1952, Davis, Biddulph, and Balashek of Bell Laboratories built a system for isolated 

digit recognition for a single speaker (Davis et al., 1952), using the formant frequencies 

measured during vowel regions of each digit. Fry and Denes also built a phoneme 

recogniser to recognise 4 vowels and 9 consonants (Fry et al., 1959). In the late 1960’s, 
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Atal and Hanauer formulated the fundamental concepts of Linear Predictive Coding 

(LPC) (Atal et al., 1971), which greatly simplified the estimation of the vocal tract 

responses from speech waveforms.  

The study of spectral distance measures (Itakura, 1975) and statistical modelling 

techniques (Juang et al., 1986) led to the technique of mixture density hidden Markov 

models (HMMs) (Lee et al., 1990) which has since become the popular representation 

of speech units for speaker-independent continuous speech recognition. The Bell 

Laboratories also introduced an important approach called “keyword spotting” as a 

primitive form of speech understanding (Wilpon et al., 1990). Many researchers 

successfully used the HMM technique of stochastic processes (Poritz, 1982; Liporace, 

1982). Another technology that was (re)introduced in the late 1980’s, after failing in the 

1950’s, was the idea of artificial neural networks (ANN) (Lippmann, 1989). 

2.3. Statistical framework of ASR Process 

The speech recognition problem can be formulated as follows (Huang et al., 2001): For 

a given acoustic signal X = x1, x2,…, xm, the main task is to find the word sequence W* 

= w1, w2,…, wn, which is produced by or corresponds to the acoustic event X. The 

length of X is m and the length of W* is n. The word sequence W* is found by 

computing the maximum posterior probability that a word sequence W* was spoken 

given an observed acoustic signal X – which is expressed as follows:  

     𝑊∗ =  argmax
𝑊

𝑃(𝑊|𝑋)             (2.1) 

However, the required maximum likelihood probability of the word sequence W* cannot 

be directly estimated, it is therefore computed using Bayes’ decision rule as follows: 

  𝑊∗  =  argmax
𝑊

𝑃(𝑋|𝑊).𝑃(𝑊)

𝑃(𝑋)
                      (2.2) 



11 

 

Assuming that the a priori probability 𝑃(𝑋) remains constant throughout the decoding 

process, equation (2.2) can be expressed as follows (also known as the Fundamental 

Equation of Speech Recognition (Huang et al., 2001)):  

   𝑊∗ =  argmax
𝑊

𝑃(𝑋|𝑊). 𝑃(𝑊)                      (2.3) 

Equation (2.3) can further be classified into the following three basic components: 

i. Acoustic Model – the calculation of the conditional probability 𝑃(𝑋|𝑊) to observe 

the acoustic signal X given a word sequence W was spoken.  

ii. Language Model – the calculation of the a priori probability 𝑃(𝑊) that word 

sequence W was spoken.  

iii. Search – the most efficient calculation of word sequence W* that 

maximise 𝑃(𝑊|𝑋). 

2.4. Basic components of ASR Systems 

The speech recognition process seems fairly easy for humans. However, it should be 

borne in mind that the human intellect uses an enormous knowledge base about the 

world. The challenges of ASR lie in segmenting the speech data (e.g., determining the 

start and end of words), the complexity of the speech data (how many different words 

are there and how many different combinations of all those words is possible), the 

variability of the speakers (women have a higher fundamental frequency than men), 

variability of speech channel (microphones, telephones, mobile phones, etc.), ambiguity 

of spoken words (“two” versus “too”), determination of word boundaries (“interface” 

versus “in her face”), the semantics and ambiguity in pragmatism (Huang et al., 2001; 

Juang et al., 2004). 

The fundamental goal of an ASR system is to accurately and efficiently convert a 

speech signal into a text transcription of the spoken words. The conversion must be 

independent of the speaker, the device used to record the speech (i.e., the transducer 

or microphone), or the environment (Rabiner, 2004). Standard ASR systems commonly 
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consist of five main modules, namely: signal acquisition, feature extraction, acoustic and 

language modelling and search/decoding. A block diagram of a typical ASR system is 

depicted in Figure 2.1. 

 

Figure 2.1: ASR block diagram (Wiqas, 2012) 

2.4.1. Speech Signal Acquisition 

The speech signal acquisition module is responsible for detecting the presence of a 

speech signal, capturing the signal and passing it to the feature extraction module for 

further processing. However, the accurate and efficient capturing or acquisition of a 

speech signal plays a primary role in the entire recognition process since all the 

succeeding processing modules depend entirely on the accuracy of the signal captured. 

2.4.2. Feature Extraction 

The primary goal of feature extraction, also referred to as speech parameterization, is to 

efficiently extract a set of measurable and salient features that characterize the spectral 

properties of various speech sounds (the sub-word units) (Rabiner, 2004). This is 

achieved by dividing the input speech into blocks and deriving a smoothed spectral 

estimate from each block. The blocks are typically 25 milliseconds (ms) long to give a 

longer analysis window and are generally overlapped by 10 ms. To make this possible, 

an assumption is made that the speech signal can be regarded as stationary over a few 

milliseconds.  
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The standard feature set for most ASR systems is a set of Mel-frequency cepstral 

coefficients (MFCCs) (Davis, 1980), along with the first and second order derivatives of 

these features. To produce MFCC coefficients, the spectral estimate is computed using 

either fast Fourier transform (FFT) (Rabiner, 1975), Linear Predictive Coding (LPC) 

(Atal, 1971), or Perceptual Linear Predictions (PLP) (Hermansky, 1990). 

2.4.3. Acoustic Modelling 

The acoustic modelling module forms the central component of an ASR system (Huang 

et al., 2001). The process of acoustic modelling accounts for most of the computational 

load and performance of the overall ASR system. As previously indicated, the goal of 

acoustic modelling is to observe the acoustic signal X given that a word sequence W 

was spoken by calculating the conditional probability 𝑃(𝑋|𝑊). That is, the acoustic 

modelling module links the observed features of the speech signal with the expected 

phonetics of the hypothesis word and/or sentence. Statistical models are used to 

characterize sound realization.  One such statistical model used is the HMM technique 

(Rabiner, 1989; Young, 2008).  

The HMMs are used to model the spectral variability of each of the basic sounds in the 

language using a mixture density Gaussian distribution, also known as a Gaussian 

mixture model (GMM). The GMM is optimally aligned with a speech training set and 

then iteratively updated and improved. That is, the means, variances, and mixture gains 

are iteratively updated until an optimal alignment and match is achieved (Juang et al., 

2004). The HMMs typically have three emitting states and a simple left-right topology 

(Young, 2008). The models are easily joined by the entry and exit states. Composite 

HMMs can be formed by merging the entry state of one phone model to the exit state of 

another, allowing the joining of phone models to form words or words to form complete 

sentences. The HMMs are mostly preferred because of their flexibility to perform 

context-dependent and context-independent acoustic modelling (Rabiner, 1989). 
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2.4.4. Language and Lexical Modelling 

The purpose of a language model, or a grammar, is to provide a mechanism for 

estimating the probability of some word, 𝑤𝑛, occurring in an utterance (or a sentence) 

given the preceding words, 𝑊1
𝑛−1 =  𝑤1, 𝑤2, … , 𝑤𝑛−1 (Jelinek et al., 1991). As stipulated 

in equation (2.2), 𝑃(𝑊) represents the language model. The practical challenge of 

language modelling is how to build these models accurately so that they can truly and 

accurately reflect the structural dynamics of spoken language to be recognized (Young, 

1996; Huang et al., 2001; Juang et al., 2004).  

There are several methods of creating robust language models, including the use of 

rule-based systems (i.e., deterministic grammars that are knowledge driven), and 

statistical methods which compute an estimate of word probabilities from large training 

sets of textual material (Juang et al., 2004). The most convenient way of creating robust 

language models is to use statistical n-grams – which are constructed from a large 

training set of text. An n-gram language model assumes that 𝑤𝑛 depends only on the 

preceding 𝑛 − 1 words, that is, 

𝑃(𝑤𝑛|𝑊1
𝑛−1) =  𝑃(𝑤𝑛|𝑊𝑛−𝑘+1

𝑛−1 )    (2.4) 

The n-gram probability distributions can be computed directly from text data using 

counting methods and hence there is no requirement to have explicit linguistic rules 

such as a formal grammar of the language (Young, 1996).  To estimate a trigram (n = 3) 

probability – which is the probability that a word 𝑤𝑛 was preceded by the pair of words 

(𝑤𝑛−1, 𝑤𝑛−2), the quantity can be computed as (Jelinek, 1991; Huang et al., 2001): 

𝑃(𝑤𝑛|𝑤𝑛−1, 𝑤𝑛−2) =  
𝐶(𝑤𝑛−2,𝑤𝑛−1,𝑤𝑛)

𝐶(𝑤𝑛−2,𝑤𝑛−1)
   (2.5) 

From equation (2.5), 𝐶(𝑤𝑛−2, 𝑤𝑛−1, 𝑤𝑛) is the frequency count of the word triplet 

consisting of a sequence of words (𝑤𝑛−2, 𝑤𝑛−1, 𝑤𝑛) that occurred in the training set, and 
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𝐶(𝑤𝑛−2, 𝑤𝑛−1) is the frequency count of the word duplet (bigram) consisting of a 

sequence (𝑤𝑛−2, 𝑤𝑛−1) that occurred in the training set. 

Training n-gram language models generally works very well and is used in the 

development of state-of-the-art ASR systems (Young, 1996). However, they do have 

limitations (Jelinek, 1991). One of the problems raised by n-grams is that for a 

vocabulary of 𝑋 words, there are 𝑋3 possible trigrams. This creates an acute data 

sparsity problem in the training data set as a result of a large number of potential 

trigrams even for small vocabularies (e.g., 5000 words imply 50003 =

125 000 000 000 possible trigrams). As a result, many trigrams may not appear in the 

training data and many others will only appear few times (once or twice). In this case, 

equation (2.5) computes a very poor estimate of the trigram. 

Some solutions to the training data sparsity problem include using a combination of 

discounting and back-off (Katz, 1987). Moreover, when estimating trigrams (or any n-

gram where n is more than 3), a smoothing algorithm (Bahl et al., 1983) can be applied 

by interpolating trigram, bigram and unigram relative frequencies, i.e., 

𝑃̂(𝑤𝑛|𝑤𝑛−1, 𝑤𝑛−2) =  𝑝3
𝐶(𝑤𝑛−2,𝑤𝑛−1,𝑤𝑛)

𝐶(𝑤𝑛−2,𝑤𝑛−1)
+ 𝑝2

𝐶(𝑤𝑛−1,𝑤𝑛)

𝐶(𝑤𝑛−1)
+ 𝑝1

𝐶(𝑤𝑛)

∑ 𝐶 
𝑛 (𝑤𝑛)

 (2.6) 

𝑝3 + 𝑝2 + 𝑝1 = 1          

∑ 𝐶 
𝑛 (𝑤𝑛) = the size of text training corpus     

where the smoothing probabilities, 𝑝3, 𝑝2, 𝑝1 are obtained by applying the principle of 

cross-validation (Bahl et al., 1983; Huang et al., 2001). 

Lexical modelling involves the development of a lexicon (or a pronunciation dictionary) 

that must provide the pronunciation of each word the task vocabulary. Through lexical 

modelling, various combinations of phonemes, syllables or graphemes (depending on 

the choice of sub-word units) are defined to give syntactically valid words for the speech 

recognition process. This is necessary because the same word can be pronounced 
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differently by people with different accents, or because the word has multiple meanings 

that change the pronunciation due to the context of its use, known as pronunciation 

variants. 

2.4.5. Search/Decoding 

The role of the decoding module (or simply, the decoder) is to combine the probabilities 

obtained from the preceding components – acoustic models, language models and the 

lexical models, and use them to perform the actual recognition process by finding an 

optimal sequence of words W* that maximises 𝑃(𝑊|𝑋) in equation (2.5). An optimal 

word sequence W* is that which is consistent with the language model and that has the 

highest probability among all the potential word sequences in the language, i.e., W* 

must be the best match of the spectral feature vectors of the input signal (Juang et al., 

2004).  

The primary task of the decoder – which a basically a pattern matching system, is to 

find the solution to the search problem, and to achieve the goal it searches through all 

potential word sequences and assigns probability scores to each of them using a 

pattern matching breadth-first search algorithm such as the Viterbi decoding algorithm 

(Huang et al., 2001; Young, 2008) or its variants, commonly used by the stack-decoders 

or A*-decoders (Paul, 1991; Kenny, 1991). 

The challenge for the decoder is to build an efficient structure to search the presumably 

large lexicon and the complex language model for a range of plausible speech 

recognition tasks. The efficient structure is commonly built using an appropriate finite 

state machine (FSM) (Mohri, 1997) that represents the cross product of the acoustic 

features (from the input signal), the HMM states and units for each sound, the sound for 

each word, the words for each sentence, and the sentences – which are valid within the 

syntax and semantics of the language and task at hand (Juang et al., 2004). For large 

vocabulary and high perplexity speech recognition tasks, the size of the recognition 

network can become astronomically large and prohibitive that they cannot be 
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exhaustively searched by any known method or machine. Fortunately, FSM methods 

such as dynamic programming (Jing et al., 2010) can compile such large networks and 

reduce the size of the vocabulary significantly due to inherent redundancies and 

overlaps across each of the levels of the recognition network. 

2.5. Classifications of ASR Systems 

Speech recognition systems can be divided into three major categories (Huang et al., 

1993), namely, (1) speaker-dependent – a speech recognition system is said to be 

speaker-dependent if it needs to be tuned, or trained, for a specific speaker. In order to 

enable such a system to recognise speech of different speakers, it must be trained for 

all the new speakers, (2) speaker-independent – ASR systems that can recognise 

speech from many users without each user having to undergo a training phase and (3) 

speaker-adaptive – these systems can be trained, initially, for a set of users to provide 

some level of speaker independence, but be adaptable enough to provide speaker-

dependent operation after training. Unfortunately, it is much more difficult to develop a 

speaker-independent system than a speaker-dependent one due to the large volume of 

training data required. Speaker-dependent systems can provide a significant word error 

rate (WER) reduction in comparison to speaker-independent systems if a large amount 

of speaker-dependent training data exists.  

Besides being speaker-dependent, speaker-independent or speaker-adaptive, speech 

recognition systems can be classified according to the continuousness of their speech 

input (Whittaker et al., 2001; Vimala and Radha, 2012), namely, (1) Isolated Speech 

Recognition — this is the simplest and least resource hungry mode a speech 

recognition engine can operate in. Each word is assumed to be preceded and 

succeeded by silence, i.e., both sides of a word must have no audio input, making word 

boundaries easy to detect and construct and (2) Continuous Speech Recognition — this 

mode allows the recognition of several words uttered continuously without pauses 

between them. Special methods must be used in order to determine word and phrase 

boundaries.  



18 

 

Whittaker et al. (2001) also demonstrated that the size of the vocabulary can be used to 

classify ASR systems into the following categories, (1) small – with a maximum of a 

thousand words, (2) medium – a minimum of 1K and a maximum of 10K words, (3) 

large – from 10K to about 100K words, (4) extra-large – more than 100K words, and (5) 

unlimited – which attempts to model all possible (permissible)  words in a language. 

Furthermore, speech recognition systems can be classified according to the size of their 

linguistic recognition units (Huang et al., 1993; Huang et al., 2001) as follows: 

i. Word-based speech recognition uses a single word as a recognition unit. The 

recognition accuracy is very high because the system is free from negative side 

effects of co-articulation and word boundary detection. However, for continuous 

speech recognition, transition effects between words again cause recognition 

problems. Moreover, for a word-based recognition system, processing time and 

memory requirements are very high because there are many words in a 

language, which are the basis of the reference patterns. 

ii. Phoneme-based speech recognition uses phonemes as the recognition units. 

While recognition accuracy decreases when using this approach, it is possible to 

apply error-correction using the ability to produce fast results with only a finite 

number of phonemes. There can be several speech recognition systems that 

make use of sub-word units based on monophones, diphones, triphones, and 

syllables. 

2.6. Approaches to ASR 

Klatt (1977) outlined the two general approaches to ASR: "knowledge-based" and "self-

organizing" approach. The former refers to systems which are based on explicit 

formulation of knowledge about the characteristics of different speech sounds while the 

latter refers to systems where a much more general framework is used and the 

parameters are learned from training data. 
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2.6.1. Knowledge-based Approaches  

In the early 1970s, the Advanced Research Projects Agency (ARPA) initiated the idea 

of developing ASR systems based on the explicit use of speech knowledge. This was 

done within the framework of the speech understanding project (Klatt, 1977). The 

project resulted in the development of a number of ASR systems. Several artificial 

intelligence techniques were applied to use higher knowledge such as lexical and 

syntactic knowledge or semantics and pragmatics to obtain an acceptable recognition 

rate. The resulting systems produced a very poor recognition rate, needed a lot of 

computational resources and were limited to the specific task to which they were 

designed. A fundamental deficiency with this kind of approach is that it is limited by the 

accuracy of the acoustic phonetic decoding. 

Within the same context of knowledge-based approaches, several ASR systems have 

been developed on expert systems modelling of the humans’ ability to interpret 

spectrograms or other visual representations of the speech signal (O’Brien, 1993). 

These kinds of systems separate the knowledge that is to be used in a reasoning 

process from the reasoning mechanism which operates on that knowledge. The 

knowledge is usually entered manually and is based on the existence of particular 

features such as "a silence followed by a burst followed by noise" for an aspirated 

voiceless stop. Using this kind of approach triggers the need for a vast amount of 

knowledge for speaker-independent continuous speech recognition of large 

vocabularies (Mariani, 1991). However, the large set of rules makes it difficult to 

imagine all of the ways in which the rules are interdependent. 

2.6.2. Self-organizing Approaches 

An alternative to the knowledge-based approach is the self-organizing which provides a 

general structure and allows the system to learn the parameters from a set of training 

data. The three most common self-organizing approaches to ASR are, namely, 
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Template Matching, Artificial Neural Networks (ANNs) and the most commonly used 

HMMs (Klatt, 1977; Vimala and Radha, 2012). 

Template Matching 

This is one of the simplest approaches to developing ASR systems. In a typical 

template matching approach, a template is generated for each word in the vocabulary to 

be recognized. The generated template is based on one or more examples of that word. 

The recognition process then proceeds by comparing an unknown input with each 

template using a suitable spectral distance measure (Rabiner and Gold, 1975; Klatt, 

1977). The template with the smallest distance is output as the recognized word. 

Artificial Neural Networks 

One of the most commonly used examples of ANNs is the multi-layer perceptrons 

(MLPs) (Lippmann, 1989). An MLP consists of a network of interconnecting units, with 

two layers for input and output, and one or more hidden layers. A set of speech units to 

be recognized is represented by the output units and the recognition process relies on 

the weights of the connections between the units. The connection weights are trained in 

a procedure whereby input patterns are associated with output labels. The MLPs are 

therefore learning machines in the same way that HMMs. However, they provide the 

advantage that the learning process maximizes discrimination ability, unlike just 

accurately modelling each class separately (Trentin et al., 2001). However, MLPs have 

a disadvantage in that, unlike HMMs, they are unable to deal easily with the time-

sequential nature of speech. The problem with this approach is that it does not 

generalize to connected speech or to any task which requires finding the best 

explanation of an input pattern in terms of a sequence of output classes (Klatt, 1977; 

Vimala and Radha, 2012). 
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Hidden Markov Models 

A hidden Markov model can be defined as a set of probabilistic functions of a Markov 

chain which involves two nested distributions, one pertaining to the Markov chain and 

the other to a set of the probability distributions, each associated with a state of the 

Markov chain (Wilpon et al., 1990). The HMMs attempt to model the characteristics of a 

probabilistic sequence of observations that may not be a fixed function but instead 

change according to a Markov chain. The theory of HMMs has been extensively 

developed to create efficient algorithms for training (Expectation-Maximization, Baum-

Welch re-estimation) and recognition (Viterbi, Forward-Backward) (Juang et al., 1991). 

The HMMs are currently the predominant methodology for state-of-the-art speech 

recognition (Vimala and Radha, 2012; Besacier et al., 2014). 

A typical HMM is defined as follows (Wilpon et al., 1990; Juang et al., 1991; Huang et 

al., 2001): 

 𝑶 = {𝑂1, 𝑂2, … , 𝑂𝑁} – An output observation alphabet. The observation symbols 

correspond to the physical output of the system being modelled. 

 𝑺 = {𝑆1, 𝑆2, … , 𝑆𝑁} – A set of all N states.  

 𝑨 = {𝑎𝑖𝑗} – A transition probability matrix. An entry 𝑎𝑖𝑗 of 𝐴 stands for the 

probability 𝑃(𝑆𝑖|𝑆𝑗) that given state 𝑆𝑖, state 𝑆𝑗  follows. 

 𝝅 = {𝜋𝑖} – An initial state distribution. Each state 𝑆𝑖 has a certain probability 

𝜋𝑖 = 𝑃(𝑞𝑖 =  𝑆𝑖) to be the starting state of a state sequence. 

 𝑩 =  {𝑏𝑖(𝑥)} – An output probability matrix. 𝑏𝑖(𝑥) is the probability that 𝑥 is observed 

in state 𝑆𝑖. 

The calculations are simplified by ensuring that state transitions only depend on the 

directly preceding states hence the name Markov Models. According to the start 

probabilities 𝜋𝑖 a starting state 𝑆1 is selected. With the probability 𝑎𝑖𝑗 the system 

changes from the current state 𝑆𝑖, to 𝑆𝑗. In each state  𝑆𝑖, the emission probabilities 

𝑏𝑖(𝑥) are produced by some hidden random process according to which the most likely 
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observed feature is selected. The random process is hidden in the sense that only the 

output of 𝑏𝑖(𝑥) is observable, not the process producing it. 

HMMs can be classified as either discreet or continuous (Huang et al., 2001). Discrete 

HMMs have a discrete feature vector space. In this case, the emission probabilities 

𝑏𝑖(𝑥) are given by probability tables over the discrete observable features 𝑉. For 

continuous HMMs, the feature vector space is continuous and the emission probabilities 

are now probability densities (Huang et al., 2001). Usually the emission probabilities 

𝑏𝑖(𝑥) are approximated by a Gaussian distribution with a mean value vector µ and the 

covariance matrix ∑ (Huang et al., 2001): 

𝑏𝑖(𝑥) =  ∑ 𝑐𝑖𝑙 . 𝐺𝑎𝑢𝑠𝑠(𝑥|µ𝑖𝑙, ∑𝑖𝑙)
𝐿𝑖
𝑖=0     (2.7) 

∑ 𝑐𝑖𝑙 
𝐿𝑖
𝑖=0 = 1           (2.8) 

 𝐿𝑖  is the number of mixture distributions made is used in state 𝑆𝑖.  

 𝑐𝑖𝑙 are the weight coefficients, called Mixture Components.  

The Gaussian mixture distribution is defined as follows: 

𝐺𝑎𝑢𝑠𝑠(𝑥|µ𝑖𝑙, ∑𝑖𝑙) =  
1

√(2π)𝑑|∑|

. 𝑒
1

2
(x−µ)𝑇.∑ (x−µ)−1

.    (2.9) 

 𝑑 defines the dimensionality of the feature vector space.  

 µ𝑖𝑙 is the mean value vector and ∑𝑖𝑙 is the covariance, they are both referred to as 

the Codebook of the model 

Solving the speech recognition problem with the HMM model can be summarised with 

three fundamental algorithms (Juang et al., 1991; Huang et al., 2001) as follows: 
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 The evaluation problem: focuses on the calculation of 𝑃(𝑂|𝛽) – the probability that 

an observed feature sequence 𝑂 =  𝑜1, 𝑜2, … , 𝑜𝑇 was produced by the HMM 

model 𝛽. This problem can be tackled by the Forward Algorithm. 

 The decoding problem – using the Viterbi Algorithm, the goal is to identify the most 

likely path 𝕢 that produces the observed feature sequence 𝑂. 

 With the optimization problem, the goal is to find the parameters 𝛽∗ that maximises 

the probability to produce 𝑂 given the model 𝛽 = (𝐴, 𝐵, 𝜋), this is achieved by the 

Baum-Welch Algorithm, also known as the Forward-Backward Algorithm. 

2.7. Modelling Units for Speech Recognition 

Within the context of automatic speech recognition process, words are traditionally 

represented as a sequence of acoustic sub-word units such as phonemes (Killer et al., 

2003). The mappings from these sub-word units to words are usually contained in a 

pronunciation dictionary. The pronunciation dictionary provides a mapping to a 

sequence of sub-word units for each entry in the vocabulary (Stuker et al., 2004). 

Phonemes are the most commonly used units for acoustic modelling of speech 

recognition systems (Stuker et al., 2004; Kanthak et al., 2003). The overall performance 

of ASR systems is strongly dependent on the accuracy of the pronunciation dictionary 

and best results are usually obtained with hand-crafted dictionaries (Kanthak et al., 

2003). Before the era of continuous speech recognition, words or morphemes were 

commonly used as sub-word units (Killer et al., 2003).  

Morphemes are meaningful linguistic units consisting of a word or a word element that 

cannot be divided into smaller meaningful parts and that are well fitted for a single word 

recogniser (Killer et al., 2003). In continuous speech, there is a large amount of possible 

words and word combinations. It gets infeasible to write down all possible morphemes 

and it is not possible anymore to find enough training data for each such unit (Gorin et 

al., 1996; Huang et al., 1993; Killer et al., 2003). The simplest way to split up words is to 

decompose them into their syllables (Huang et al., 1993; Killer et al., 2003). 

http://grammar.about.com/od/tz/g/wordterm.htm
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Syllables model co-articulation effects between phonemes and capture the accentuation 

of a language (Gorin et al., 1996; Killer et al., 2003). Although syllables are limited in 

number, they are still too many to cause training problems (Killer et al., 2003). The 

number of phonemes in a language is well below the number of possible syllables, 

usually ranging between 30 and 50 phonemes (Killer et al., 2003). Phonemes are easily 

trainable and offer the advantage that a new word can be added very simply to the 

vocabulary (Gorin et al., 1996; Killer et al., 2003). 

Most speech recognition systems are improved by looking at phonemes in their various 

contexts. Triphones are used when only the immediate left and right neighbours are 

considered (Besling, 1994, Gorin et al., 1996; Black et al., 1998; Killer et al., 2003). 

Polyphones are used to model unspecified neighbourhood (Killer et al., 2003). 

2.8. Development of state-of-the-art Automatic Speech Recognition Systems  

The state-of-the-art ASR systems generally use a standard HMM-based approach and 

involve two major phases, namely, model training phase and decoding phase (Young, 

2008; Besacier et al., 2014). Modern ASR systems commonly incorporate the HMM 

technique with a variety of other techniques to enhance the recognition accuracy and 

reduce recognition error rates. Such techniques include, Dynamic Bayesian Networks 

(DBN) (Stephenson et al., 2002), Support Vector Machines (SVM) (Solera-Urena et al., 

2007), Dynamic Time Wrapping (DTW) (Jing et al., 2010) and ANN (Seide et al., 2011; 

Mohamed et al., 2012). Figure 2.2 outlines a typical state-of-the-art ASR system. A 

large number of recruited speakers for doing speech recordings are usually required to 

create and improve acoustic models for large vocabulary speaker-independent ASR 

systems in the model training phase. 

The model training phase involves training both acoustic and language models. Robust 

acoustic models must take into account speech variability with respect to environment, 

speakers and channel (Huang et al., 2001). The LVCSR systems require a large textual 

data to generate robust language models. This is because statistical language models 
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are based on the empirical fact that a good estimation of the probability of a lexical unit 

can be obtained by observing it on large text data (Besacier et al., 2014). 

 

 

 

 

 

 

 

The decoding phase of state-of-the-art ASR systems integrates a speech decoder that 

is capable of generating N-best lists of words (or phonemes) as a compact 

representation of the recognition hypotheses and then to re-score them using robust 

statistical language models to output the best recognition hypothesis (Besacier et al., 

2014). At present, several state-of-the-art ASR decoders exist under open-source 

licences and can easily be adapted to any language of interest. Such decoders include: 

HTK, KALDI, Julius, RASR, and Sphinx, etc. (Besacier et al., 2014). 

2.9. Developing HMM-Based Speech Recognition Systems 

There is a wide variety of approaches, techniques and toolkits for developing speech 

recognition engines. The discussion of all the different techniques is beyond the scope 

of this research study. We therefore discuss an overview of the most commonly used 

toolkit for developing HMM-based speech recognition engines, the Hidden Markov 

Model Toolkit (HTK) (Young et al., 2006). The HTK is the toolkit used in all the training 

and recognition experiments in this research study. 

Figure 2.2: Components of a typical state-of-the-art ASR system (Besacier et al., 2014) 
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2.9.1. An Overview of HMM-based Speech Recognition Engines  

HMM-based speech recognition engines use HTK with a variety of configuration details 

to perform training and decoding/recognition of ASR systems. Generally, HMM-based 

speech recognition engines comprise of two major processing phases: 

 Training Phase – this phase involves using the training tools to estimate the 

parameters of a set of HMMs using a set audio files and their associated 

transcriptions. 

 Recognition/Testing Phase – HTK recognition tools are used to transcribe 

(generate text for) unknown utterances. 

2.9.2. The Hidden Markov Model Toolkit  

The HTK is a toolkit for building HMMs. It is primarily designed for building HMM-based 

speech processing tools, particularly, speech recognizers (Young et al., 2006). The HTK 

is an open-source research toolkit that consists of command-line tools written in C 

language to construct various components of speech recognition systems. The HTK is 

very flexible and complete (always updated). Besides the tools provided for training and 

decoding, the toolkit also provides tools designed for data preparation and analysis. 

2.9.3. Feature Extraction  

The HTK provides a variety of feature extraction parameters (Young et al., 2006).  We 

name a few that are commonly used by most ASR researchers for task-appropriate 

recognition accuracy: 

- LPC   : linear prediction filter coefficients 

- LPCEPSTRA  : LPC cepstral coefficients 

- MFCC   : mel-frequency cepstral coefficients 

- FBANK  : log mel-filter bank channel outputs 

- PLP   : PLP cepstral coefficients 
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Each of these parameters can have additional qualifiers which are very well understood 

by HTK. The use of different qualifiers provides the privilege to extract different features 

which then yields varying recognition accuracies and correctness. It is a researcher’s 

responsibility to try different combinations of these qualifiers to achieve better results. 

The possible qualifiers interpreted by HTK are (Young et al., 2006): 

- _E  : has energy 

- _N  : absolute energy suppressed 

- _D  : has delta coefficients 

- _A  : has acceleration coefficients 

- _C  : is compressed 

- _Z  : has zero mean static coefficients 

- _K  : has CRC checksum 

- _O  : has 0th cepstral coefficients 

- _V  : has VQ data 

- _T  : has third differential coefficients 

2.10. Multilingual Speech Recognition 

Multilingual speech recognition is a topic beyond the scope of this study, therefore only 

a summary with regards to the challenges and approaches is discussed. There are 

several successful approaches to multilingual speech recognition (Ulla, 2001), the 

different approaches depend on the goal of the application. Ulla (2001) clustered the 

approaches in the following three groups: 

 Porting – this approach involves the porting of an ASR system designed for a 

specific language to another language. In this case, the ASR system is the same 
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for the target language and the training data are only of the new language. The 

original (source) system must be optimised for the new (target) language. Most of 

the source language algorithms must be adapted to conform to the target 

language. The ASR system for the target language is trained with data from the 

source language. The porting approach assumes that there is enough training 

data in the target language to establish a complete system.  

 Cross-lingual recognition – unlike the porting approach, cross-lingual assumes 

that there’s insufficient training data available for training the ASR system in the 

target language. Therefore, techniques are needed to allow the use of training 

material from a source language to model acoustics parameters of the target 

language. Occasionally, an adaption with few data from target language could 

take place (Ulla, 2001). The first step is to find the possible source language(s) to 

harvest the training material for the target language. An optimal language, the 

language yielding best recognition performance on the target language, must be 

identified. A relation between the source language(s) and the target language 

must also be identified. One such relation must be the most suitable acoustic 

units of the source and target language(s). The main problem is to determine the 

identical acoustic units or to model the existing acoustic units in a way that 

satisfactory recognition accuracies can be achieved (Ulla, 2001). 

 Simultaneous multilingual speech recognition – this very different approach 

allows the recognition of utterances of different languages at the same time. The 

system, basically, does not know the language of an utterance. Training data is 

available in all languages and all languages are decoded by a single recognizer. 

Research in the domain of ASR for under-resourced languages has focused on the 

efficient development of multilingual and cross-lingual grapheme-based ASR 

approaches that can make use of resources available in other languages. The use of 

multilingual grapheme models for rapid bootstrapping of acoustic models to new 

languages was investigated by Stuker (2008a; 2008b). Data driven mapping of 

grapheme sub-word units across languages was studied by Stuker (2008a). Stuker 



29 

 

(2008b), applied polyphone decision-tree based tying for porting decision trees to a new 

language for grapheme models. The study focused specifically on porting multilingual 

grapheme models to German and it was found to be beneficial compared to 

monolingual grapheme models when limited adaptation speech data for training is 

available. 

Kanthak and Ney (2002) demonstrated that grapheme-based acoustic units in 

combination with decision tree state tying may reach the performance of phoneme-

based units for at least a couple of European languages. The approach is driven by the 

acoustic data and does not require any linguistic or phonetic knowledge. Grapheme-

based multilingual acoustic modelling already provides a globally consistent 

representation of acoustic unit set by definition (Kanthak et al., 2003). Global phoneme 

representation sets such as Speech Assessment Method Phonetic Languages 

(SAMPA) or the International Phonetic Alphabet (IPA) (Schultz, 1998) may be used to 

express similarities between languages when using phoneme-based acoustic sub-word 

units. However, the use of context-dependent grapheme-based sub-word units 

eliminates the need to find common sets of acoustic sub-word units. 

2.11. Robustness of Automatic Speech Recognition Systems 

The recognition accuracy of ASR systems rapidly degrades when deployed in 

acoustical environments different than those used in training (Acero, 1993). The main 

cause is the mismatch between training and recognition spaces, which could result in 

the speech recognizer becoming completely unusable (Acero, 1993). 

The training-testing mismatch is commonly caused by two major factors: additive noises 

and convolutional noises (Juang, 1991; 1992; Acero, 1993; Moreno, 1996). A great deal 

of attention has previously been paid to this problem in an effort to successfully deploy 

the technology in speech-enabled applications (Gales, 1992; Acero, 1993). Many 

approaches have been considered to enhance robustness in speech recognition 

systems. These includes techniques based on the use of special distortion measures, 
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autoregressive analysis, the use of auditory models, and the use of microphone arrays, 

among many other approaches (Juang, 1991; Gales, 1992; Acero, 1993).  

There are two main ways to achieve robust speech recognition (Juang, 1992; Acero, 

1993; Moreno, 1996):  

 Acoustic model adaptation methods, which map acoustic models from training 

space to recognition space. 

 Feature vector normalization methods, which map recognition space feature 

vectors to the training space. 

 

The choice of a robustness technique depends on the characteristics of the application 

in each situation. In general, acoustic model adaptation methods produce the best 

results because they can reasonably model the uncertainty caused by the noise 

statistics (Neumeyer and Weintraub, 1995). 

Well-known successful acoustic model adaptation methods include Maximum A 

Posteriori (MAP) (Gauvain, 1994), Maximum Likelihood Linear Regression (MLLR) 

(Leggeter, 1995), Parallel Model Combination (PMC) (Gales and Young, 1995), and 

Vector Taylor Series (VTS) (Moreno, 1996). However these methods require more 

training data and computing time than the feature vector normalization methods. 

Most common and successful feature vector normalization method is known as, 

Cepstral Mean Normalization (CMN) (Liu, et al., 1993). The CMN has been successfully 

used as a simple yet effective way of normalizing the feature space. It provides an error 

rate reduction under mismatched conditions and has also been shown to yield a small 

decrease in error rates under matched conditions. These benefits, together with the fact 

that it is very simple to implement, have seen many current systems adopting it 

(Manaileng and Manamela, 2013). 
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2.12. Conclusion 

This chapter discussed the theoretical background of ASR. The historical background of 

the field was elaborated and the statistical framework of the technologies was 

thoroughly discussed. We further discussed the individual components that make up a 

typical ASR system. The various classifications of and approaches to ASR systems 

were also discussed. We further elaborated the approach that is commonly followed to 

develop HMM-based and state-of-the-art speech recognition systems.  
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3. RELATED BACKGROUND STUDY 

3.1. Introduction  

As previously stated, there is little documented knowledge and information on most of 

under-resourced languages and hence they lack advanced modern linguistic and 

computational tools. The speech processing research community has been concerned 

with porting, adapting, or creating written and spoken resources or even models for low-

resourced languages (Besacier et al., 2014). Besacier et al. (2014) also notes the 

several adaptation methods that have been proposed and experimented with, and also 

the workshops and special sessions that have been organized on this issue. 

3.2. Previous Studies on Grapheme-based Speech Recognition 

In cases were no expert knowledge is available or affordable for hand-crafting a 

pronunciation dictionary, new methods are needed to automate the process of creating 

the pronunciation dictionary. However, even the automatic tools often require hand-

labelled training materials and rely on manual revision and verification. 

There are several different methods to automate the process of creating the 

pronunciation dictionary that have been introduced in the past (Besling, 1994; Black et 

al., 1998; Singh et al., 2002; Kanthak and Ney, 2003). Most of the time these methods 

are based on finding rules for the conversion of the written form of a word to a phonetic 

transcription, either by applying rules (Black et al., 1998) or by using statistical 

approaches (Besling, 1994). Some of the methods have been investigated in the field of 

ASR (Singh et al., 2002; Kanthak and Ney, 2002). 

Recently, the use of graphemes as modelling units – instead of phonemes, has been 

increasingly studied. Graphemes have the advantage over phonemes in that they make 

the creation of the pronunciation dictionary a trivial task. Creating grapheme-based 

dictionaries does not require any linguistic knowledge (Stuker and Schultz, 2004). 

However, graphemes have a generally looser relation to pronunciation, i.e., 
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pronunciation is not immediately related to orthography. As such, it becomes important 

to use context-dependent acoustic modelling techniques and parameter sharing for 

different models (Kanthak and Ney, 2002; Stuker and Schultz, 2004). 

The quality of grapheme-based ASR systems depends significantly on the grapheme-

to-phoneme relation of the language, that is, the degree of relatedness between how 

words are pronounced (articulation) and how they are written (orthography) (Kanthak 

and Ney, 2003; Killer et al., 2003). This has been demonstrated by prior experiments 

(Schukat-Talamazzini et al., 1993; Kanthak and Ney, 2002; Black and Llitjos, 2002).  

Schukat-Talamazzini et al. (1993) and Kanthak and Ney (2002) were some of the first 

researchers to present results for speech recognition systems based on the orthography 

of a word. Kanthak and Ney (2002) further suggested the use of decision trees for 

context-dependent acoustic modelling. Black and Llitjos (2002) successfully relied on 

graphemes for text-to-speech systems in minority languages. Kanthak and Ney (2003) 

and Killer et al. (2003) investigated the use of graphemes for languages with phoneme-

grapheme relations of differing closeness and in the context of multilingual speech 

recognition. Sirum and Sanches (2010) studied the effect on WER for Portuguese when 

the acoustic units based in phonemes and graphemes are compared. Whereas, Basson 

and Davel (2013) investigated the strengths and weaknesses of grapheme-based and 

phoneme-based acoustic sub-word units using the Afrikaans language as a case study. 

They developed a grapheme-based ASR system alongside a phoneme-based ASR 

system using the same standardised approach, except that in the one case they used 

tied-state triphones and the other, tied-state trigraphemes. 

All these experiments have shown that graphemes may be suitable modelling units for 

speech recognition of some languages and not others. However, the use of grapheme-

based pronunciation dictionaries does not yield any pronunciation variants. Therefore, 

the variations in pronunciation of the same word have to be modelled implicitly in the 

parameters of the units used, as it is the case with the differences in pronunciation of 
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the different graphemes depending on their orthographic context (Kanthak and Ney, 

2003). 

3.3. Related Work in ASR for Under-resourced Languages 

3.3.1. Definition of Under-resourced Languages 

Krauwer (2003) was one of the first people to introduce the concept of “under-resourced 

languages”. He referred to them as languages with some of (if not all) the following 

aspects: lack of a unique writing system or stable orthography, limited presence on the 

world wide web, lack of linguistic expertise, lack of speech and language processing 

electronic resources, such as monolingual corpora, bilingual electronic dictionaries, 

transcribed speech data, pronunciation dictionaries, vocabulary lists, etc. The term is 

often used interchangeably with: resource-poor languages, less-resourced languages, 

low-data languages or low-density languages.  

The concept of under-resourced languages should not be confused with that of minority 

languages - which are languages spoken by a minority of the population of a territory 

(Krauwer, 2003). Some under-resourced languages are actually official languages of 

their country of origin and are spoken by a very large population. However, some 

minority languages can often be considered as rather well-resourced. Consequently, 

under-resourced languages are not necessarily endangered, whereas minority 

languages may be endangered (Crystal, 2000). 

3.3.2. Languages of South Africa 

South Africa is a highly linguistically diversified country with eleven official languages, 

four official race groups and very wide social and cultural disparities. Figure 3.1 shows 

the distribution of languages across the population, the bold-font languages are those of 

focus in the Telkom Centre of Excellence for Speech Technology (TCoE4ST) at the 

University of Limpopo. 
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Figure 3.1: South African languages and focus area 

Various speech corpora for South African languages have been released in recent 

years, including the LWAZI telephone speech corpora (Barnard et al., 2009) and 

National Centre for Human Language Technologies (NCHLT) (De Vries et al., 2013) 

speech corpora – a substantially large set of broadband speech corpora. These corpora 

are all focused on speech data from the eleven official languages of South Africa. In 

recent years, speech and language technology projects that attempt to bridge language 

barriers while also addressing socio-linguistic issues, have achieved substantial 

attention and developments mileage in South Africa (Barnard et al., 2010). 

All eleven official languages of South Africa do occur in Limpopo Province – most of 

them being spoken by a few people (Stats SA, 2010). Most languages in this province 

are considered under-resourced due to the scarcity of speech processing tools such as 

pronunciation dictionaries and computational linguistic experts, in most cases. Although 

Barnard et al. (2009) and De Vries et al. (2013) accounts for all eleven languages in 

terms of speech corpora, researchers often encounter problems regarding language 

dialects and perfectly hand-crafted pronunciation dictionaries. 

3.3.3. Approaches to ASR for Under-resourced Languages 

Feature extraction is one of the most important components of ASR systems. Acoustic 

features must be robust against environmental and speaker variations, and to some 

extent, be language independent. The kind of features to be extracted becomes 
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immediately important in the context of ASR for under-resourced languages because 

only small amounts of data are generally available and at times speech data must be 

shared across multiple languages for efficient bootstrapping of systems in unseen 

languages (Besacier et al., 2014). Studies suggest that multilayer perceptrons (MLP) 

features extracted from one or multiple languages can be successfully applied to other 

languages (Stolcke et al., 2006; Toth et al., 2008; Plahl et al., 2011). Thomas et al. 

(2012) and Vesely et al. (2012) also demonstrated that the use of data from multiple 

languages to extract features for an under-resourced language can improve ASR 

performance. 

Due to the difficulty usually encountered in transcribing speech from under-resourced 

languages, researchers have proposed lightly-supervised and unsupervised 

approaches for this task. An unsupervised adaption technique was proposed for the 

development of an isolated word recognizer for Tahil (Cetin, 2008). Several other similar 

and extended techniques have been explored for a variety of languages, such as Polish 

(Loof et al., 2009) and Vietnamese (Vu et al., 2011). These kinds of techniques have 

proven to be useful in saving time and costs required to build ASR systems for 

unsupported languages if prior information such as pronunciation dictionaries and 

language models about the target languages exist. Vu et al. (2011) demonstrated that 

such techniques are useful even when the target language is unrelated to the source 

language. 

The development of ASR systems for under-resourced languages commonly uses 

similar techniques as those in well-resourced languages such as, the use of context-

dependent HMMs to model the phonemes of a language. However, this approach raises 

interesting challenges in the context of under-resourced languages. For instance, 

Wissing and Barnard (2008) suggested that defining an appropriate phone set to model 

is a non-trivial task since even when such sets have been defined they often do not 

have an empirical foundation. Also, putative phonemes such as affricates, diphthongs 

and click sounds may be modelled as either single units or sequences, while 

allophones, which are acoustically too distinct may be modelled separately (Besacier et 
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al., 2014). However, solutions to these issues can be tackled with guidance from the 

choices made in closely related languages. For instance, when a closely related well-

resourced source language is available, it is often possible to use data from that 

language in developing acoustic models for an under-resourced target language.  

A variety of approaches have been used in this regard, such as bootstrapping from 

source-model alignments (Schultz and Waibel, 2001; Le and Besacier, 2009), pooling 

data across languages (van Heerden et al., 2010) and phone mapping for recognition 

with the source models (Chan et al., 2012). Some investigators proposed the use of 

some variation of the standard context-dependent HMMs by using HMMs to rather 

model syllables instead of phonemes (Tachbelie et al., 2012, 2013). This approach 

reduces model parameters because context dependencies are generally less important 

for syllable models. Some researchers however, have proposed the use of alternative 

phoneme modelling techniques all together. For example, Gemmeke (2011) used 

exemplar-based speech recognition where the representations of acoustic units (words, 

phonemes) are expressed as vectors of weighted examples. Siniscalchi et al. (2013) 

proposed to describe any spoken language with a common set of fundamental units that 

can be defined “universally” across all spoken languages. In this case, speech attributes 

such as manner and place of articulation are chosen to form this unit inventory and 

used to build a set of language-universal attribute models derived from IPA (Stuker et 

al., 2003) or with data-driven modelling techniques. The latter work proposed by 

Siniscalchi et al. (2013) is well suited for deep neural network architectures for ASR (Yu 

et al., 2012). 

3.3.4. Collecting or Accessing Speech Data for Under-resourced Languages 

The current development of most ASR systems for well-resourced languages uses 

statistical modelling techniques which require enormous amounts of data (both speech 

and text) to build pronunciation dictionaries and robust acoustic and language models 

(Besacier et al., 2014). However, most under-resourced languages have no existing 

speech corpora and hence data collection is the most important part of ASR 
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development. The speech data collection process for under-resourced languages is 

inarguably a very difficult task. Various approaches for speech data collection in under-

resourced language have been explored, two most common being the use of existing 

audio resources and the recording of audio data from scratch (Besacier et al., 2014). 

The use of existing audio sources involves collecting speech data from a variety of 

sources such as, recordings of lectures, parliamentary speeches, radio broadcasts 

(news), etc. The main challenge with this approach is the transcription of the recordings 

so that they are rendered useful for ASR development. However, due to the scarcity of 

linguistic experts in most under-resourced languages, the difficult manual transcription 

becomes inevitable. Also, many under-resourced languages do not have well-

standardized writing systems (Crystal, 2000). Alternative transcription approaches such 

as crowd-sourcing have been used successfully (Parent and Eskenazi, 2010). However, 

for most under-resourced languages, the number of readily available transcribing 

workers is limited (Gelas et al., 2011). Furthermore, existing sources are generally 

dominated by fewer speakers while a typical speaker-independent ASR corpus requires 

at least fifty different speakers (Barnard et al., 2009). 

In contrast, speech data can be recorded from scratch. This approach can significantly 

simplify the transcription process since pre-defined prompts can be used. The challenge 

however, is finding potential speakers and recording them. A text corpus must first be 

collected. This process assumes a standardized writing system for the language. 

Prompts may be extracted from the text corpus and systematically and conveniently 

presented to particular speakers (preferably first language speakers) for recording 

purposes. Manual verification is often required to ensure that the desired words have 

been spoken. However, alternative automated methods have been used successfully 

and efficiently. For example, Davel et al., (2011) used a raw corpus to bootstrap an ASR 

system, with an assumption that all prompts have been correctly recorded, and used to 

iteratively identify misspoken utterances and improve the accuracy of the ASR system. 

The recording process often involves the use of menu-driven telephony services, such 

as Interactive Voice Response (IVR) systems (Muthusamy and Cole, 1992). 
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Alternatively, with the use of a tape recorder or a personal computer, recordings can be 

obtained during a face-to-face recording session where a field worker can provide 

instructions in person (Schultz, 2002). With the widespread availability of smartphones, 

researchers have continually developed smartphone applications for a much more 

flexible speech recording task (Hughes et al., 2010; De Vries et al., 2013).  

Although, spontaneous speech can also be collected using most of these platforms 

(Godfrey et al., 1992), such speech corpora are usually less useful for the development 

of baseline ASR systems for under-resourced languages (Besacier et al., 2014). This is 

normally due to resource constraints, small corpora are generally created for under-

resourced languages and clear pronunciation of prompted speech is required for such 

corpora. 

3.3.5. Challenges of ASR for Under-resourced Languages 

Developing HLT systems for under-resourced languages is indeed a mammoth task 

with multi-disciplinary challenges. Resource acquisition requires innovative methods 

(such as those mentioned in the previous, e.g., crowd-sourcing) and/or models which 

allows the sharing of acoustic information across languages as in multilingual acoustic 

modelling (Schultz and Waibel, 2001; Schultz, 2006; Le and Besacier, 2009). Porting an 

HLT system to an under-resourced language requires much more complicated 

techniques than just the basic re-training of models. Some of the new challenges that 

arise involve word segmentation problems, unwritten languages, fuzzy grammatical 

structure, etc. (Besacier et al., 2014). Moreover, the target languages usually introduce 

some socio-linguistic issues such as dialects, code-switching, non-native speakers, etc. 

Another major challenge is finding and accessing both the target language experts 

(speakers and practitioners) and speech processing technology experts. It is very 

unlikely in under-resourced languages to find native language speakers with required 

technical skills for ASR development. Furthermore, under-resourced languages very 

often do not have sufficient linguistic literature. Thus, system bootstrapping requires 
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borrowing linguistic resources and knowledge from similar languages. Such a task can 

be achieved with the help of dialects experts and phoneticians (to map phonetic 

inventories between target (under-resourced) language and the source (well-resourced) 

language). 

3.4. Conclusion 

This chapter gave a brief discussion of the background of ASR for under-resourced 

languages in relation to our study. We have explored the previous studies on 

grapheme-based speech recognition. We discussed the common approaches to and 

the challenges facing ASR research for under-resourced languages. We also discussed 

the common methods used to collect training and testing data for ASR in under-

resourced language scenarios. 
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4. RESEARCH DESIGN AND METHODOLOGY 

4.1. Introduction 

An overview of the technologies used to develop state-of-the-art ASR systems were  

given in the previous chapters. The basic components of ASR systems were also 

discussed. The acoustic modelling component of ASR systems and alternative acoustic 

modelling units were explored. Some of the methods for collecting and/or accessing 

existing speech data and the approaches to developing ASR systems for under-

resourced languages were also discussed. This chapter provides a framework on which 

the study is based. We briefly overview the research approach and the design that 

seeks to enable this research framework. 

In this study, we follow the approach of using alternative acoustic modelling units, 

graphemes, instead of using the existing ones, phonemes. That is, we use graphemes 

as acoustic sub-word units instead of phonemes, for both pronunciation and acoustic 

modelling. We also use existing speech corpora as opposed to collecting speech data 

from scratch. Collecting speech data from scratch becomes redundant and inefficient if 

there is an existing corpus for the language of interest. 

4.2. Experimental Design 

Our proposed research approach was designed to explore the methods of minimising 

the cost, time and complexity of creating hand-crafted pronunciation dictionaries for 

ASR systems. The overall experiments involve two competing linguistic units used for 

acoustic modelling, namely, phonemes and graphemes. Complete and functional ASR 

systems were developed for each of the three selected under-resourced languages. For 

each language, two ASR systems were developed, each with two recognition 

experiments. The script in Appendix A was used to conduct all the recognition 

experiments. 
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The first ASR systems for each language were developed using the Lwazi ASR speech 

corpus (Meraka-Institute, 2009; Barnard et al., 2009; van Heerden et al., 2009) and the 

second ones using the NCHLT ASR speech corpus (van Heerden et al., 2013; Barnard 

et al., 2014). Furthermore, each ASR system had two experiments, the phoneme-based 

experiment (ExpPho), and the grapheme-based experiment (ExpGra). The purpose of 

both experiments is to attain superior recognition accuracies, and a significantly reduce 

the WER. The ExpPho used the phoneme-based pronunciation dictionaries, since it 

uses phonemes as acoustic sub-word modelling units. In contrast, the ExpGra used the 

grapheme-based dictionaries, using the phonemes counterpart, namely, graphemes as 

modelling units. Part of the research objectives was to train a multilingual ASR system 

for the three languages using the two approaches. However, for the purpose of a 

reasonable (scalable) project scope, a multilingual system was developed using only 

the Lwazi corpora and consequently adding two more experiments. The ultimate 

number of experiments is 14, i.e., 3 ExpPho for the Lwazi monolingual corpora, 1 for 

Lwazi multilingual speech corpus and 3 for NCHLT speech corpora with each ExpPho 

having its corresponding ExpGra counterpart. The primary purpose of using two 

different sets of speech corpora was to verify the results they produce and also validate 

the research hypothesis. 

4.2.1.  Speech Data Preparation 

As previously alluded to, speech data collection for under-resourced languages can be 

a very cumbersome task. Recording quality speech data from scratch is very time-

consuming and can be costly. The task can be a big research project on its own. It is 

therefore recommended that in the absence of a new corpus, which is often the case in 

under-resourced languages, researchers should use existing speech corpora, or at least 

use alternative existing speech data sources, such as parliamentary speeches, radio 

broadcasts (news), etc. It is for this reason that existing ASR speech corpora were used 

in this study, namely, Lwazi ASR speech corpus and the NCHLT ASR speech corpus. 
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The Lwazi ASR Speech Corpus 

Lwazi is a HLT project commissioned by the South African national Department of Arts 

and Culture whose objectives included, amongst others, the development of core HLT 

resources for all the official languages of South Africa (Badenhorst et al., 2011). The 

core HLT resources required for the development of ASR and TTS systems were 

developed for all the eleven official languages. Most of these languages had no prior 

HLT resources available. For each language, phone sets, new pronunciation 

dictionaries, and speech and text corpora were developed (van Heerden et al., 2009; 

Badenhorst et al., 2011). The speech and text data sets obtained from Lwazi (Meraka-

Institute, 2009) are presented in Table 4.1.  

TABLE 4.1: THE TRAINING AND EVALUATION DATA SETS FROM THE LWAZI CORPORA 

 
Language 

# of 
Speaker 

# of 
Utterances 

Duration 
(Hours) 

Train Test Train Test Train Test 

SEPEDI 120 20 4512 1128 6.96 1.74 

ISINDEBELE 119 20 4810 1203 7.52 1.88 

TSHIVENDA 120 39 4751 1188 5.1 1.2 

The data was partitioned into training and testing sets using the 80:20 ratio. This was 

achieved by using cross-lingual data sharing. Both phonetic and acoustic data was 

shared across the languages and the performance of the two approaches was 

investigated. The individual data sets were combined to create a multilingual corpus, 

outlined in Table 4.2. As a result, the pronunciation dictionaries were combined and 

pronunciation variants were retained form each language. We used the same phone 

representation notation, X-SAMPA, as the original pronunciation dictionaries in Davel 

(2009). 

Table 4.2: THE TRAINING AND EVALUATION DATA SETS OF THE MULTILINGUAL CORPUS 

 Train Test Total 

# of Speaker 359 79 438 

# of Utterances 14073 3519 17592 

Duration (Hours) 19.58 4.85 24.43 
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The NCHLT ASR Speech Corpus 

The NCHLT project is an extension of the Lwazi project. The project intended to support 

the development of practically useful large-vocabulary speech recognition systems 

(Barnard et al., 2014). The corpora contains wide-band recordings of read speech made 

from a close-talking microphone, along with lexicons and significant text corpora, which 

are suitable for statistical language modelling (Barnard et al., 2014). The data is also 

available for all eleven official languages of South Africa. Each language has above 56 

hours of speech data. The speech data is available with the associated XML-

transcriptions files partitioned as training and an evaluation set with 8 speakers for all 

languages (4 males and 4 females). The script for extracting the transcriptions is 

presented in Appendix B.  

The training and evaluation data for the three languages was obtained from the NCHLT 

corpora. The experimental speech data setup for each language is outlined in Table 4.3. 

Table 4.3: THE TRAINING AND EVALUATION DATA SETS FROM THE NCHLT CORPORA 

 
Language 

# of 
Speaker 

# of 
Utterances 

Duration 
(Hours) 

Train Test Train Test Train Test 

SEPEDI 202 08 56284 2829 46.3 2.5 

ISINDEBELE 140 08 39415 3108 46.5 4.2 

TSHIVENDA 110 08 33327 2805 33.1 2.7 

4.2.2. Pronunciation Dictionaries 

As in the case of speech data collection, hand-crafting pronunciation dictionaries for 

under-resourced languages can be a cumbersome task. The linguistic expertise is not 

always available and/or it’s very expensive. This is what necessitates the use of 

graphemes, in substitution of phonemes, as sub-word acoustic modelling units. 

Fortunately, the speech corpora used were released with their respective pronunciation 

dictionaries. Therefore, our part was to obtain the available pronunciation dictionaries 

for the respective languages and perform appropriate modifications as discussed in the 

following sections. 
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Lwazi Pronunciation Dictionaries 

The phoneme-based pronunciation dictionaries were also obtained from the LWAZI 

project. All the words in the pronunciation dictionaries were manually verified and 

correctly checked for phoneme representation redundancies. The dictionaries used are 

the original versions of the Lwazi pronunciation dictionaries (Davel, 2009) which contain 

no pronunciation variants. For the multilingual experiments, the monolingual dictionaries 

were combined and duplicate words with identical pronunciations were removed by 

simply sorting the dictionary into unique words. Multilingual speech recognition was not 

a central focus of this research and thus the techniques and approaches of generating 

multilingual pronunciation dictionaries were not thoroughly explored. The resulting 

pronunciation dictionaries are indicated in Table 4.4. The bottom row indicates the 

multilingual system, abbreviated MULTI-LING. 

TABLE 4.4: THE LWAZI PRONCIATION DICTIONARY SETUP PER LANGUAGE 

Language Unique  
Words 

Mono- 
phones 

Mono- 
graphemes 

SEPEDI 3317 43 27 

ISINDEBELE 4754 48 27 

TSHIVENDA 2490 41 30 

MULTI-LING 10184 55 32 

There are also more letters shared across the three languages than there are 

phonemes, noted from MULTI-LING. It can be noted that about 22 of the total 32 

graphemes are shared across the languages. Moreover, about 69% of the total 

graphemes are uniformly distributed across the languages, i.e., 69% of the graphemes 

appear in all the languages. Conversely, only 24 of the total 55 monophones are shared 

across the languages.  

This is an encouraging distribution and it is what makes graphemes much easier and 

less costly to use as sub-word acoustic modelling units than phonemes in the selected 

languages. This uniform distribution of graphemes across languages is one of the 

motivating reasons to use context-dependent grapheme-based sub-word units for 

multilingual acoustic modelling. However, this graphemic data sharing approach will 
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only hold for phonetically related languages. This is because languages with a similar 

phonetic structure also have a similar syntactic structure and thus have a similar 

grapheme set.  

NCHLT Pronunciation Dictionaries 

The used NCHLT phoneme-based pronunciation dictionaries were also obtained from 

the NCHLT. The dictionaries used are also the original versions by Davel et al. (2013) 

and contains no pronunciation variants. The NCHLT pronunciation dictionaries do not 

contain all the words appearing in the NCHLT ASR corpus transcriptions. Consequently, 

the missing words were manually added to the dictionary and the pronunciations were 

modelled following the NCHLT phone sets.  

The details of the pronunciation dictionaries are outlined in Table 4.5. Details regarding 

the development of the phoneme-based dictionary can be found in (Davel et al., 2013). 

TABLE 4.5: THE NCHLT PRONUNCIATION DICTIONARY SETUP PER LANGUAGE 

Language Unique  
Words 

Mono- 
phones 

Mono- 
graphemes 

SEPEDI 11721 45 27 

ISINDEBELE 16250 51 26 

TSHIVENDA 18073 39 32 

Generating Grapheme-based Pronunciation Dictionaries 

All existing phoneme-based pronunciation dictionaries were converted to grapheme-

based dictionaries. To ensure the minimal time, linguistic knowledge and cost required 

for generating the dictionaries, the conversion did not follow any predetermined rules. 

We strictly used the most straightforward method of generating pronunciation 

dictionaries as words with their sequences of graphemes and thus directly using 

orthographic sub-word units as acoustic models (Killer et al., 2003; Basson and Davel, 

2013). 



47 

 

The wordlists were obtained from the existing phoneme-based pronunciation 

dictionaries. An alternative method would be to derive lists of words directly from 

transcriptions, but we wanted to guarantee the same size of vocabulary in both 

(phoneme and grapheme) dictionaries. The simple procedure to generate the 

grapheme-based dictionaries was as follows:  

i. extract all words from a given pronunciation dictionary,  

ii. append all words to a list,  

iii. for every line in the list, segment the word into its constituent letters to serve as 

acoustic realization (pronunciation),  

iv. write the list to a file, and  

v. sort the file and retain only unique words to remove redundancies. 

The final generated file is the actual dictionary. Just like the phoneme-based 

dictionaries, the grapheme-based dictionaries also do not cater for any pronunciation 

variants. The scripts for generating the wordlists and creating the grapheme-based 

pronunciation dictionaries are given in Appendix D and E, respectively. 

Handling Foreign Words 

Both the NCHLT and the Lwazi corpora contain some English words which are not in 

the dictionaries. Furthermore, the three languages have words originally borrowed from 

other languages (loan words), which are now generally used as primary words. More 

often, such words mixes the spelling and pronunciation conventions of the primary 

language with the other. For example in Sepedi, the word Janaware was originally 

loaned from the English January. January translates to Pherekgong in Sepedi but 

speakers still prefer using Janaware instead. The same example follows in Tshivenda, 

January translates to Phando but speakers prefer to use Januwari instead. In addition, it 

also translates to Tjhirhweni in IsiNdebele, but speakers use Janibari instead. Moreover, 

there are loan words which do not have their indigenous counterpart, e.g. airtime.  
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It is generally very difficult to model loans words in any typical phoneme-based 

monolingual and/or multilingual speech recognition task. In this research study, loans 

words were modelled using the primary language letter-to-sound rules, i.e., for each 

language, loans words are dealt with as if they belong to the language. This means that 

for all languages, the letter-to-sound rules of primary language were applied on the 

wordlist to predict pronunciations. The rules were developed at Meraka Institute of the 

CSIR and are available with every pronunciation dictionary for each language. Modipa 

and Davel (2010) showed that using this approach can achieve better recognition 

performance when dealing with English and Sepedi. 

The grapheme-based pronunciation modelling of loan words is fairly simple since all 

words are simply separated into their constituent letters. For example, airtime: is 

modelled as a i r t i m e and american as a m e r I c a n. However, this is a 

disadvantage to the grapheme-based system since graphemes are generally not the 

ideal acoustic modelling units for most non-phonetic languages, such as English (Killer 

et al., 2003; Janda, 2012). English words are very problematic when using graphemes 

as acoustic modelling units, for example the word: address is phonetically modelled as 

E D r E s, to provide the acoustic realization of the consecutive letters dd as phone D 

and ss as S. However, graphemes do not provide the acoustic variability between s and 

ss. This is a good example of why graphemes are not suited for acoustic modelling of 

non-phonetic languages.  

The number of monophones and monographemes exclude sil, the silence phone. As 

previously alluded, the phoneme-based dictionaries contain a number of foreign (South 

African English and others) words that are commonly borrowed and used (code-

switched) with these languages. Examples of such words include: first and/or second 

names, street names, names of places, time and dates, months, numbers and some 

general English words. This resulted in unique foreign graphemes which then increase 

the number of fundamental graphemes for each language. 



49 

 

4.2.3.  Extracting Acoustic Features 

The final stage of data preparation involved the process of acoustic feature extraction 

from the speech waveform. The feature extraction process was aimed to find a set of 

properties of an utterance that have acoustic correlations to the original speech signal, 

that is, parameters that can somehow be computed through processing of the signal 

waveform to estimate the original speech signal. The process is expected to ignore 

information that is irrelevant to the task and only keeping the useful information. It 

includes the process of measuring some important characteristic of the signal such as 

energy or frequency response, augmenting these measurements with some 

perceptually meaningful measurements (i.e., signal parameterization), and statically 

conditioning these numbers to form observations (Huang et al., 2001). 

For acoustic features, we extracted commonly used Mel-frequency cepstral coefficients 

(MFCCs) and compute delta features. These feature extraction configurations are 

reflected in Figure 4.1. 

 

 

 

 

 

 

The features in all experiments were extracted with the same TARGETKINDS = 

MFCC_0_D_A_Z. Each feature vector has size 12 MFCC coefficients, one zeroth 

cepstral coefficients (_0), 13 delta coefficients (_D), 13 acceleration coefficients (_A), 

and zero mean static coefficients (_Z). The total number of coefficients amounted to 39 

Figure 4.1: The configuration file of the standard MFCC feature extraction technique 

CEPLIFTER         = 22 
ENORMALISE        = FALSE 
NUMCEPS           = 12 
NUMCHANS          = 26 
PREEMCOEF         = 0.97 
SAVECOMPRESSED   = FALSE 
SAVEWITHCRC       = FALSE 
SOURCEFORMAT     = WAVE 
TARGETKIND       = MFCC_0_D_A_Z 
TARGETRATE        = 100000.0 
USEHAMMING        = TRUE 
WINDOWSIZE       = 250000.0 
ZMEANSOURCE       = TRUE 
LOFREQ             =        150 
HIFREQ             =        4000 
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per feature vector. The standard feature extraction technique was enhanced with 

Cepstral Mean Variance Normalisation (CMVN) (Liu et al., 1993; Viikki et al., 1998). 

Figure 4.2 below outlines the resulting configuration file.  

 

 

 

 

 

 

 

 

 

The CMVN technique is a combination of two robustness techniques, namely, Cepstral 

Mean Normalisation (CMN) (Liu et al., 1993) and Cepstral Variance Normalisation 

(CVN) (Viikki et al., 1998). Using the CMVN technique, we performed normalisation by 

first, (i) extracting features the normal way, (ii) estimating the cluster-means (CMN) and 

cluster-variances (CVN), and then (iii) extracting features again with normalisation given 

CMN and CVN, hence CMVN. The CMVN method, unlike the normal MFCCs, produces 

features that guarantee robust speech recognition (Manaileng and Manamela, 2013). 

4.2.4. Model Training: Generating HMM-based Acoustic Models 

Robust acoustic models were generated with every individual experiment; triphone 

acoustic models were generated for the phoneme-based ASR systems and trigrapheme 

models were generated for the grapheme-based systems. For the purpose of a clear 

discussion, we discuss the procedure of training a trigrapheme system rather than the 

Figure 4.2: The configuration file of the CMVN feature extraction technique 

CEPLIFTER         = 22 
ENORMALISE        = FALSE 
NUMCEPS           = 12 
NUMCHANS          = 26 
PREEMCOEF         = 0.97 
SAVECOMPRESSED    = FALSE 
SAVEWITHCRC       = FALSE 
SOURCEFORMAT      = WAVE 
TARGETKIND        = MFCC_0_D_A_Z 
TARGETRATE        = 100000.0 
USEHAMMING        = TRUE 
WINDOWSIZE        = 250000.0 
ZMEANSOURCE       = TRUE 
LOFREQ             =        150 
HIFREQ             =        4000 
HPARM:CMEANDIR    =  'cmn_vectors' 
HPARM:CMEANMASK   =  'audio/???/?????_???_%%%%_%%%%.wav' 
HPARM:VARSCALEDIR   =  'cvn_vectors' 
HPARM:VARSCALEMASK  =  'audio/???/?????_???_%%%%_%%%%.wav' 
HPARM:VARSCALEFN    =  'cvn_vectors/globvariance' 
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procedure for the two approaches. The procedure is almost identical to that of training a 

triphone system, except it models graphemes instead of phonemes.  

Generating Decision Trees 

For the phoneme-based ASR systems, HMMs were generated by using phonetic 

decision trees to perform clustering of tied-state triphones for continuous density 

mixture Gaussians. The grapheme-based systems used graphemic decision trees to 

perform clustering of tied-state trigraphemes. This was achieved by directly applying 

decision-tree based state-tying to the orthographic representation of words (Kanthak 

and Ney, 2003). The estimation of decision trees takes into account the complete 

acoustic training data as well as a list of possible questions to control splitting of tree 

nodes (Beulen et al., 1997; Kanthak and Ney, 2003). 

Since we are using grapheme-based sub-word units, we simply ask graphemes the 

questions, i.e., questions are asked about the left and right contexts of each 

trigrapheme, as shown in Example 4.1, and estimate a graphemic decision tree. 

Appendix C outlines the script used to generate the question files used to create the 

decision trees. 

(4.1.)          QS  “R_a”  { *+a } 
QS  “R_b”  { *+b } 
QS  “R_c”  { *+c } 
……… 
QS  “L_a”  { a-* } 
QS  “L_b”  { b-* } 
QS  “L_c”  { c-* } 

This procedure is similar to that of phonetic sub-word units which asks the phonemes 

the questions, outlined in Example 4.2, and then estimates the phonetic decision tree. 

(4.2.)          QS  “R_B”  { *+B } 
QS  “R_BZ”  { *+BZ } 
QS  “R_D”  { *+D } 
QS  “R_E”  { *+E } 
……… 
QS  “L_B”  { B-* } 
QS  “L_BZ”  { BZ-* } 
QS  “L_D”  { D-* } 
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QS  “L_E”  { E-* } 

The phoneme-based approach, by definition, may at times require the assistance of an 

expert phonetic knowledge to define the question sets used to estimate the phonetic 

decision tree. Conversely, the grapheme-based approach requires no phonetic 

expertise for definition of the question sets. The resulting trees are automatically 

generated by learning the questions from the acoustic training data. The need for 

phonetic knowledge becomes completely trivial. One major advantage of using decision 

tree clustering is that it allows the recognition of previously unseen triphones and/or 

trigraphemes. Furthermore, context-dependent acoustic sub-word units in combination 

with decision tree state-tying guarantees detailed acoustic models which improved 

recognition performance. 

The Procedure for Generating HMM-based Acoustic Model 

The model generation procedure is identical for the two approaches, with the only 

difference being the sub-word units being used, e.g., monophones are used for the 

phoneme-based approach whereas monographemes are used for the grapheme-based 

approach. We therefore discuss only the phoneme-based approach to avoid repetitions. 

The first step of the procedure is to define a prototype model with initial guesses of the 

parameters. The purpose of the prototype model is to define the model topology, which 

is a 3-state left-right with no skips. In summary, the HTK tool HcompV is used to scan 

all training data files, compute the global mean and variances and then sets all the 

Gaussians in the prototype model to have the same mean and variance. This will create 

a new version of the prototype model and store it in the hmm_0 directory. It is from this 

prototype model that the initial parameters of all the monophone HMMs (including sil) 

are estimated.  

The next step is to use the Baum-Welch re-estimation algorithm to re-estimate the flat 

start monophones. This is achieved by invoking the HTK-embedded re-estimation tool 

HERest as indicated in Example 4.3: 
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(4.3.) HERest –A –D –T 1 –V –S audio_trn.lst –t 250.0 150.0 1000.0 –H hmm_0/macros –H 
hmm_0/hmmDefs.mmf –M hmm_1 –s stats monophones.lst 

This serves to load all the models contained in the hmmDefs.mmf file which are listed in 

the model list (monophones.lst), excluding the short pause (sp) model. The loaded 

models are then re-estimated using the training data listed in audio_trn.lst to create a 

new model set stored in the directory hmm_1. The re-estimation was performed with 

three iterations until the final sets of initialised HMMs were stored in the third HMM 

directory (hmm_3). 

The next step was to create the short pause (sp) model, which was excluded in the 

preceding steps. The model was stored in the fourth HMM directory (hmm_4). The 

emitting state of the sp model was then tied to the centre state of the silence (sil) model. 

This was achieved by invoking the HHEd tool in Example 4.4. 

(4.4.) HHEd –T 1 –H hmm_4/macros –H hmm_4/hmmDefs.mmf –M hmm_5 sil.hed 

monophones_sp.lst 

This extended the initial monophone list (monophones.lst) with the new sp model and 

stores them in monophones_sp.lst. Re-estimation was performed twice, this time 

including the sp model. The latest models are used to realign and select best 

pronunciations for both the training and testing data. Re-estimation was then performed 

twice on the latest models with the aligned data. 

The succeeding stage of the model generation procedure was to use the monophone 

HMMs to create context-dependent triphone HMMs. To achieve this, we first had to 

convert the monophone transcriptions to triphone transcriptions and then create a set of 

triphone models by cloning the monophones and then re-estimating them using the 

triphone transcriptions. Secondly, similar acoustic states of these triphones were tied to 

ensure that all state distributions can be robustly estimated (Young et al., 2006). 

The HLEd tool was invoked to convert the aligned monophone transcriptions to their 

equivalent triphone transcriptions. The generated triphones must have at least one 
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example in the training data. For example, the monophones in Example 4.5 will become 

the triphones in Example 4.6.  

(4.5.) sil B O u t_> O sp j a sp B O n tS_> I sp BZ a sp m a l O k_> O sp sil 
 
(4.6.) sil sil-B+O B-O+u O-u+t_> u-t_>+O t_>-O+j sp O-j+a j-a+B sp a-B+O B-O+n O-n+tS_> n-

tS_>+I tS_>-i+BZ sp i-BZ+a BZ-a+m sp a-m+a m-a+l a-l+O l-O+k_> O-k_>+O k_>-O+sil sp sil  

Conversely, for the grapheme-based system, the monographemes in Example 4.7 

became the trigraphemes in Example 4.8. 

(4.7.) sil b o u t o sp y a sp b o n t S I sp b j a sp m a l o k o sp sil  
 
(4.8.) sil sil-b+o b-o+u o-u+t u-t+o t-o+y sp o-y+a y-a+b sp a-b+o b-o+n o-n+t n-t+S t-S+I S-i+b 

sp i-b+j b-j+a j-a+m sp a-m+a m-a+l a-l+o l-o+k o-k+o k-o+sil sp sil 

The context-dependent HMMs were cloned using HHEd and the mktri.hed script which 

allows the tying of all the transition matrices in each triphone set. HERest was the used 

to re-estimate the new triphone sets. 

To this point, we had a set of triphone HMMs with all triphones sharing the same 

transition matrix per phone set. Each HMM state distribution was modelled by shared 

16-Gaussian mixtures with a diagonal covariance matrix. The final stage involved tying 

the states within triphone sets in order to share data and thus be able to make robust 

parameter estimates (Young et al., 2006). This was done by using decision trees, 

mentioned in the preceding section, to cluster the states then tie the clusters. HHEd was 

invoked with the script tree.hed to perform decision tree state-tying, as shown in 

Example 4.9. 

(4.9.) HHEd –A –D –T 1 –V –H hmm_12/macros –H hmm_12/hmmDefs.mmf –M hmm_13 
trees.hed triphones.lst 

Upon completion of state-tying, some of the new models were identical, i.e., they 

pointed to the same 3 tied-states and transition matrices. Identical models were tied 

together, this compacted the models to produce a new model set called tiedlist. What 

was left at this stage was to increase the mixtures by cloning the new models and re-
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estimating them (Appendix F).  The final step was to apply semi-tied transforms and 

then re-estimate the models further to improve the robustness of the acoustic models. 

4.2.5. Language Modelling 

The SRILM language modelling toolkit (Stolcke, 2002) was used to train word-level 

Language Models (LMs) from the sentential transcriptions. SRILM allows two major 

language modelling operations, estimation and evaluation. Language model estimation 

refers to the creation of a model from a set of training data, and evaluation refers to the 

calculation of the probability of the test data, commonly expressed as the test set 

perplexity (Stolcke, 2002). For each system, a statistical n-gram LM was trained and 

employed in the decoding process. The use of well-trained statistical n-gram LMs can 

attain better speech recognition accuracies (Besling, 1994; Kanthak and Ney, 2003).  

To build an LM training corpus, words were extracted from all the sentential 

transcriptions in the training data set. The generated training corpus was used to train a 

third order (3-gram) LM for each language in the two corpora. The ngram-count tool was 

used to estimate the word probabilities from the training corpus, as shown in Example 

4.10. 

(4.10.) ngram-count –text corpus.train –order 3 –lm trigram.lm –interpolate –cdiscount1 0.7 –
cdiscount2 0.7 –cdiscount3 0.7 

The above-stated tool trained a 3-gram LM trigram.lm from the training corpus 

corpus.train using interpolated absolute discounting with a discounting coefficient of 0.7. 

The LM order, like the discounting coefficient, can be specified arbitrarily by the user. A 

portion of the LM file is shown in Figure 4.3.   

We further build an LM testing corpus by extracting all words from the sentential 

transcriptions of the testing data sets. The tool ngram was invoked with the option –ppl 

to evaluate the trained LM on the test corpus corpus.test to compute the test corpus 

perplexity, as shown in Example 4.11. 



56 

 

(4.11.) ngram –ppl corpus.test –order 3 –lm trigram.lm 

Since both the approaches use the same LMs, only one third-order (3-gram) LM was 

trained and evaluated for each language corpus. Table 4.6, outlines the details of the 

LMs from the Lwazi ASR corpus and Table 4.7 shows that of the NCHLT ASR corpus. 

 

Figure 4.3: A typical 3-gram LM generated by SRILM 

These tables below indicate the total number of words in the LMs, the number of out-of-

vocabulary (OOV) words and the test set perplexity. The LM perplexity is used to 

evaluate the accuracy of the language model. The best language model is the one that 

best predicts unseen words (OOV) in the test set. 

TABLE 4.6: DETAILS OF THE LMS FOR EACH LANGUAGE FROM THE LWAZI CORPORA 

 SEPEDI ISINDEBELE TSHIVENDA MULTI-LING 

Total Words 45206 37742 36266 111426 

# Trigrams 5709 5458 4975 14073 

OOVs 291 401 162 816 

Test Set Perplexity 9.98132 16.695 13.61 10.2929 

The LMs of the Lwazi corpora have a lower perplexity compared to those of the NCHLT 

corpora. This is due to the significant difference in the amount of training and testing 

data between the two corpora. 
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Table 4.7: DETAILS OF THE LMS FOR EACH LANGUAGE FROM THE NCHLT CORPORA 

 SEPEDI ISINDEBELE TSHIVENDA 

Total Words 279997 140871 793589 

# Trigrams 37768 30081 26409 

OOVs 158 367 648 

Test Set Perplexity 12.4 23.958 48.9825 

4.2.6. Pattern Classification (Decoding) 

Having successfully trained robust context-dependent acoustic models, the next step 

was to evaluate the recognition performance using the test set. This was achieved by 

using the Viterbi decoding algorithm. The algorithm uses a list of physical models 

(tiedlist), the recognition network (grammar), and the pronunciation dictionary to 

recognise (transcribe) a set of audio files (the test set). The values of the insertion 

penalty, grammar scale factor and beam-width pruning threshold were optimally set for 

decoding.  

A typical HTK recogniser uses the Hvite tool with optimal parameter values and a flat 

start language model to perform recognition of a test set. However, Hvite does not allow 

high order n-gram language models; therefore, the HDecode tool was used instead. 

HDecode is an HTK-patch designed for LVCSR tasks. It can handle larger n-gram 

language models, restricted to up to the third-order (Young et al., 2006). The LMs 

described in the previous section were used for decoding the test sets in the respective 

experiments. The HDecode tool will dump recognition results into a file which can be 

used later to evaluate the overall system performance. 

4.3. Summary 

In this chapter, we discussed most important steps of the overall study in details. The 

speech corpora used for training and evaluation in all experiments was discussed. The 

pronunciation dictionaries used were also discussed. The procedures for developing the 

grapheme-based dictionaries and generating decision trees for context-dependent tied-

state acoustic models were outlined. Some of the key HTK commands executed at the 

key experimental steps were also briefly outlined. The following chapter discusses the 
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results obtained using the framework outlined. The recognition results answers the 

framed research questions and also answers whether or not the research approach is 

found to be plausible. 
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5. EXPERIMENTAL RESULTS AND ANALYSIS  

5.1. Introduction 

The aim of this study is to compare the performance of two acoustic modelling units; 

graphemes and phonemes. Two speech corpora were employed, the Lwazi ASR corpus 

and the NCHLT ASR corpus. For each corpus, context-dependent tied-state acoustic 

models were trained using both units. Two types of pronunciation dictionaries were 

used for decoding, namely, the grapheme-based and the phoneme-based dictionary. 

The form of the dictionaries and model generation procedures were discussed in the 

previous chapter. 

This chapter discusses the decoding parameters, the procedure followed to generate 

the recognition results, presents the speech recognition statistics and errors with a brief 

analysis thereof. From each of the corpus, the three typically under-resourced 

languages were selected for ASR experiments. For the Lwazi ASR corpus, six 

monolingual and two multilingual ASR experiments were conducted, resulting to eight 

experiments shared equally for grapheme- and phoneme-based units. Only monolingual 

ASR experiments were conducted on the NCHLT corpus. This is due to the scope and 

feasibility of the study. The NCHLT corpus was not only used to increase training data 

and improve results, but also to cross-validate the results obtained with the Lwazi ASR 

corpus by means of reproducing them. 

5.2. ASR Performance Evaluation Metrics 

The WER is the most commonly used metric to evaluate the overall recognition 

performance of ASR systems. To compute the WER, the recognition output (rec file) is 

compared with the reference (label) file (i.e. the corresponding correct transcriptions). 

The three typical types of word recognition errors in ASR are (Huang et al., 2001): 

 Substitution (S): an incorrect word was substituted for the correct word. 

 Deletion (D): a correct word was omitted in the recognized sentence. 
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 Insertion (I): an extra word was added in the recognized sentence. 

The WER is defined as: 

𝑊𝐸𝑅 =  
𝑆+𝐷+𝐼

𝑁
∗ 100%         (5.1) 

where N is total the number of words in the correct sentence. 

In some cases the recognition performance of an ASR system can be measured by the 

phone recognition accuracy, using a metric termed phone error rate (PER). The PER is 

measured exactly the same way as WER, except individual words are replaced with 

individual phones (Mabokela, 2014). 

Furthermore, the performance of a speech recogniser can be measured according to 

the accuracy and correctness of word recognition. The word accuracy measures how an 

ASR system accurately captures the spoken signal as a word, it is defined as follows: 

𝑊𝑜𝑟𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁−𝑆+𝐷+𝐼

𝑁
∗ 100%       (5.2) 

The word correctness on the other hand, measures the correctness of every recognised 

word, and it is defined as follows: 

𝑊𝑜𝑟𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑁−𝐷−𝑆

𝑁
∗ 100%       (5.3) 

5.3. ASR Systems Evaluation with HDecode 

The HVite decoder is only suitable for systems using bigram language models. As 

stated previously, we used trigram language models in all experiments. We therefore 

used the HDecode tool to decode/recognise the test (evaluation) sets in all the 

experiments. The HDecode decoder has a number of predefined restrictions, one of 

them being that it supports n-gram LMs up to trigrams (Young et al., 2006).  
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5.3.1. Optimum Decoding Parameters 

HDecode requires four very important parameters to perform decoding; (i) the model 

definitions – contained in a master macro file with extension .mmf, (ii) a statistical 

language model – the trigram language models described in the previous sections, (iii) 

the pronunciation dictionary and, (iv) a list of physical models – the tied-state triphones 

(trigraphemes) in tiedlist (Young et al., 2006). Of course, a set of acoustic features to be 

recognised must also be passed as a parameter – this is the test set from which the 

recognizer must be evaluated. To obtain reliable recognition test results, the test set 

data must not appear in the training set.  

Furthermore, HDecode requires fixed parameter values to control the searching 

process. The values chosen in our experiments are those that yielded optimum 

recognition accuracies. The LM scaling factor (-s) was set to -10, the pruning threshold 

(-t) was set to 240, and the word insertion penalty (-p) was set to -25. These values 

were chosen by carefully running experiments on the development set to test the 

optimal value. We first used the default values and iterated the experiments with 

different values until optimal recognition results were obtained. 

The word insertion penalty is a fixed value that is added to the accumulated log 

likelihood each time a new word is entered during the Viterbi search. It is used to 

balance the relation between the deletion and insertion errors. The default value of the 

HTK is 0.0 (Young et al., 2006), but the effect of this parameter on the accuracy may be 

different per language. Therefore, calibrating this value for each experiment is 

important. As a result, we ran multiple experiments for each language to determine the 

optimum value. The value was set from the default 0.0 in the range as follows, -5.0, -

10.0,…,-30.0. Interestingly, the optimum value for both trigrapheme and triphone 

experiments was -25 in the three languages. In all the experiments, the performance of 

the systems began to degrade below -25.0 and above it. Hence this value was selected. 



62 

 

The pronunciation dictionary contains a list of words and their correct pronunciation. It 

also contains the sentence start and the sentence end tokens, and models them with a 

silence phoneme/grapheme. HDecode does not permit the silence model, sil, and the 

short pauses, sp, to appear in the pronunciation dictionary. The silence model sil appear 

as the dictionary entry (or the pronunciation) of both the sentence start and the 

sentence end tokens. 

HDecode will then store the recognition output in a file. The file contains the estimated 

transcription of each input file. Each transcription is given as a set of hypotheses – the 

closest estimates each word in the correct transcription of the input acoustic feature. A 

typical output recognition file is indicated in Figure 5.1.  

The sentence start token – the first hypothesis of every input signal, is recognised as sil. 

The actual words are then recognised individually as a single hypothesis. Finaly, the 

sentence end token, also recognised as sil, as the last hypothesis of every input. The 

start point of each hypothesis is given in the first column, the end point in the second, 

and the estimated acoustic scores in the fourth (last) column. The acoustic score is 

estimated by the embedded Viterbi decoding algorithm 

 

Figure 5.1: A typical HDecode output for an input feature file 
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5.3.2. Generating Recognition Results 

The HTK provides a performance evaluation tool, HResults, which computes 

performance statistics. The HResults tool also takes several parameters. We 

summarise only those which were of the immediate interest of the study. With its 

invocation, three important files are passed to HResults, the reference master label file 

(MLF), the recognised MLF, and a list of tied-state triphones/trigraphemes.  

The reference MLF contains the correct transcriptions of the entire test data set (the lab 

files), and the recognised MLF contains the recognised transcriptions of the entire test 

data set (the rec files) as generated by HDecode. HResults measures the recognition 

performance by performing optimal string matches, i.e. it compares the reference 

transcriptions to the recognition hypothesis per input file, as shown in Table 5.1 below. 

TABLE 5.1: A TYPICAL HRESULTS OUTPUT OF COMPARING A REC FILE TO A LAB FILE 

 

The recognition statistics are then dumped on the screen or redirected to a file (like we 

did in this study). It is from the statistics that individual recognition errors can be 

analysed and recognition error rates can be calculated. 

5.4. Baseline Recognition Results of the Lwazi Evaluation Set 

For the Lwazi ASR corpora, three monolingual ASR systems were first trained and 

evaluated independently for the two approaches. A multilingual system was then trained 

with the three selected languages. We report the results of all the systems and analyse 

them. 
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5.4.1. Evaluating the Monolingual Lwazi ASR Systems 

For all three monolingual ASR systems, we present a single figure outlining the 

evaluation results of the two experiments. The phoneme-based experiment (ExpPho) is 

on the left side of the figure and grapheme-based experiment (ExpGra) on the right 

side. The results for the languages, IsiNdebele, Sepedi, and Tshivenda are presented in 

Tables 5.2, 5.3 and 5.4, respectively. The results presented here were directly 

generated by the HResults tool. 

The phoneme-based WERs obtained in this study are comparable to those reported by 

Henselmans et al., (2013). The slight discrepancies can most likely be attributed to the 

kind of language models used and also the partitioning of the training and evaluation 

sets. As one would expect, there is a very strong correlation between the LM 

perplexities of each language and the recognition accuracies. 

TABLE 5.2: THE LWAZI ASR RECOGNITION STATISTICS OF THE PHONEME-BASED EXPERIMENT 
(EXPPHO) VS. THE GRAPHEME-BASED EXPERIMENT (EXPGRA) FOR ISINDEBELE LANGUAGE 

 

The word LM perplexity of IsiNdebele is the highest of all the three languages and 

hence it is not surprising that the word recognition accuracy is also the worst of all the 

languages. That is, the word accuracy is 34.77% for phonemes and 34.94% for 

graphemes in IsiNdebele as compared to 46.40% and 45.68% for Sepedi and 38.20% 

and 40.56% for Tshivenda. The IsiNdebele word LM also had the highest OOVs, which 

is one of the factors that influenced the low accuracies. This is because the OOV rate 

has a significant impact on the recognition rate.  
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TABLE 5.3: THE LWAZI ASR RECOGNITION STATISTICS OF EXPPHO VS. EXPGRA FOR SEPEDI 
LANGUAGE 

 

Sepedi has a better word recognition accuracy compared to all the three languages, 

46.40% for phonemes and 45.68% for graphemes. The word accuracies also 

correspond very well with word LM perplexity. Since the Sepedi LM had the lowest 

perplexity and OOV rate, the results are expected to be the highest. This is because the 

lower the OOVs in the test set the higher the LM estimation of the unseen words. 

TABLE 5.4: THE LWAZI ASR RECOGNITION STATISTICS OF EXPPHO VS. EXPGRA FOR 
TSHIVENDA LANGUAGE 

 

As noted in Table 4.6, the Tshivenda word LM has the lowest OOV rate (only 162) due 

to its small vocabulary.  However, the word LM perplexity is still significantly higher and 

hence it is reflected in the word recognition accuracy which is 38.2% and 40.56% for 

phonemes and graphemes, respectively. The results for all languages are consistent in 

the two approaches since they both use the same LMs.  

5.4.2. Analysis of the Lwazi Monolingual ASR Systems 

Having tested both experimental approaches on each language, we obtained the 

following WERs: 54.32% WER on graphemes and 53.59% on phonemes for Sepedi, 

59.44% on graphemes and 61.79% on phonemes for Tshivenda, 65.06% on graphemes 



66 

 

and 65.22% on phonemes for IsiNdebele and 64.59% on graphemes. The WERs are 

graphically presented in Figure 5.2. 

The performance of the two approaches is language-dependent. As outlined in Figure 

5.2, graphemes outperformed phonemes with a significant margin for Tshivenda.  The 

grapheme-based sub-word units obtained a WER reduction of above 2.35%, which is 

indeed significant. For the IsiNdebele language, graphemes also outperformed 

phonemes, but with a very small margin. The grapheme-based sub-word units reduced 

the WER with 0.16%. However, for Sepedi, phonemes demonstrate superiority over 

graphemes.  

 

Figure 5.2: Percentage WERs obtained in ExpPho and ExpGra for each of the three languages 
 

The phoneme-based sub-word units are 0.73% more accurate than the grapheme-

based units. This is a considerably small margin and thus also demonstrates that 

indeed graphemes can attain comparable recognition performance for this language.  

5.4.3. Evaluating the Multilingual Lwazi ASR System 

For the multilingual system, a single figure is also presented, outlining the evaluation 

results of the two experiments. The results are presented in Table 5.5. ExpPho is also 

on the left side of the figure and ExpGra on the right side. 
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Table 5.5 indicates the multilingual system suffers significantly larger recognition errors, 

with a word recognition accuracy of 37.77% for phonemes and 35.41% for graphemes. 

This is because the evaluation set (test data) is much bigger since it’s a combination of 

all three evaluation sets from the three languages. The recognition vocabulary is also 

broad hence the word LM has a higher perplexity and thus the overall recognition 

performance is expected to degrade. 

TABLE 5.5: THE LWAZI RECOGNITION STATISTICS OF EXPPHO VS. EXPGRA FOR THE 
MULTILINGUAL ASR SYSTEM 

 

It is observed from the results obtained by the multilingual system, presented in Table 

5.5, that a combination of a large recognition vocabulary and a high LM perplexity 

constitutes low recognition accuracies. 

The WERs obtained by the two approaches are graphically presented in Figure 5.4. A 

WER of 64.59% was attained in the grapheme-based experiment while 62.22% was 

obtained in the phoneme-based experiment. The multilingual platform, just like the 

monolingual Sepedi ASR, also sees phoneme-based acoustic sub-word units 

performing better with a WER reduction of 2.37%.  
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Figure 5.3: Percentage WERs obtained in ExpPho and ExpGra for the multilingual ASR system 

Interestingly, the overall cross-lingual acoustic models perform worse than the 

monolingual models regardless of the data shared across languages. Moreover, for 

unknown reasons, the grapheme-based models are worse than the phoneme-based 

regardless of having more graphemes shared across the languages than phonemes. To 

investigate these interesting observations, each language was tested on the cross-

lingual acoustic models. The results are outlined in Figure 5.5. 

 

Figure 5.4: Percentage WERs obtained in ExpPho and ExpGra for each language on the multilingual 
ASR system 

As reflected in Figure 5.5, the monolingual acoustic models perform better than the 

cross-lingual models. The phoneme-based units attain a WER of 60.41% for IsiNdebele, 

62.54% for Sepedi and 71.6 for Tshivenda. However, graphemes perform better than 
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phonemes on the cross-lingual models for IsiNdebele and Sepedi, obtaining a WER of 

58.42 and 57.51%, respectively. This implies that there were more graphemes shared 

across Sepedi and IsiNdebele than Tshivenda and any of the languages. The shared 

graphemes increase the model training data and since there are more graphemes 

shared across the language than there are phonemes, the grapheme-based units are 

expected to perform better. These findings are also supported by those in Manaileng 

and Manamela (2014). As stated by Manaileng and Manamela (2014), Tshivenda has 

five graphemes which are unique to the combined grapheme set of the three languages. 

This means that the shared training data does not account for 15% of the graphemes 

during model training. Inadequately trained models in a multilingual acoustic model 

platform can increase recognition errors due to model mismatch (Ulla, 2001).  

Although cross-lingual data sharing provides the fundamental advantage of combining 

training data of multiple languages, sharing data across phonetically unrelated 

languages can be a disservice for other languages. One of the important observations 

drawn from the results is that for graphemes to perform better in cross-lingual data 

sharing, the languages must have common graphemes and they must have a small 

number of unique graphemes. Otherwise, there may be little data to train language-

unique models which would then result in the contamination of the model set. It is 

therefore evident that Tshivenda is not suitable for sharing data with Sepedi and 

IsiNdebele, despite the languages’ close socio-geographical proximity.  

5.5. Recognition Results of the NCHLT Evaluation Set 

Unlike with the Lwazi ASR corpora – in which both monolingual and cross-lingual 

acoustic models were trained, only monolingual acoustic models were trained for the 

NCHLT corpora. This is due to the scope of the project. We present and analyse 

recognition results obtained from the two approaches for each language. 



70 

 

5.5.1. Recognition Statistics of each Language 

The recognition results are analysed using two recognition metrics in addition to the 

common metrics WER, namely, word accuracy and word correctness. As previously 

mentioned, word accuracy measures how an ASR system accurately captures the 

spoken signal as a word while the word correctness measures the correctness of every 

recognised word. The word recognition statistics per experiment for each language are 

outlined in Table 5.6. 

TABLE 5.6: PERCENTAGE WORD ACCURACY AND WORD CORRECTNESS OBTAINED IN EXPPHO 
AND EXPGRA FOR EACH LANGUAGE 

 
Language 

Recognition 
Metric (%) 

ExpPho ExpGra 

ISINDEBELE Word Accuracy 70.58 71.11 

Word Correctness 74.42 75.05 

SEPEDI Word Accuracy 68.75 75.62 

Word Correctness 73.06 79.27 

TSHIVENDA Word Accuracy 70.42 74.70 

Word Correctness 73.70 70.38 

As indicated in Table 5.6, the grapheme-based units attain better word recognition 

accuracy than the phoneme-based ones for all languages. For two languages, 

IsiNdebele and Tshivenda, the accuracies attained by the two approaches differ in a 

small margin. For Sepedi however, a slightly larger difference in word recognition 

accuracies was obtained by the two approaches. Graphemes also performed better in 

word recognition correctness than phonemes for IsiNdebele. 

However, the performance of graphemes degrades in word recognition performance for 

Tshivenda. It is not obvious what the causes of the degradation are, but the LM 

perplexity and the little training data can be attributed to this phenomenon. As noted in 

Table 4.3, Tshivenda has the lowest amount of training data, 33.1 hours compared to 

the 46.3 hours for Sepedi and 46.5 hours for IsiNdebele. Moreover, Tshivenda has the 

highest number of graphemes, outlined in Table 4.5. The number of graphemes is very 

close to that of phonemes, 32 graphemes and 39 phonemes, unlike for the other 

languages. This means that the amount of speech data available for training each 

grapheme model nearly equals the amount available to train each phoneme model. 
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Furthermore, Tshivenda has the highest LM model perplexity, as shown in Table 4.7. 

These factors collectively contribute to the inferior and odd performance by graphemes 

for this language. 

Table 5.7 presents the WERs obtained in the two experiments for each language. The 

difference – the right-most column of the table, is used to measure the superiority of one 

approach over another. The WERs clearly correlates with the word accuracies and word 

correctness in the previous table. 

The WERs are comparable to those obtained in a study by Barnard et al. (2014). 

However, our results cannot be homologous to theirs due to the difference in 

recognition framework and the employed language models. Furthermore, Barnard et al. 

(2014) used the Kaldi speech recognition toolkit for decoding whereas HTK was used in 

this study. 

As noted in Table 5.7, the grapheme-based units perform slightly better than the 

phoneme-based ones for IsiNdebele by attaining a WER reduction of 0.54%. For 

Sepedi, graphemes performed better by attaining a significantly higher WER reduction 

of 6.91%. For Tshivenda however, graphemes perform slightly inferior with phonemes 

being 0.04% more accurate than graphemes. A very similar study by Basson and Davel 

(2013) also reported degradation in word recognition accuracy using graphemes for the 

Afrikaans language. Although the grapheme-based system performed worse than the 

phoneme-based system, the results are still comparable and the authors successfully 

identified a set of “problematic categories” as the causes of the under par performance 

of the grapheme-based acoustic sub-word units. 

TABLE 5.7: WERs OBTAINED BY THE TWO APPROACHES AND THEIR DIFFERENCE FOR EACH 
LANGUAGE 

 
Language 

% WER  
Difference ExpPho ExpGra 

ISINDEBELE 29.42 28.88 0.54 

SEPEDI 31.25 24.34 6.91 

TSHIVENDA 29.57 29.61 -0.04 
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Schukat-Talamazzini et al., (1993) achieved better recognition results with graphemes, 

obtaining a 1.68% better word-level recognition accuracy. Sirum and Sanches (2010), 

who studied the effect of WER for Portuguese language when the acoustic units based 

on phonemes and graphemes are compared, also reported that there is no considerable 

difference in performance between the phoneme-based speech recognizer and the 

grapheme-based one when evaluated over Command & Control and Connected digit 

ASR experiments.  

What seems to be interesting however, is that context-dependent grapheme-based sub-

word units perform better than the phonemic ones in our study as opposed to the 

observations made in the study by Kanthak and Ney (2002). The most likely factor may 

be the phonetic structure of the languages of focus. One other possible factor might be 

that the quality some of the pronunciation dictionaries is not optimal.  Sirum and 

Sanches (2010) also reported that their grapheme-based speech recognizer performed 

considerably worse than the phoneme-based over a Spelling ASR experiment. 

5.5.2. Number of GMMs vs. the Recognition Performance for Each Experiment 

One of the important factors that contribute to recognition accuracy is the number of 

GMMs per state during model training. We therefore investigated the effect the number 

of GMMs has on the ultimate WER for each language. We analysed the behaviour of 

the WER in both approaches when the number of GMMs is altered. The results are 

presented in Figures 5.10, 5.11, and 5.12 for IsiNdebele, Sepedi and Tshivenda, 

respectively. 
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Figure 5.5: Effect of the number of GMMs on WER for IsiNdebele 

 

 

Figure 5.6: Effect of the number of GMMs on WER for Sepedi 

It is evident from the diagrams that there exist a strong relationship between the number 

of GMMs and the recognition performance (WER). Interestingly, the two approaches 

behave similarly when the number of GMMs is increased. For a number of GMMs, the 

WER is either increased or decreased in both approaches. 
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Figure 5.7: Effect of the number of GMMs on WER for Tshivenda 

A special case is only in Tshivenda where WER is lowest for the grapheme-based 

experiment with 8 GMMs whereas it is the highest for the phoneme-based with the 

same number of GMMs. This can be attributed to the same factors that constituted an 

odd trend of the WER, as discussed in the previous section. However, we observed that 

the optimum recognition results are attained with 16 GMMs in the overall systems. 

5.5.3. Error Analysis 

Since the two approaches attain varying WERs, although the difference is largely small, 

it is interesting to see, and important to know, which recognition errors each approach 

suffers. The language structure can be a significant determinant of how a recogniser 

handles errors during recognition; therefore the investigation must be done for each 

language. To carry out the investigation, individual recognition errors were analysed for 

each approach in all the three languages. Figures 5.9, 5.10, and 5.11 highlight the 

number of individual errors for each ASR experiment in IsiNdebele, Sepedi and 

Tshivenda, respectively. 

As presented in Figure 5.9, the two approaches suffer marginal recognition errors for 

IsiNdebele. The grapheme-based units suffer slightly lower substitution errors and 

hence the ultimate recognition performance is slightly better. 

20

25

30

35

40

45

8 16 32

%
 W

E
R

 

# GMMs 

# GMMs vs. WER for Tshivenda 

ExpPho

ExpGra



75 

 

 

Figure 5.8: Number of recognition errors for each experiment in IsiNdebele 

For Sepedi, however, the phoneme-based units uniquely suffer significant substitution 

errors. The grapheme-based units significantly reduce the number of substitution errors, 

as outlined in Figure 5.10. This reduction correlates very well with the overall WER 

reduction of 6.91% to make the grapheme-based units significantly superior to their 

phoneme-based counterparts. 

Tshivenda has a similar trend (Figure 5.11) with IsiNdebele in the sense that both units 

almost handle the errors the same way. Graphemes handle both deletion and 

substitution errors slightly better and the insertion errors almost the same for Tshivenda. 

However, there is a spike in the substitution errors suffered by the phoneme-based units 

for Sepedi. 
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Figure 5.9: Number of recognition errors for each experiment in Sepedi 

These discrepancies may be due to the phonetic structure of the languages and/or the 

pronunciation modelling accuracy. Substitution errors are caused by a 

phoneme/grapheme being confused with another and thus being wrongfully substituted 

thereof. Languages having a number of phonemes that sound alike are susceptible to 

substitution errors since an accurate pronunciation modelling of closely similar 

phonemes is difficult.  

 

Figure 5.10: Number of recognition errors for each experiment in Tshivenda 
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Generally, both approaches handle all errors similarly for each language. The two 

approaches suffer the most deletion errors and the least insertion errors in all 

languages. The phoneme-based units are superior in recognizing short words and 

suffer a great number of substitutions in long words. Conversely, the grapheme-based 

units have a better recognition rate of long words, suffering only a few substitution 

errors and lots of deletions in short words. It was also noted that the phoneme-based 

units are superior in recognizing the foreign words, as one would expect. 

Given the unique trend observed in Figure 5.14, the error handling by the two 

approaches for Sepedi, an investigation on how the number of GMMs affects the 

percentage of individual recognition errors was conducted for Sepedi. Moreover, Sepedi 

is more interesting than the rest of the languages since graphemes attained the highest 

WER reduction. Moreover, with the Lwazi ASR data (little training data), the grapheme-

based units performed worse than the phoneme-based one but performed significantly 

better with the NCHLT ASR data (medium-sized training data). This observation opens 

a possibility for research. 

The percentage of individual errors is analysed for each number of GMMs in both 

approaches. The phoneme-based experiment (ExpPho) is outlined in Figure 5.16 and 

grapheme-based experiment (ExpGra) in Figure 5.17. 

 

Figure 5.11: The percentage of errors against the number of GMMs for the phoneme-based experiment in 
Sepedi 
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As expected, the number of errors is minimal with 16 GMMs in both experiments. 

Interestingly, there is a spike in the number of substation errors for 8 GMMs. The 

number of substitution errors declined significantly with an increase in number of 

GMMs. In both experiments, insertions remained the least committed errors. Unlike the 

other two errors, deletions are only slightly affected by the increase of GMMs. Also, the 

number of deletion errors appears slightly uniform in both experiments. 

It is evident from the figures that the grapheme-based units had a significant reduction 

of the substitution errors and hence the ultimate WER reduction was also significant. As 

reflected in Figure 5.17, the number of substitution errors for the grapheme-based 

experiment is almost half that of the phoneme-based experiments.  

 

Figure 5.12: The percentage of errors against the number of GMMs for the grapheme-based experiment 
in Sepedi 
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not investigated exhaustively because they are beyond the scope of this study. For 

example, one of the linguistic factors is the pronunciation modelling of the loan words, 

words used in a language they do not belong to. We used the primary language letter-

to-sound rules to model loan words. Although our decision was guided by the findings in 

Modipa and Davel (2010), alternative methods to model loan words could achieve better 

recognition results. For instance, the odd results given by Tshivenda could imply that a 

different modelling technique for the loan words is required. It therefore remains 

2

7

12

17

8 16 32

%
 E

R
R

O
R

 

# GMMs 

% ERRORS VS.  #  GMMS FOR EXPGRA IN  
SEPEDI  

Deletions

Substitutions

Insertions



79 

 

interesting to investigate the possible linguistic, technical and non-technical factors 

contributing to these trends. 

5.6. Summary 

This chapter briefly outlined some of the most common ASR performance evaluation 

metrics. We further discussed some of the important decoding parameters, and also 

described the recognition results generation procedure. The HDecode tool was used to 

evaluate the recognition performance of the context-dependent acoustic models in the 

two approaches. The grapheme-based and phoneme-based recognition results were 

presented, compared and analysed. The results obtained in this study were also 

compared to other studies of the same, and also of different languages. Analysis of the 

recognition errors was also presented. The next chapter provides a summary of our 

findings and recommendations for future work.  
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6. CONCLUSION 

6.1. Introduction 

In the previous chapter, we compared the performance of grapheme-based acoustic 

sub-word units to the phoneme-based ones. We showed that the context-dependent 

grapheme-based acoustic units can attain comparable and in some instances, even 

attaining better recognition accuracies. This chapter provides a summary of this 

research study, and also introduces ideas for future research. 

6.2. Recognition Results 

The ASR results obtained from our research study show that in some languages the 

grapheme-based acoustic sub-word units achieves acceptable levels of CSR 

accuracies when compared to phoneme-based units. On the small Lwazi ASR corpus, 

graphemes obtained better recognition accuracies than phonemes with a word error 

rate (WER) of 2.35% and 0.16% for Tshivenda and IsiNdebele, respectively. However, 

phonemes perform slightly better than graphemes for Sepedi, with a WER reduction of 

0.73%. Phonemes also performed better than graphemes in the multilingual 

experiments, attaining a WER reduction of 2.37%. 

The medium-sized NCHLT ASR corpus was used to further verify the results. The 

grapheme-based units remained better for IsiNdebele with a WER reduction of 0.54%. 

Graphemes also perform better for Sepedi with a WER reduction of 6.91%. However, 

the phoneme-based units perform slightly better for Tshivenda with a WER reduction of 

0.04%, unlike they did on the Lwazi ASR cospus. 

6.3. Summary of Findings 

The aim of the research study was to investigate the potential of using graphemes, 

instead of phonemes, as acoustic sub-word units for the automatic speech recognition 

of the three under-resourced languages of the Limpopo, South Africa. To achieve this, 
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context-dependent tied-state acoustic models were trained using decision trees in both 

graphemes and phonemes. The grapheme-based and phoneme-based pronunciation 

dictionaries were used in the recognition process and the recognition results were 

compared for each language. 

The research hypothesis which was tested in this study was formulated as follows: “The 

grapheme-based acoustic sub-word units achieve acceptable levels of CSR accuracies 

when compared to phoneme-based units”. To validate this hypothesis, grapheme-based 

and phoneme-based experiments were conducted using two speech corpora: the Lwazi 

ASR speech corpus and the NCHLT ASR speech corpus. The two ASR experiments 

that used both speech corpora were identical with the only difference being the 

pronunciation dictionaries and thus the acoustic sub-word units. The primary evaluation 

focus of the two approaches was along monolingual speech recognition; however we 

also trained and tested multilingual acoustic models on the Lwazi ASR corpus. The 

Lwazi ASR corpus evaluation results were validated by the NCHLT ASR corpus. 

For the Lwazi ASR corpus, it was found that the grapheme-based sub-word units 

performed better than phonemes in IsiNdebele and Tshivenda but 0.73% worse in 

Sepedi for the monolingual experiments. Furthermore, graphemes generally performed 

worse than phonemes in the multilingual experiment. However, phonemes did not 

perform better in the cross-lingual acoustic models for all target languages. Graphemes 

outperformed phonemes for IsiNdebele and Sepedi when the individual languages were 

tested on the cross-lingual acoustic models. Since data is shared across languages, 

Sepedi improved due to the increased training data sourced from the other two 

languages, namely Tshivenda and IsiNdebele. However, Tshivenda suffered a slight 

decrease in grapheme accuracy and saw phonemes perform better than they did in the 

monolingual models. This depends significantly on the structure of the languages being 

shared, as confirmed by Manaileng and Manamela (2014).  

The Lwazi-based ASR results were validated by those obtained from using the NCHLT 

corpora. For IsiNdebele, the performance grapheme-based sub-word units remained 
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consistent and outperformed the phoneme-based units, just as it did in both the 

monolingual and multilingual experiments of the Lwazi corpora. With the increased 

training data, graphemes performed significantly better than phonemes for Sepedi. This 

correlates to the recognition results for the multilingual Lwazi corpora experiment, which 

also had more training data than the monolingual Lwazi corpora experiments. 

Tshivenda, however, did not improve with an increase of training data. It is suspected 

that the problem might be its language form and phonetic structure which was not easy 

to comprehend and manipulate by the researcher. Also, a similar study on the Afrikaans 

language also reported inferior graphemes performance due to language form and 

structure (Basson and Davel, 2013). 

6.4. Future Work and Recommendations 

This section discusses and recommends the potential directions of the future. 

6.4.1. Pronunciation Dictionaries 

Given the minimal effort required to build pronunciation dictionaries for the grapheme-

based systems, as compared to the excessive effort required for the phoneme-based 

systems, we are confident that the use of graphemes can massively contribute towards 

the success of developing more pronunciation dictionaries and CSR systems for more 

under-resourced languages. The efficiency (in terms of cost and time) offered by 

graphemes also demonstrate their possible preference for under-resourced languages. 

Furthermore, the primary language letter-to-sound rules were used to model loan words 

in the pronunciation dictionaries across all languages. Better recognition results may be 

obtained using different approaches such as language-specific letter-to-sound rules, 

data-driven foreign-to-primary language phoneme mappings, automatic language 

identification, etc. 
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6.4.2. Grapheme-based ASR Systems for More Under-resourced Languages 

We hope to develop speech recognizers for more under-resourced languages of South 

Africa as these languages currently have few or non-existing speech processing tools. 

We have demonstrated that graphemes can improve monolingual speech recognition 

when cross-lingual data is shared across related languages to build multilingual 

acoustic models. This approach takes advantage of the uniformly distributed graphemes 

across the indigenous South African languages to increase training data. We therefore 

hope to use the grapheme-based approach to further train multilingual acoustic models 

on the related indigenous languages of South Africa. 

6.4.3. Can Graphemes Solve the Problem of Language Variants? 

One interesting observation that remains to be studied is the effects of using graphemes 

on language variants, such as dialects and accents. Dialects and accents are only 

spoken and not written, i.e. dialects or accents of a language are mostly written exactly 

the same way (or slightly differently) as the language itself. Graphemes are mainly 

concerned with the orthography of the language and thus it should be interesting to see 

how grapheme-based acoustic models handle these language variants. 

6.4.4. Improved Recognition Accuracies 

More work remains to be done to ensure satisfactory and reliable recognition results 

with significantly reduced recognition error rates so that the local speech processing 

research community can consider adopting this method to build continuous speech 

recognition systems for more languages with little or no linguistic resources. This will 

benefit various speaker communities that use most of these heavily under-resourced 

languages on daily basis by ensuring the delivery of automatic linguistic tools which 

may significantly help with language preservation, uplifting and general language-

specific e-service provisioning tasks. 
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6.5. Final Remarks 

This research essentially investigated the potential of grapheme-based sub-word units 

for monolingual and cross-lingual speech recognition for three indigenous South African 

languages, namely, the Sepedi, Tshivenda and IsiNdebele languages.  

We have shown that grapheme-based continuous speech recognition, which copes with 

the problem of low-quality or unavailable pronunciation dictionaries, is comparable to 

phoneme-based recognition for these languages in both the monolingual and cross-

lingual speech recognition tasks. The study significantly demonstrates that context-

dependent grapheme-based sub-word units can be reliable for small and medium-large 

vocabulary speech recognition tasks for IsiNdebele, Sepedi and Tshivenda, and 

potentially other official languages of South Africa, as also suggested by Manaileng and 

Manamela (2014). 

We demonstrated that graphemes can attain superior recognition accuracies for some 

under-resourced languages, preferably phonetic languages such Spedi, Tshivenda and 

IsiNdebele. This finding implies that for these under-resourced languages, graphemes 

can be considered alternatives to phonemes as sub-word recognition units to lessen the 

total effort and cost required in developing perfectly hand-crafted pronunciation 

dictionaries. This straightforward approach to pronunciation dictionary creation is 

advantageous especially in situation of under-resourced languages and can be 

successfully used for building more robust speech recognisers for rare and marginalized 

languages.  

The method of applying graphemes-based acoustic sub-word units is novel for all the 

three languages. The results reported in our research study forms a baseline for further 

grapheme-based studies on these three and/or other under-resourced indigenous 

languages. Moreover, we have shown that the use of grapheme-based units attains 

better recognition accuracies in closely-related languages, such Sepedi and IsisNdbele, 

and worse accuracies in unrelated languages, Tshivenda and Sepedi. We further 
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demonstrated that Tshivenda is not suitable for cross-lingual data sharing with Sepedi 

and IsiNdebele, despite the languages’ close socio-geographical proximity. 
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APPENDICES 

A: ASR Experiments – system.sh 

#!/bin/bash 
# This script calls other scripts to run an ASR experiment for a given language 
ROOT_DIR=~/asr 
MAIN_DIR1=$ROOT_DIR/msc/nchlt/nchlt_nso 
ASR_SCRIPTS=$ROOT_DIR/asr_template 
source Vars.sh 
FEAT=1 
PREPROC=1 
DO_LISTS=1 
DO_CHECK=1 
DO_TRAIN=1 
DO_EVAL=1 
#--------------------------------------------------------- 
# Create necessary directories!! 
 
for dir in  $DIR_EXP/data $DIR_EXP/data/mfccs $DIR_EXP/data/mfccs/trn $DIR_EXP/data/mfccs/tst 
$DIR_EXP/log $DIR_EXP/data/proc_trans $DIR_EXP/data/proc_trans/trn $DIR_EXP/data/proc_trans/tst 
$DIR_EXP/lists/; do 
  if [ ! -d $dir ]; then 
     mkdir -p $dir 
  fi 
done 
 
#-------------------------------------------------------------------- 
if [ $FEAT == 1 ]; then 
    echo "" 
    echo "FEATURE EXTRACTION using CMVN" 
    echo "creating hcopylist.lst" 
    date >> $DIR_EXP/log/time.feat 
    perl $ASR_SCRIPTS/utility_scripts/create_hcopy_lists.pl $MAIN_DIR1/data/audio 
$DIR_EXP/data/mfccs $DIR_EXP/lists/hcopylist.lst 
    cd $DIR_EXP/src 
    echo "running: CMVN.sh cmvn" 
    bash CMVN.sh cmvn $DIR_EXP/lists/hcopylist.lst >& $DIR_EXP/log/feature.log 
    date >> $DIR_EXP/log/time.feat 
fi 
#--------------------------------------------------------------- 
 
if [ $PREPROC == 1 ]; then 
    echo "" 
    echo "PREPROCESSING of Transcriptions" 
    echo "creating preproclist.lst" 
    date >> $DIR_EXP/log/time.pre 
    perl $ASR_SCRIPTS/utility_scripts/create_preproc_lists.pl $MAIN_DIR1/data/trans/trn 
$DIR_EXP/data/proc_trans/trn $DIR_EXP/lists/preproclist.trn.lst 
    perl $ASR_SCRIPTS/utility_scripts/create_preproc_lists.pl $MAIN_DIR1/data/trans/tst 
$DIR_EXP/data/proc_trans/tst $DIR_EXP/lists/preproclist.tst.lst 
    cd $DIR_EXP/src 
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    echo "running: PREPROC.sh" 
    bash PREPROC.sh $DIR_EXP/lists/preproclist.trn.lst all_phases >& $DIR_EXP/log/preproc.trn.log 
    bash PREPROC.sh $DIR_EXP/lists/preproclist.tst.lst all_phases >& $DIR_EXP/log/preproc.tst.log 
    date >> $DIR_EXP/log/time.pre 
fi 
#--------------------------------------------------------------------- 
if [ $DO_LISTS == 1 ]; then 
    echo "Generating train and test lists" 
    date >> $DIR_EXP/log/time.lists 
    bash gen_nchlt_lists.sh  
    date >> $DIR_EXP/log/time.lists 
fi 
#----------------------------------------------------------------------------- 
if [ $DO_CHECK == 1 ]; then 
    echo "" 
    echo "CHECKING for Errors prior to Training" 
    cd $DIR_EXP/src 
    echo "running: CHECK.sh all_phases" 
    date >> $DIR_EXP/log/time.check 
    bash CHECK.sh all_phases >& $DIR_EXP/log/check.log 
    date >> $DIR_EXP/log/time.check 
fi 
#----------------------------------------------------------------------- 
if [ $DO_TRAIN == 1 ]; then 
    echo "" 
    echo "TRAINING" 
    cd $DIR_EXP/src 
    date >> $DIR_EXP/log/time.train 
    echo "running: TRAIN.sh all_phases"  
    bash TRAIN.sh all_phases >& $DIR_EXP/log/train.log 
    echo "running: TRAIN.sh semitied" 
    bash TRAIN.sh semitied >& $DIR_EXP/log/semitied.log 
    date >> $DIR_EXP/log/time.train 
fi 
#------------------------------------------------------------------------ 
if [ $DO_EVAL == 1 ]; then 
    echo "" 
    echo "EVALUATION" 
    cd $DIR_EXP/src 
    echo "running: HDecode" 
    bash runHDecode.sh    
    echo "running: TEST.sh words_results" 
    bash TEST.sh word_results >& $DIR_EXP/log/results.words.log 
    date >> $DIR_EXP/log/time.test 
fi 
echo "DONE." 

B: Data Preparation – create_trans.py 

#!/usr/bin/python 
# This script creates training and testing transcriptions of the NCHLT Data 
 
from xml.dom import minidom 
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import xml.etree.ElementTree as ET 
import sys, codecs 
 
def getTrans(a, txt): 
 fname = a[20:-3] + 'txt' 
 print 'Writting to: ' + fname 
 print "" 
 fhandle = codecs.open(fname, 'w', 'utf-8') 
 fhandle.write(txt) 
 fhandle.close() 
 
def makeTrans( fl ): 
 print 'Reading XML file...'  
 xmldoc = minidom.parse(fl) 
 recs = xmldoc.getElementsByTagName('recording')  
 print 'Reading DONE.' 
 for rec in recs: 
  aud = rec.attributes['audio'].value 
  trn = rec.getElementsByTagName('orth')[0].childNodes[0].data 
  sent = trn + "\n" 
  getTrans(aud, sent) 
if __name__=='__main__': 
 fl = sys.argv[1] 

 makeTrans( fl ) 

C: Generating Question Files: create_quest.pl 

# This script creates question file for triphone tying from a list of graphemes or monophones 
#!/usr/bin/perl 
use warnings; 
use strict; 
use open IO => ':encoding(utf8)'; 
my $monophone_list; 
my $quest_file; 
($quest_file, $monophone_list) = @ARGV; 
if (@ARGV + 0 < 2) { 
  print "./create_quests_file.pl <quests_file_out> <monophn_list>\n"; 
  exit 1; 
} 
my $ph; 
my @elements; 
my %monophones; 
open IN, "$monophone_list"; 
while(<IN>) { 
  chomp($ph = $_); 
  if (($ph ne "sil")&&($ph ne "sp")) { 
    $monophones{$ph} = 1; 
  } 
} 
close(IN); 
open OUT, ">$quest_file"; 
foreach $ph (sort keys %monophones) { 
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  print OUT "QS  \"R_$ph\"\t\t{ *+$ph }\n"; 
} 
foreach $ph (sort keys %monophones) { 
  print OUT "QS  \"L_$ph\"\t\t{ $ph-* }\n"; 
} 
close(OUT); 

D: Generating wordlists: gen_word_list.py 

# This script generates a wordlist from a given pronunciation dictionary 
#!/usr/bin/python 
import sys 
def genWordList1(wordList): 
 for word in wordList: 
  inc = 0 
  for c in word:   
   if c != '\t': 
    inc = inc + 1 
   else: 
    break 
  wrd = word[:inc] 
  lst.append(wrd) 
  
 return lst 
 
def genWordList2(lst): 
  
 flst = []  
  
 for word in lst: 
  wrd = word[:100] 
  flst.append(wrd + '\n') 
  
 return flst 
 
if __name__ == '__main__': 
    if len(sys.argv) < 2: 
        print "Usage: " + sys.argv[0] +" inputfile " 
        sys.exit() 
       
    inFile = open(sys.argv[1],'r') 
         
    wordList = [] 
    lst = [] 
    flst = [] 
    wrd = "" 
     
    for ln in inFile: 
        line = ln.strip() 
        wordList.append(line) 
     
    lst = genWordList1(wordList) 
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    flst = genWordList2(lst) 
                 
    toF = open('WordsList.txt','w') 
    toF.writelines(flst) 
    toF.close() 

E: Creating Grapheme-based Pronunciation Dictionaries: create_dict.py 

# This script creates a grapheme-based pronunciation dictionary from a wordlist 
#!/usr/bin/python 
 
import sys, codecs 
def createDict(inFile): 
 wordList = [] 
     flst = [] 
     wrd = ""     
     for ln in inFile: 
         line = ln.strip() 
         wordList.append(line) 
         
 for wrd in wordList: 
      chars = '' 
      word = wrd 
       
      for char in wrd: 
       chars = chars + char + ' ' 
       #print chars, 
      word = word +'\t\t\t' + chars 
      #print word 
      flst.append(word + '\n')       
     toF = codecs.open("Dict.txt","w","utf-8") 
     toF.writelines(flst) 
     toF.close() 
 
if __name__ == '__main__': 
    if len(sys.argv) < 2: 
        print "Usage: " + str(sys.argv[0]) + " inputfile (.txt)" 
        sys.exit() 
    inFile = codecs.open(sys.argv[1],"r","utf-8") 
    createDict(inFile) 

F: Increasing Tri Mixtures:  tri_inc_mixes.sh  

# This script increments the number of mixtures 
#!/bin/bash 
LOCAL_NUM_ITERATIONS=$NUM_MIXES 
 
while [ $LOCAL_NUM_ITERATIONS -gt 1 ]; do 
  LOCAL_NUM_ITERATIONS=$(($LOCAL_NUM_ITERATIONS-1)) 
#============================================================================== 
# Increment the mixtures 
#============================================================================== 



105 

 

# Make sure the hmm dirs are up to date 
  source $DIR_SRC/inc_hmm_cnt.sh auto_update 
  HHEd -A -D -T 1 -V -H $DIR_HMM_CURR/macros -H $DIR_HMM_CURR/hmmDefs.mmf -M 
$DIR_HMM_NEXT $HED_MIX_INC $LIST_TIED 
  bash $DIR_SRC/check_exit_status.sh $0 $? 
 
#============================================================================== 
# Re-estimate twice 
#============================================================================== 
# ./herest.sh <model list> <trn mlf> <num re-estimations> 
  bash $DIR_SRC/herest.sh $LIST_TIED $MLF_TRIPHNS_TRN 2 
  bash $DIR_SRC/check_exit_status.sh $0 $? 
echo done 
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