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Abstract  

While the effect of sulphur on c-ZrO2 is often considered in application of advanced 

solid oxide fuel cells and biomass gasification cleanup, there has been little study on 

the effect of sulphur on general structure of c-ZrO2. In this work a study of the 

structural, energetic, electronic and elastic properties of doped c-ZrO2-xSx, t-ZrO2xSx 

and m-ZrO2-xSx solid solutions has been carried out using ab-initio total energy 

calculation of the density functional theory under plane wave pseudopotential 

method within generalized gradient approximation using the self-consistent virtual 

crystal approximation (VCA). It has been shown that all the calculated properties 

obtained after relaxation are in good agreement with available experimental and 

other calculated values, particularly at x=0. Furthermore, the formation and cohesive 

energies were calculated to determine the relative stability of all three non-sulphated 

and sulphated polymorphs of ZrO2. The density of states and band structures have 

been computed for x = 0.0 - 0.5, and the actual size of the band gap of ZrO2 

compounds narrowed with partial replacement of oxygen by sulphur, while peaks 

above Fermi level move towards the Fermi level. The material changes its insulating 

properties to semiconductor material as a function of sulphur concentration, which 

might be useful for potential application. We also investigated and calculated, for the 

first time, the effect composition variation on mechanical stability, the independent 

elastic constants and other elastic parameters of the sulphated compounds. The 

polycrystalline bulk moduli, shear moduli, Young and Poisson’s ratio have been 

deduced by using Voight-Reuss-Hill (VRH) approximation. In addition we also show 

the geometric and electronic structure of pure ZrOS and ZrS2 and compare them with 

the obtained geometric and electronic structures of ZrO2-xSx. 
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CHAPTER 1 

                                           GENERAL INTRODUCTION 

1. Background and aim of research 

Zirconium dioxide (zirconia) is one of the most studied ceramic materials. Pure 

zirconia has four polymorphs, namely cubic, tetragonal, monoclinic, and 

orthorhombic zirconia. The latter forms only at elevated pressures. Zirconia can be 

modified by doping with other metal oxides such as magnesia and yttria. The 

tetragonal to monoclinic phase transformation significantly enhances the strength 

and toughness of partially stabilized zirconia [1], apart from doping with the metal 

oxides, addition of sulphur to ZrO2 has been concluded to be an alternative for 

stabilisation of cubic zirconia by partial replacement of oxygen by sulphur. Zirconia is 

a widely used ceramic in many technological applications. This is clearly attributed to 

its unique mechanical and chemical properties such as surface acidity and basicity, 

oxidation and reduction properties, porosity, stable surface area at high 

temperatures, high melting point, good mechanical strength, low thermal 

conductivity, and corrosion resistance [2].  

 

Zirconia is used as an effective catalyst in many important reactions such as 

dehydration, elimination, hydrogenation, and oxidation reactions. Moreover, zirconia 

can be acidified to give a strong acid catalyst which can be effective in many 

reactions, such as alkene isomerization, hydrocracking, and alkylation [3]. 

Additionally, the cubic phase of zirconia also has a very low thermal conductivity, 

which has led to its use as a thermal barrier coating or TBC in jet- and diesel-

engines to allow operation at higher temperatures [4]. Stabilized zirconia is used in 

oxygen sensors and fuel cell membranes because it has the ability to allow oxygen 

ions to move freely through the crystal structure at high temperatures. This high ionic 

conductivity (and a low electronic conductivity) makes it one of the most useful 

electro-ceramics. The high thermal stability and high ionic conductivity of zirconia 

make it a useful material for refractory purpose, in insulation, abrasives, enamels 

and ceramic glazes. And Zirconia has been recently considered in prosthetic 

dentistry for the fabrication of crowns and fixed partial dentures [5].  
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Biomass and solid oxide fuel cell (SOFC) are ones of the most promising auxiliary 

renewable energy sources. These systems offer highly efficient renewable energy 

and are modular in nature making them ideal for decentralised CHP (combined heat 

and power) applications and as a result have recently gained much attention [6, 7, 

8]. 

 As indicated in section 1.4, the studies of the effect of sulphur impurity on the 

structural properties of zirconia show the possibility of the partial replacement of 

oxygen atoms by sulphur atoms [9]. It is hypothesized that such replacement takes 

place in the ceramic part of the SOFC anode materials [10], and also after 

sulphidation at 623 K with H2S, around 1.8 wt% of sulphur was found on zirconia 

when sulphur-containing fuels (H2S or mixed H2/H2S) are used. Based on this 

hypothesis, the first-principles studies of the effect of sulphur impurity on the stability 

of c-ZrO2, t-ZrO2 and m-ZrO2 have been performed. However, in terms of practical 

applications, c-ZrO2-xSx solid solutions are more attracting. In this work the emphasis 

was made on the effect of sulphur on cubic zirconia.  

The aim of our research is to create and study different structures of c-ZrO2-xSx (for x 

ranging from 0 to 2) using the Virtual Crystal Approximation (VCA) [11, 12]. The 

variations of ZrO2-xSx will eventually influence the properties c-ZrO2 such as 

structural, electronic and mechanical properties. Furthermore, the purpose of this 

work is to study similar properties for m-ZrO2-xSx and t-ZrO2-xSx (for x ranges from 0 

to 2) as for c-ZrO2-xSx using the VCA approach and compare the effects sulphur on 

c-ZrO2 with the effect of sulphur on t-ZrO2 and m-ZrO2.  

1.1. Zirconium dioxide 

Zirconium (IV) oxide is an extremely important oxide, and it has an extensive number 

of applications. It is used as a solid state electrolyte, in industrial and in the catalysis 

area. Furthermore, the extraordinarily high melting point and low thermal coefficient 

of expansion make it a major component of refractories. Another important reported 

application is that heated zirconia can be utilized as a source of infrared radiation 

and white light [13]. The high electrical resistance of the zirconia makes it an 

excellent oxide material for use as a ceramic insulator [14]. Table 1 summarizes the 

physical properties of the zirconium (IV) oxide. 
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Table 1 Physical properties of zirconium oxide (ZrO2) 
Property                                                                                  Value 

 

Boiling point (°C)         4300 

Coefficient of thermal expansion at -80 °C (cm/cm/°C)    8 x 10-6
 

Colour          White 

Density (mg/ml) 

Monoclinic           5.68 

Tetragonal          6.10 

Cubic           6.27 

Entropy of formation at 298 K (Cal.)      - 46.5 

Heat of formation at 298 K (Kg Cal./mol)      -261.5 

Heat of fusion (Kg Cal./mol)       20.8 

Formula weight (mg/ mol)        123.22 

Melting point (°C)         2900 

Solubility 

Soluble in     HF, Conc. H2SO4, molten glass 

Insoluble in      Water, alkalies, organic solvents 

Thermal conductivity at 100 °C (Cal. Sec/cm/cm2/°C)    0.004 

 

1.2. Crystal structure of Zirconium oxide: 

Cubic phase: Smith has identified the crystal structure of cubic zirconia [15]. The 

cubic phase is stable above 2370 ºC to melting point. The cubic phase has a fluorite-

type structure with a unit cell dimension of 5.27 Å. Each Zr4+ ion is coordinated to 

eight oxygen atoms, while each oxygen atom is bonded to four zirconium atoms in a 

tetrahedral manner. Figures 1 show the structure of cubic zirconia [16]. 

Monoclinic phase: The crystal structure of the monoclinic phase is characterized by 

unit cell parameters of a = 5.169 Å, b = 5.232 Å, and c = 5.341 Å with β = 99º. The 

crystal structure of this phase demonstrates that the zirconium cations are seven-fold 

coordinated with oxygen. Oxygen coordinates nearly tetrahedrally to zirconium 

cations with one angle slightly larger than the tetrahedral angle (109.5º). Another 
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property of this structure is the existence of two alternative layers forming the seven-

fold coordination.  

 

Figure 1 Structural models of three polymorphic forms of ZrO2, a) cubic, b) 

tetragonal and c) monoclinic crystal lattice.  

Light sphere =Zr and dark sphere =O 

The sevenfold coordination site of Zr4+ arises from the fact that there are two parallel 

oxygen layers present in the structure of the monoclinic zirconium oxide in which the 

zirconium atom layer is located between these oxygen layers parallel to the (100) 

planes.  

Table 2 Crystallographic data for cubic, tetragonal and monoclinic zirconia 

ZrO2 Space 

group, no 

Cell 

parameter 

(Ǻ) 

Z V(Z=1) 

(Ǻ3) 

Atomic 

coordinates 

Nearest Zr-

Zr 

distances(Ǻ) 

Refs. 

c Fm-

3m,225 

a=5.09 4 32.97 Zr:(0,0,0) 

O:(1/4,1/4,1/4) 

3.599 [16] 

t P42/nmc, 

137 

a=3.591 

c=5.169 

2 33.33 Zr:(0,0,0) 

O:(0,1/2,0.204) 

3.591 

3.623 

[15, 

17] 

m P21/c,14 a=5.1505 

 

b=5.2116 

 

c=5.3173 

4 35.22 Zr1:(0.275, 

0.0400.208) 

O1:(0.070, 

0.332,0.345) 

O2:(0.445, 

0.757,0.489) 

3.334 

 

-4.301 

[18] 

The first layer is the Zr4+
 coordinated to four oxygen atoms which form a square 

plane similar to half of an eight-fold cubic structure. In the second layer, the Zr4+
 ion 

c) b) 
a) 
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is coordinated to the three other oxygen atoms which form a trigonal shape with the 

plane parallel to the phase of the first layer as shown in Figure 1. The monoclinic 

phase is stable at room temperature to about 1170 °C [18]. 

 

Tetragonal phase: The tetragonal phase is stable above 1170 ºC and below the 

cubic range temperature of about 2370 ºC. The tetragonal zirconia structure is very 

similar to the cubic structure with a slight difference. The former still maintains the 

eight-fold coordination of the zirconium cation. However, the bond distances 

between the zirconium ions and the four oxygen atoms is 2.45 Å, while the distances 

to the other four oxygen atoms is almost 0.4 Å difference, 2.065 Å [Figure 1] [15, 17]. 

1.3. Phase transformation: 

Zirconia can exhibit phase transformation from one structure to another as a function 

of temperature and pressure as follows [1]: 

Monoclinic  
C

0
1170

Tetragonal  
C

0
2370

Cubic 

The monoclinic–tetragonal phase transformation has been extensively studied due to 

its theoretical and practical importance. Upon phase transformation, the lattice 

parameters change, and zirconia undergoes contraction on heating and expansion 

on cooling through the transformation. X-ray diffraction analysis [19] has shown that 

the transformation does not occur at a fixed temperature, but the extent of 

transformation is changed with changing temperature. Previously, Wolten [20] has 

illustrated that the monoclinic-tetragonal transition is thermodynamically reversible 

and exhibits a large thermal hysteresis between cooling and heating cycles. 

Furthermore, the transformation rate is dependent upon the particle size of the 

zirconia powder. The larger the particle size of the prepared zirconia, the faster the 

phase transformation occurs. One of the major advantages of the monoclinic to 

tetragonal transformation is the volume contraction which can dramatically improve 

the fracture toughness and strength of zirconia ceramics [1]. However, the 

transformation from tetragonal to monoclinic is rapid and is accompanied by a 3 to 5 

percent volume increase that causes extensive cracking in the material. This 

behaviour destroys the mechanical properties of fabricated components during 

cooling and makes pure zirconia useless for any structural or mechanical application. 

Several oxides, which dissolve in the zirconia crystal structure, can slow down or 
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eliminate these crystal structure changes. Commonly used effective additives are 

MgO, CaO, and Y2O3 [21, 22, 23, 24, 25]. With sufficient amounts added, the high 

temperature cubic structure can be maintained to room temperature. Cubic stabilised 

zirconia is a useful refractory and technical ceramic material because it does not go 

through destructive phase transitions during heating and cooling. 

 

A metastable tetragonal phase can be achieved at low temperatures using a variety 

of synthetic approaches. Garvie et al. [26, 27] attribute the low temperature stability 

of the tetragonal phase to the low surface energy of the tetragonal phase compared 

to that of the monoclinic phase. They claim that the critical size for stabilization of the 

tetragonal phase was 30 nm. When the crystallite size exceeds 30 nm, the material 

exhibits a transformation from the tetragonal phase to more the stable monoclinic 

phase. The controlled, stress-induced volume expansion of the tetragonal to 

monoclinic inversion is used to produce very high-strength, hard, tough varieties of 

zirconia for mechanical and structural applications. There are several different 

mechanisms that lead to strengthening and toughness in zirconia that contains 

tetragonal grains. While this is a complex subject matter, in principle, these depend 

on the grain sizes, the thermal history and the kind and amount of stabilising additive 

in the body. These variations lead to two strong, commercially available partially 

stabilised zirconia (PSZ) microstructures identified as tetragonally toughened 

zirconia (TTZ) and tetragonal zirconia polycrystal (TZP) ceramics [28, 29]. The TTZ 

is zirconia, partially stabilised with magnesium oxide (MgO) often designated MgTTZ 

or MgPSZ consisting of uniformly dispersed tetragonal precipitates in larger cubic 

phase crystals. The secondary thermal aging process requiring tight manufacturing 

controls for proper microstructural development has limited the supplier base for the 

tetragonally toughened zirconias.  The second variety, TZP, is a pure tetragonal 

phase, very fine grain material, stabilised with rare earth oxides, primarily yttria and, 

less commonly, ceria. They are often designated YTZP for the yttria stabilised 

product and CeTZP for the ceria stabilised product. The TZP material has found 

uses in cutting and wear resistant applications due to its reliable and outstanding 

hardness and toughness. TZP properties degrade rapidly when the material is 

exposed to water vapour at 200 to 300°C, so controlled use conditions are important 

for good performance. All of the toughened zirconia show a degrading of properties 
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with increasing temperature, and this class of high strength, tough materials is 

generally limited to use at temperatures below 800°C [21, 22, 23, 26, 28, 29]. 

 Additionally, the presence of water, upon calcination, was found to increase the rate 

of aggregation to form large particles and enhance the transformation [30]. This is 

also probably attributed to the lowering of the monoclinic surface energy as a result 

of water adsorption. Morgan [31], however, has prepared a monoclinic zirconia with 

a crystallite size smaller than 30 nm. This contradiction raises the question whether 

the tetragonal phase or a metastable phase is the more stable one. Addition of 

sulphate anions can also play an important role in phase transformation. Bridging 

sulphate ions stabilize the structure of zirconia since they can retard the formation of 

oxo-bonds between zirconium atoms and oxygen atoms. This will prevent sintering 

at high temperature, and hence, prevent rapid phase transformation and will stabilize 

the surface area [32, 33] Furthermore, bridging sulphate groups are believed to 

contribute to thermal stabilization by increasing of the Zr-O-Zr separation from 3.4 Å 

to about 4.3 Å [32, 33, 34]. There are, in fact, other factors which also influence the 

phase transformation such as the precursor, pH, and aging time [35, 36]. Srinivasan, 

et al. [35] precipitated zirconia at different pH values within the range 3-13. The 

samples were calcined at 500 °C for different periods of time. They found that the 

sample precipitated at low pH exhibited fast phase transition from the tetragonal form 

to the monoclinic one. Furthermore, the phase transformation occurred more rapidly 

in an oxygen environment than in an inert gas atmosphere. The role of oxygen 

adsorption is believed to be as follows: the oxygen creates defect sites which 

generate more strains and dislocations sites which, in turn, initiate the phase 

transformation [3]. In case of sol-gel synthesis, the transition amorphous phase 

metastable crystalline ZrO2 occurs at the temperature much lower than the 

equilibrium phase diagram states. The region of stability of the metastable 

polymorphs depends on the size of crystallites, the dispersity of final powder, 

hydrostatic stresses, the presence of impurities in structure, etc. As they all are 

deeply interconnected, so far it is not possible to distinguish the one which is the 

most dramatic. Hence, there is no common theory describing the occurrence and 

further thermal evolution of pure metastable zirconia and its solid solutions. At the 

same time, the proper choice of precursor synthesis conditions allows to control the 

size of crystallites, the specific area, grain size in the final ceramics, i.e. allows the 

direct crystallization of metastable phases [37]. 
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1.4.  c-ZrO2 and sulphur contact in biomass gasification  

In gasification gas clean-up, zirconia and some doped forms of zirconia have been 

concluded to be selective catalysts for tar and ammonia oxidation [38, 39]. As we 

know, ZrO2 is a metal oxide with acidic, basic, oxidizing and reducing properties [40] 

and with three stable crystal structures: cubic, tetragonal and monoclinic [41]. The 

characteristics of ZrO2 based catalysts can be influenced by dopants which modify 

the basic, acidic surface properties and thermal stability of ZrO2. Some dopants, 

such as Y2O3, can create oxygen vacancies in the ZrO2 anion lattice and stabilize 

ZrO2 to tetragonal or cubic structure [41] whereas other dopants, such as SiO2, are 

not expected to create oxygen vacancies [42, 43] but enhance the thermal stability 

by restricting the growth of ZrO2 particles. One of the problems in the use of 

catalysts is the fact that the biomass gasification gas contains usually remarkable 

amounts of H2S (in the range of 100 to even 500 ppm depending on the feedstock) 

[44]. For this reason, the sulphur tolerance of the catalyst is very important [44]. 

Nevertheless, Juutilainen et al. [38] say that H2S has little effect on the alumina 

doped zirconia catalyst and that the adsorption of H2S on the alumina doped zirconia 

is weak under the synthetic gasification gas conditions. In general, three possible 

sulphidation pathways on metal oxides with H2S are suggested: (1) exchange of 

oxygen from metal oxide to sulphur, (2) dissociation of H2S into HS- and H+, the latter 

forming hydroxyl-groups on the catalysts surface and (3) coordinative bonded 

hydrogen-sulphide which can be the source of Brønsted acidity [45]. According to 

Ziolek et al. [46] after sulphidation at 623 K with H2S, around 1.8 wt% of sulphur was 

found on zirconia. The H2S was observed to be dissociatively adsorbed and the 

surface oxygen ions could be replaced by sulphur. It was concluded that the 

replacement of oxygen by sulphur ions upon H2S adsorption seemed to increase the 

basicity or redox properties. Moreover, the selectivity to acetone in isopropanol 

decomposition was increased after sulphidation [46].  

1.5.  Comparison of ZrO2, ZrOS and  ZrS2 

Zirconium has nearly equal energy of the 4d and 5s levels, and this allows most of 

the zirconium chemistry to involve the four electrons in these two levels. The Zr4+ is a 

highly charged ion with a relatively large radius (0.86 Å). The Zr(IV) compounds 

exhibit high coordination numbers because Zr(IV) does not have a partially filled 

shell. Therefore, Zr(IV) does not display a stable lower valence species. Solutions of 
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zirconium salts can exhibit many chemical reactions such as hydrolysis, 

polymerization and hydration, depending on conditions. Zirconium salts dissociate in 

water at low pH value. For example, Zr4+ ions hydrate with bonding to eight water 

molecules to form a square antiprism [47]. 

 

Metal oxides and metal sulphides as ZrO2 and zirconium sulphide (ZrS2) have 

different structures and different properties even though the oxygen and sulphur 

belong to the same group in the periodic table. Because sulphur is directly below 

oxygen in the periodic table, these elements have similar electron configurations. As 

a result, sulphur forms many compounds that are analogues of oxygen compounds 

There are four principal differences between the chemistry of sulphur and oxygen.  

1. O=O double bonds are much stronger than S=S double bonds.  

2. S-S single bonds are almost twice as strong as O-O single bonds.  

3. Sulphur (EN = 2.58) is much less electronegative than oxygen (EN = 3.44).  

4. Sulphur can expand its valence shell to hold more than eight electrons, but 

oxygen cannot.  

These seemingly minor differences have important consequences for the chemistry 

of these elements [48]. 

 It is well known that sulphur is larger in size, less electronegative, and the d-orbitals 

of sulphur are available for bonding [48]. Therefore, it will be very interesting to study 

the behaviour of the Zr-O-S system which contains both oxygen and sulphur, and to 

compare it with insulating ZrO2 systems and semiconducting ZrS2 systems. 

 

The zirconium disulfide compound is crystallized in a lattice of CdI2 type with the 

space group D3d
3(P3ml). The lattice parameters are a=3.662 Å and c=5.813 Å [49]. 

The primitive Bravais cell contains one formular unit (z=1). The anions take 2(d) = 

(1/3, 2/3, z) Wyckoff positions in the lattice and the cations take the common 1(a) = 

(0, 0, 0) positions. In this structure, one zirconium plane is sandwiched by two sulfur 

planes and the stacking of the layers forms the crystal structure, i.e. (S-Zr-S)(S-Zr-

S). In this compound every zirconium atom is located in a slightly distorted 

octahedron composed of six sulphur atoms. 
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The ZrOS system contains both oxygen and sulphur; it has a simple cubic lattice with 

a=5.696 with space-group T4-p213. The Zr shows the coordination number of seven, 

being surrounded by three sulphur atoms at 2.63 Å, one sulphur atom at 2.61 Å and 

three oxygen atoms at 2.13 Å. The co-ordination polyhedron has a point-group 

symmetry of C3~3m  [50]. 

Table 3 Crystallographic data for zirconium disulphide and 
zirconiumoxysulphide 

 Space 

group,no 

Cell 

parameter 

(Ǻ) 

Z V(Z=1) 

(Ǻ3) 

Atomic 

coordinates 

(Ǻ) 

Nearest  

Zr-Zr 

distances(Ǻ) 

Refs. 

ZrS2 p-

3m1,164 

a=3.680 

c=5.850 

1 68.61 Zr:(0,0,0) 

S:(1/3,1/3,1/4) 

3.662 [49] 

ZrOS T4-P213 a=5.696 4 46.20 Zr(0.057) 

O(0.678) 

S(0.322) 

3.650 [50] 

 

1.6.  Background on methodology and properties to be investigated 

Current experimental data does not provide a detailed fundamental understanding of 

S solubility in ZrO2. In order to fill this gap of knowledge, atomistic simulation is a 

suitable approach. Despite the great technological importance of this system, few 

theoretical studies by first principle theory have been carried out to understand the 

solubility of S in ZrO2. But there have been some investigations of effect of sulphur 

impurities on the stability of c-ZrO2 and its interface with metals (Malyi et al. [51] and 

on the stabilisation of c-ZrO2 by partial exchange of oxygen and sulphur (Anderson 

et al. [52]). To the best of our knowledge only sulphur has an effect on stability. c-

ZrO2 has been the subject of study using first principle theory. It should be pointed 

out that these theoretical studies have provided valuable complementary information 

to experimental findings. 

The use of computer simulation techniques is becoming more important in the 

understanding of the physical properties of materials. Steadily growing computer 

power and improvements in numerical algorithms are making more materials 

problems approachable by computer simulations. First principles computations, in 

which properties of materials are derived from quantum mechanics, are particularly 
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interesting because they allow for the exploration of new materials even before a 

procedure to synthesize them has been devised [53, 54]. First principle calculations 

based on Density Functional Theory (DFT) [55] have become a tool for 

investigations of solid material properties, as they provide the possibility to consider 

interactions between atoms from a chemical point of view. 

 

The application of first principle electronic band structure methods to the study of 

disordered alloys and solid solutions requires some approximation for the treatment 

of the alloy disorder. A direct approach is to use the supercell approximation [56], to 

study one or more configurations in a supercell with artificially imposed periodic 

boundary conditions. Such calculations generally require the use of very large 

supercells in order to mimic the distribution of local chemical environments, and tend 

to be computational very demanding. A much simpler and computationally less 

expensive approach is to employ the Virtual Crystal Approximation (VCA) [57], in 

which one studies a crystal with primitive periodicity, but composed of fictitious virtual 

atoms that interpolate between the behaviour of the atoms of the parent compounds. 

This approach has seen a wide use in band structure calculations. Another possible 

approach would be to make use of the coherent potential approximation (CPA) [58], 

but unfortunately the CPA is generally not well suited for use in first principles total- 

energy methods. Clearly, the VCA has the advantage of simplicity and computational 

efficiency. 

 

The structural properties, electronic structures and stability of ZrO2 as a function of 

sulfur content was investigated by using first-principles calculations, implemented as 

Density Functional Theory (DFT) under the Born-Oppenheimer approximation, and 

this approach has been utilized in many of the systems, and has produced accurate 

ground state energies [55]. In recent years, first principles calculation has been 

gradually extended to complex systems such as doped systems, solid solutions and 

superlattices, and low-dimensional systems such as solid surface, nanotubes, 

quantum wells and quantum dots.  

Some of the properties including heats of formation, cohesive energy, formation 

enthalpy, elastic properties and the density of states will be reviewed below as they 

are appropriate for the current study. 
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1.6.1. Heats of formation, formation enthalpy and cohesive energy 

It has become quite commonplace, for electronic structural calculations of varying 

rigor, to yield the total energy of a solid. This offers a prospect of estimating the 

stabilities of structures which are either unavailable or inaccessible experimentally 

and this, in turn, has implications for making structural stability predictions. Heats of 

formation and cohesive energy from ab-initio calculations have been successfully 

used to predict the structural stability of alloys and solid solutions [59, 60, 61, 62]. In 

this work we will use the heats of formation and cohesive energy to predict the 

stability of all phases ZrO2-xSx for different x values. 

1.6.2. Elastic Constants 

Ab-initio calculations for the determination of elastic constants are more complex 

than the calculations of bulk properties (i.e. lattice constants, heats of formation, 

etc.). They provide a link between mechanical and dynamical behaviour of crystals, 

and give important information concerning the nature of forces operating in solids. In 

particular they provide information on the stability and stiffness of materials. The 

application of strain on the lattice implies a lowering of symmetry from that of bulk 

crystal and the strain energy involved is small. 

 

In other work Nikiforov et al. report the elasticity moduli of CdxHg1–xТe solid solutions 

[63], for which several researchers had done calculations [64, 65, 66]. The problem 

of ductile versus brittle response of crystals requires the fracture strength in addition 

to their deformability. Pugh [67] introduced the quotient of bulk modulus to shear 

modulus, B/C' as an indication of the extent of fracture range in metals. A high value 

of B/G is associated with ductility and a low value with brittleness. In this study we 

note that the lowest heat of formation is associated with ductility whereas the highest 

value is associated with the brittleness of the structure. This stipulates the 

relationship between the heat of formations and the elastic constants in terms of 

stability. 

1.6.3. Electronic density of states and electron charge density difference 

Similarly the heat of formation, cohesive energy, formation energy, elastic constants 

and the density of states (DOS) can be used to predict the stability of a solid 

solution. There is experimental and theoretical evidence that links the electronic 

structure to the stability of ZrO2. This can be observed where the Fermi level lies in 
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the pseudo-gap of the density of states plot. Density of states and electron charge 

density of different states are directly linked to the conduction properties of a 

material. Hou et al. [68] have investigated the electronic structures of (Li1-

xMex)FePO4 (Me=Na and Be); some studies also investigated the electronic 

structures of solids solutions. 

1.7.  Objectives 

In this thesis we investigate ZrO2-xSx, in particular the c-ZrO2 structures as a function 

of sulphur content using Density Functional Theory (DFT). 

 

We will determine the equilibrium lattice parameters, cell volumes and the heats of 

formation of the c-ZrO2-xSx , t-ZrO2-xSx and m-ZrO2-xSx. The results will be compared 

with the available theoretical and experimental data in order to validate the 

methodologies employed in the current study. We will investigate the stability of the 

structures at that composition and deduce the most stable structure by comparing 

their heats of formation and cohesive energy. 

 

In this work we will also perform the calculation of elastic and electronic properties of 

the c-ZrO2-xSx and compare the results with the available experimental and 

theoretical results. Additionally we will investigate similar properties for t-ZrO2-xSx and 

m-ZrO2-xSx structures for selected compositions and observe how the structural 

stabilities change. A detailed comparison of the calculated results will be presented. 
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CHAPTER 2 

THEORETICAL TECHNIQUES 

2. Ab initio methods  

Ab initio methods, such as Hartree-Fock or Density Functional Theory (DFT) 

calculate the electronic structure from first principles, i.e. without the need for 

empirical fitting parameters. In general, these methods utilize a variational approach 

to calculate the ground state energy of a many-body system, where the system is 

defined at the atomic level. The original calculations were performed on systems 

containing a few atoms. Today, calculations are performed using approximately up to 

1000 atoms but they are computationally expensive, sometimes requiring massively 

parallel computers.  

Density Functional theory gives a quantum-mechanical basis for most of the ab initio 

methods used in computational materials science [69]. These methods have made it 

possible to study complex solid materials of great industrial relevance. The main 

aims of these applications are the atomic level understanding of the properties and 

prediction of new data for the development of high-performance materials. In order to 

accomplish these goals, the numerical methods for solving the single-electron 

equations should have sufficient accuracy and efficiency. In this chapter, we shall 

start with a short summary of the Density Functional Theory and the Kohn-Sham 

scheme and also briefly review the most important approximations within the Density 

Functional Theory, and the most widely used methods for ordered as well as for 

disordered systems. 

2.1. Electron density instead of the wavefunction 

Density functional theory (DFT) has been playing increasingly important roles in 

many research activities of science and engineering in recent decades and has 

already become a mainstay for the quantum mechanical investigations of a broad 

range of complex molecular systems that are of interest in chemistry, biology, and 

physics [70, 71, 72]. DFT offers viable computational protocols with a good balance 

between accuracy and computational cost. This feature is particularly useful when 

one intends to investigate large molecular systems, to which the application of 
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accurate ab initio methods may be difficult or even impossible. The availability of 

user-friendly software packages greatly assists in applying DFT calculations to 

individual specific problems. 

In DFT, electronic energy E is expressed as a functional of electron density, viz., 
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where T is the total kinetic energy of electrons, Vne the potential energy resulting 

from an external potential and Vee the electron–electron repulsion energy. Electron 

density )(r for an N-electron system is defined as 
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where ix  collectively denote spatial )( iR and spin )( is coordinates. In stark contrast 

to the wave function Ψ that depends on 3 × N (space) + N (spin) = 4N variables, 

)(r contains only three spatial variables, implying that E may be obtained in a much 

more straightforward manner using )(r . In 1964, Hohenberg and Kohn proved that 

there is a one-to-one correspondence between the ground-state density and the 

external potential [73]. They also showed that the variational principle holds for the 

ground-state energy. The variational principle and the Levy constrained-search 

formulation of DFT [74] ensure that E can be determined by minimizing it with 

respect to some N-representable trial electron densities. 

Despite the fundamental importance of the Hohenberg–Kohn theorems, they do not 

provide explicit forms of the energy functionals in Equation 2.1 (except Vne). To 
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proceed, one needs to know how T and Vee are expressed as functionals of )(r . A 

practical approach to this problem was proposed by [75]. Their approach attempts to 

describe the real electron density by way of non-interacting electrons that are 

described using a Slater determinant of molecular orbitals (MOs) [or Kohn–Sham 

(KS) orbitals]. When the density is treated this way, the total energy is written as 

          )()()()()( rErJrVrTrE xcnes    2.3.  

 

where )]([ rTs   is the kinetic energy of non-interacting electrons, )]([ rJ  the classical 

electron-electron repulsion energy (Hartree energy), and )]([ rEXC   the exchange-

correlation energy. The first term )]([ rTs  , which accounts for a large portion of

)]([ rT  , may now be calculated using KS orbitals as in Hartree–Fock calculations. 

Nevertheless the explicit form of )]([ rEXC   remains unknown. In practice, KS 

equations are solved by employing an approximate )]([ rEXC  ; as such, the accuracy 

of DFT energy depends critically on the quality of )]([ rEXC  . So far, a number of 

exchange-correlation functionals have been developed, by either constraint 

satisfaction or semi empirical fitting [76] . 

DFT describes the electronic states of atoms, molecules, and material in terms of the 

three-dimensional electronic density of the system, which is the great simplification 

over wavefunction theory. DFT is based on a concept of the Thomas-Fermi-Dirac 

theory that introduced the idea of expressing the total energy of the system a 

function of total electron density. As seen in figure 2. 
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Figure 2 A comparison of the methodology for solving the many-body 
Schrödinger equation and effective one-electron Kohn-Sham equation [77]. 

2.2. Crystals and Unit Cells 

In our case we will be working on periodic system and the method that we will be 

using deals with periodic systems. In the solid state, most materials like to have their 

atoms arranged in some kind of regular, repeating pattern. 

 

If the nuclei are arranged in a periodically repeating pattern, their potential acting on 

the electrons must also be periodic. i.e 

 

)()( rVLrV   

 

where L is any lattice vector.   
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If the potential is periodic, then so is the density: 

 

)()( rLr    

 

2

)()( rr    as also indicated in equation 2.1 and 2.2. 

 

2.3. Approximations for the Exchange-Correlation Functional 

EXC functionals are classified into the following five major levels (rungs) of “Jacob's 

Ladder” according to their types: namely, local spin density approximation (LSDA), 

generalized gradient approximation (GGA), meta-GGA, hyper-GGA, and generalized 

random phase approximation [78]. In the field of chemistry, Gaussian- or Slater-type 

atomic orbitals (AOs) are usually used as basis sets of KS orbitals, while GGA, 

meta-GGA, or hyper-GGA functionals are mainly used to approximate EXC. When KS 

equations are solved for periodic solids or nanomaterials, plane-wave basis sets and 

pseudopotentials are used often with LSDA or GGA functionals. 

2.3.1.  Local Density Approximation (LDA) 

The simplest approximation that one can make is to imagine that at every point in 

space we can use the value of the density that the uniform electron gas would have 

at that point, and allow it to vary from point to point. This is called the Local Density 

Approximation (LDA).  In more detail, we write: 
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2.6.  

 

is the Dirac-Slater Exchange Energy of the eletron gas. The Coulomb correlation 

piece is obtained from interpolations of Monte Carlo data by Ceperly and Alder 

(1980). The typical LDA approximation is the SWVN implementation that implies 

Slater Exchange plus Coulomb Correlation obtained by Vosko, Wilk and Nussair 

(1980). Perdew and Wang (1992) made a more accurate implementation [79, 80, 81, 

82]. 

 

Figure 3 Schematic of the LDA (Koch & Holthausen) [83]. 

This approximation was found to reproduce the ground-state properties of many 

systems with surprising high accuracy. In particular, the bulk properties of 4d and 5d 

transitions metals, oxides and others or the surface properties of metals [84], are 

very well described by within LDA.   

 

They are situations where LDA turns out to be inappropriate even for a qualitative 

description. During the last decades several more accurate exchange correlation 

density functionals have become available. LDA are important in the construction of 

more sophisticated approximations to the exchange-correlation energy, such as 

generalized gradient approximations or hybrid functionals. 
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2.3.2.  Generalized Gradient Approximation (GGA) 

The LDA by its self does not contain sufficient accuracy for chemical applications. It 

is necessary to include terms that explicitly take into account the spatial variation of 

the density. This formulation of functionals within the Generalized Gradient 

Approximation (GGA) is what made good accuracy density functional theory 

possible. As above, approximations are made separately for the Exchange and 

Coulomb portions. 

 

The Coulomb expressions are quite complex and we will skip writing them down.  

The popular choices are: 

LYP: Lee, Parr &Yang (1988) 

PW91: Perdew & Wang (1991) 

P86: Perdew (1986)  

 

These can be combined with Exchange-Correlation Functionals. These have the 

form, 

 

 


  rdrsFEE LDA

x

CGA

x


)()( 3/4

 2.7.  

 

   

 

3/4

||







s  2.8.  

 

 

Two commonly used choices for the Exchange functional are: 

 

  Becke (1988):     
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  Perdew (1986) :  

   15/164286 2.014296.11 xxxF   2.10.  

 

        

 
3/12 )24( 

sx   2.11.  

 

The b parameter in the Becke form is fit to accurate densities of a large number of 

atoms, while that of Perdew does not have any empirical parameters. Typical 

combinations in common use give rise to the functionals: 

 

Becke & Perdew/Wang:  BPW91 

Becke & Lee/Parr/Yang:  BLYP 

 

These functionals are all LOCAL in the mathematical sense, but go beyond the Local 

Density Approximation [84, 85, 86, 87, 88, 89, 90]. 

2.3.3. Hybrid Functionals 

It should be clear that the HF method has a systematic error. The lack of Coulomb 

correlation implies that the energies are higher than they should be as charges are 

allowed to get closer to each other than they should be, thus the bond lengths tend 

to be smaller and the binding energies larger than experiment. In DFT, on the other 

hand, the systematic errors occur in precisely the opposite direction. Thus a 

combination of the HF Exchange and the functional exchange should improve things 

considerably. The popular B3LYP functional is the prime example of this kind.  The 

performance is excellent, with an RMS error of about 2 kcal/mol on the large G2 

molecule reference set. This functional has the form: 
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The parameters a, b and c control the relative amounts of HF-Exchange and 

Coulomb Correlation from the various sources and they are determined empirically 

(by fitting to data).  

2.4. DFT as implemented in codes 

In this thesis the plane wave DFT calculations are performed using CASTEP 

(Cambridge Sequential Total Energy Package). CASTEP is commercially available 

software from Accelrys developed by Payne and co-workers [91]. The electron-core 

interaction is described by ultrasoft pseudopotentials proposed by Vanderbilt (see 

Section 2.5), while electronic wave functions are represented by a sum of plane 

waves. For electron density minimisation CASTEP applies a self-consistent field 

scheme. The most popular approximations for the exchange-correlation energy, i.e., 

LDA and GGA with several different functionals, are implemented. CASTEP’s 

foundations are briefly explained in the subsequent paragraphs.  

CASTEP [91, 92] is an ab initio quantum mechanical program which employs density 

functional theory (DFT) to simulate the properties of solids, interfaces, and surfaces 

for a wide range of materials classes such as ceramics, semiconductors, and metals. 

CASTEP is developed in the Theory of Condensed Matter Group at Cambridge 

University, UK. It is a suite of programs that provides advanced quantum mechanical 

calculations for chemicals and materials research. CASTEP utilizes the total energy 

plane-wave pseudopotential method where ionic potentials are replaced with 

effective potentials which act only on the valence electrons in the system. Electronic 

wavefunctions are expanded through a plane-wave basis set and exchange and 

correlation effects in electron- electron interactions can be included within either the 

local density (LDA) or generalized gradient (GGA) approximations. Combining the 

use of pseudopotentials and plane wave basis sets makes it easier to calculate the 

forces on the atoms, enabling efficient optimization of ionic configurations of 

molecules, solids, surfaces, and interfaces. CASTEP takes the number and type of 

atoms in a system and predicts properties such as lattice constants, molecular 

geometry, elastic constants, band-structures, density-of-states, charge densities and 

wave functions, and optical properties. 

2.5. Planewave pseudopotential method 

In a solid, the KS-equations are easily dealt with in reciprocal space, where the 

differential eigenvalue problem is mapped onto algebraic linear system. The plane-
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wave pseudopotential method for the Density Functional Theory (DFT) is a 

technique used to calculate the variation self-consistent solution with accuracy. This 

method has been advanced and perfected to reliably predict the static and dynamic 

properties of molecules and crystalline solids [93]. 

2.5.1. Planewaves and pseudopotentials  

In the study of infinite solids it is necessary to exploit the crystal symmetry in order to 

circumvent the problem of infinite number of electronic degrees of freedom and, as a 

consequence, of an infinite number of linear equations. Bloch`s theorem, which 

starts with periodicity of crystal lattice, can handle this problem; this property allows 

to map the problem onto a single cell, repeated in space through the so called 

periodic boundary conditions, having a small number of atoms and thus, electrons.  

The model system is constructed in 3D periodic supercell which allow Bloch`s 

theorem to the applied to the electron wave function: 

 

      rikrur knkn .exp,, 
 2.13.  

                                

The function )(ru  has the periodicity of supercell. It can be of any suitable 

mathematical form and usually one chooses a series expansion in terms of a set of 

basis function. In PW pseudopotential, planewaves are used for this expansion, so 

that each single-electron wavefuntion kn,  is written as 

         rGkiGur knkn .exp,,

 
2.14.  

                         

Where k belongs to the first brillioun zone of the crystal, G is a reciprocal lattice 

vector and n is the band index and the kn, are the expansion coefficients. The 

wavevectors G  are such that the planewaves are commensurate with the supercell. 

Both the number of G -vectors in the sum and the number of k ’s considered should 

in principle be infinite. The exponential term is a planewaves of wavevector k  which 

must be commensurate with the entire system (i.e. not just the periodically-replicated 

cell). For an infinite system there is an infinite number of k  vectors, at each of which 

solutions for kn, exist. This simply reflects the fact that the number of electrons is 

infinite. However, a great simplification comes about when one realises that the 
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change in kn,  with k  becomes negligible for k -points that are close together. This 

means that one may calculate at a finite number of k -points. We speak of this idea 

as k -point sampling. The set of vectors G , on the other hand, should in principle be 

infinite to obtain an exact representation of the wavefunction. This is never 

necessary because summing over a finite number of G `s will yield sufficient 

accuracy. Planewaves basis set has many advantages: 

 It is simple. 

 All necesary matrix elements can be efficiently computed. 

 The basis doesn’t prefer one location over another, so there are no “Pulay 

forces”. 

 A single parameter controls convergence of the basis. 

 Its disadvantage is that: 

 Non-localized basis functions are hard to parallelize efficiently. 

 Cannot take advantage of vacuum to reduce the basis size. 

 Representing atomic wavefunctions requires a prohibitively large number of 

planewaves 

 

The advantages speak for themselves i.e the first three mean that one can always 

ensure that the basis set is adequate for a calculation by increasing the number of 

planewaves until the quantity of interest stops changing. In other words, the quality 

of the basis set depends on a single parameter, usually expressed as the energy a of 

free electron whose wavefunction has the same wavevector as the largest 

wavevector in the planewave basis, 

.                                           

  
m

kG
Ec

2

22 



 
2.15.  

                

All planewaves of an energy less than the Cut-off energy Ec are used in the 

expansion. The mathematical simplicity of planewaves means the method is easier 

to implement, crucially so for the calculation of ionic forces which adds little 

complexity or cost to the calculation. Equally important in this context is the 

originless nature of planewaves. Their independence from atomic positions means 

that the forces do not depend on the basis set—there are no ‘Pulay’ or 
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‘wavefunction’ forces [94]. Even more important, new developments are easiest in 

planewave codes. An idea to calculate a property is most rapidly realised in a 

planewave basis and even if other methods catch up in time, the planewave 

approach remains as the reference. From a computational viewpoint the first of the 

disadvantages appears to be very serious.  

2.5.2. Pseudopotential approximation 

The rapid oscillations of the wavefunctions near to the nucleus, due to the very 

strong potential in the region and the orthogonality condition between different 

states, mean that a very large Cut-off energy and hence basis set, would be 

necessary. Fortunately, the study of Physics and Chemistry shows that the core 

electrons on different atoms are almost independent of the environment surrounding 

the atom and that only the valence electrons participate strongly in interactions 

between atoms. Thus, the core electron states may be assumed to be fixed and a 

pseudopotential may be constructed for each atomic species which takes into 

account the effects of the nucleus and core electrons [95, 96, 97].  

 

The pseudopotential approximation allows the electronic wavefunctions to be 

expanded using a much smaller number of planewave basis states. It is well known 

that most physical properties of solids are dependent on the valence electrons to a 

much greater extent than on the core electrons. The pseudopotential approximation 

exploits this by removing the core electrons and replacing the strong ionic potential 

by a weaker pseudopotential that acts on a set of pseudo-wavefunctions rather than 

the true valence wavefunctions. An ionic potential, valence wave function and 

corresponding pseudopotential and pseudo-wavefunction are illustrated in fig. 2.5. 

The valence wavefunctions oscillate rapidly in the region occupied by the core 

electrons due to the strong ionic potential in this region. These regions maintain the 

orthogonality between the core wavefunctions and the valence wavefunctions, which 

is required in the Pauli’s exclusion principle. 

 

The pseudopotential is constructed in such a way that its scattering properties or 

phase shifts for the pseudo wavefunctions are identical to the scattering properties of 

the ion and the core electrons for the valence wavefunctions, but in such a way that 

the pseudo-wavefunctions have no radial nodes in the core region. The phase shift 
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produced by the ion core is different for each angular momentum component of the 

valence wave function and so the scattering from the pseudopotential must be 

angular momentum dependent. The most general form for pseudopotential is 

 
lm

lNL lmVlmV  2.16.  

                                      

Where lm  are the spherical harmonics and lV  is the pseudopotential for angular 

momentum l . Acting on the electronic wave function with this operator decomposes 

the wave function into the spherical harmonics, each of which is the multiplied by the 

relevant pseudopotential lV . 

 

A pseudopotential that uses the same potential for all the angular momentum 

components of the wave function is called a local pseudopotential. A pseudopotential 

is a function only of the distance from the nucleus. It is possible to produce arbitrary, 

predetermined phase shifts for each angular momentum state with a local potential, 

but there are limits to the amount that the phase shifts can be adjusted for the 

different angular momentum states, while maintaining the crucial smoothness and 

weakness of the pseudopotential. Without a smooth, weak pseudopotential it 

becomes difficult to expand the wavefunctions using a reasonable number of 

planewaves basis states [98, 99, 100]. 

2.6.  k-sampling 

Electronic states are allowed only at a set of k -points determined by the boundary 

conditions that apply to the bulk solid. The density of allowed k -points is proportional 

to the volume of the solid. The infinite numbers of electrons in the solid are 

accounted for by an infinite number of k -points and only a finite number of electronic 

states are occupied at each k -point.  

 

The Bloch theorem changes the problem of calculating an infinite number of 

electronic wavefunctions to one of calculating a finite number of k -points. The 

occupied states at each k -point contribute to the electronic potential in the bulk solid 

so that in principle an infinite number of calculations are needed to compute this 

potential. However the electronic wavefunctions at k -points that are very close are 

identical. Hence it is possible to represent the electronic wavefunctions over a region 
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of k space by the wavefunctions at the single k -point. In this case the electronic 

states at only a finite number of k -points are required to calculate the electronic 

potential and hence determine the total energy of the solid.  

 

 

 

 

 

Figure 4 Comparison of a wavefunction in the Coulomb potential of the 
nucleus (blue) to the one in the pseudopotential (red). The real and the 
pseudowavefunction and potentials match above a certain Cut-off. 

Methods have been devised for obtaining very accurate approximations to the 

electronic potential from a filled electronic band by calculating the electronic 

wavefunctions at special sets of k-points. The two most common methods are those 
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of Chadi and Cohen [97] and Monkhorst and Pack [101]. Using these methods, the 

electronic potential and the total energy of an insulator can be obtained by 

calculating the electronic states at a very small number of k -points. A denser set of 

k -points are required to calculate the electronic potential and the total energy of a 

metallic system in order to define the Fermi surface precisely. 

 

However, the computational cost of performing a very dense sampling of k  space 

increase linearly with the number of k -points in the Brillouin zone (BZ). Density 

functional codes approximate these k  space integrals with a finite sampling of          

k -points. Special k -points schemes have been developed to use the fewest possible 

k -points for a given accuracy, thereby reducing the computational cost. The most 

commonly used scheme is that of Monkhorst and Pack. 

2.7. Theoretical approach to the solid solution or alloys problem. 

Through DFT it possible to calculate the ground-state energy of given microscopic 

configuration in a disordered system. This choice is however not of practical use: in 

the theoretical study of solid solution, one should consider several supercells 

containing thousands of atoms, in order to cope with disorder, and to take into 

account different configurations. For this reason, such direct approach has always 

been considered well beyond reachable numerical power. The typical approaches to 

the study of solid solution are based on approximations in which all the possible, 

inequivalent, microscopic configurations are averaged into an effective medium 

having the same crystal structure of the underlying lattice, in order to recover the 

translational symmetry. The simplest of this historical approach is so-called virtual 

crystal approximation (VCA) and coherent potential approximation (CPA). 

An efficient virtual crystal approximation approach for bulk solid solutions and 

alloys  

The material properties of solid solutions and alloys have been widely studied both 

experimentally and theoretically throughout material science. Especially ferroelectric 

ceramics correspond to a typical material class for which most of the realistic 

applications are implemented by solid solutions. To treat such material systems 

within first principles methods, there exist two ways: the supercell (SC) method and 

the VCA method. Firstly, it is necessary to mention the advantage and shortcoming 

of both methods. The former can give more correct results but requires more 
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computational resources compared with the latter. The issue of correctness is related 

with the fact that the SC method can describe the local interaction between two 

atoms, but the VCA method cannot do that. It is clear that the effectiveness of the 

calculation is connected with the fact that the supercell may contain many unit cells 

compared with the primitive unit-cell of the VCA method. In the year 2000, several 

modern VCA approaches were developed with their own advantages and 

shortcomings. Here mainly two issues are considered: capability of treating the 

heterovalent atoms and accuracy of the calculation. VCA originated from tight 

binding methods by replacing atoms with effective atoms and choosing the 

parameterization to return alloy properties. It works very well for some properties, not 

so well for others. The advantage is the simplicity but it is not sufficiently accurate in 

some cases. The reason of the incorrectness is mixing of only the potentials.  

2.7.1. Ramer and Rappe VCA Approach 

The reason of the incorrectness is mixing of only the potentials. Ramer and Rappe 

developed more accurate VCA approach through performing the averaging at the 

level of atomic calculation, 

 

  2.17.  

 

 

where the averaging of eigenvalues of valence orbitals [102, 12], Coulomb nuclear 

potentials, core charge densities and wavefunctions are performed. The shortcoming 

of this method is not to be able to treat the heterovalent atoms; their method only 

creates the pseudopotential of the virtual atom composed of homovalent atoms. 

2.7.2. Bellaiche and Vanderbilt VCA Approach 

The weighted averaging method of Bellaiche and Vanderbilt [103] gives another 

capability to realize effective VCA approach. 
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Its advantages are the ability to treat heterovalent systems and generality to apply to 

all kinds of first principles pseudopotentials. However, this method can be considered 

also as a kind of simple mixing of pseudopotentials in the case of the norm-

conserving types, though the additional averaging process is performed in the case 

of ultrasoft pseudopotential. Therefore, the resulting values in the case of complex 

heterovalent systems [11] show small deviation from the SC and the experimental 

values.  

2.8. Numerical details and theory of properties to be investigated 

2.8.1.  Cohesive and formation energy 

Cohesive energy (Ec) can be considered as a measure of a structure’s overall 

chemical stability. It is defined as the difference between a structure’s total electronic 

energy and the sum of the electronic energies of its constituent atoms at infinite 

separation: 

 

The cohesive (binding) of the pure elements and pseudo element or solid solution 

(ZrO2-xSx) alloy was computed according to the relation [104, 105]  

 

 
)()()( )2(

2 atomSatomOatomZrSZrO xEExEEE
xx




 2.20.  

                                                   

Where
xxSZrOE

2
,

)(atomZrE ,
 )(atomOE and

 )(atomSE  are the total energies of ZrO2-xSx, O and 

S atoms, respectively. The fractions indicate the total number of atoms of constituent 

species in the unit cell, usually reffered to as fractional composition. The energy of a 

free atom is calculated by creating a P1 supercell with lattice parameter a=20 Å, 

b=19 Å and c=18 Å and placing an atom at the centre. 

The heats of formation of compounds and associated entropies provide the basis for 

understanding and constructing phase diagrams. Knowledge of these quantities 

offers the prospect of disentangling which of the observed phases might occur upon 

varying the means of fabrication. Such modeling of alloy phase behavior is of 

considerable technological relevance. The heat of formation can be estimated by 
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where 
xxSZrOE

2
,

)(crystalZrE ,
 )(crystalOE and

 )(crystalSE  are the total energies of ZrO2-xSx, Zr, 

O and S at their most stable states, respectively.  

 

The fractional (atomic) composition of element O and S is represented by x . It thus 

follows from the above expressions (2.20) and (2.21), that the formation energy 

depends on the cohesive energy of materials. The negative formation energy 

indicates that the reaction from pure elements to produce the final compounds is 

possible and negative cohesive energy means that the final compounds are 

energetically stable. 

2.8.2. Elastic properties 

2.8.2.1.  Theory of elasticity 

From the perspective of materials physics, the elastic constants ijC  contain some of 

the more important information that can be obtained from ground-state total-energy 

calculations. A given crystal structure cannot exist in a stable or metastable phase 

unless its elastic constants obey certain relationships. The  ijC also determines the 

response of the crystal to external forces, as characterized by the bulk modulus, 

shear modulus, Young’s modulus and Poisson’s ratio and so play an important role 

in determining the strength of a material [106].  

 

First-principles calculations that use periodic boundary conditions assume the 

existence of a single crystal, so all elastic constants can be determined by direct 

computation. The calculated ijC  can then be used to check the experimental bulk 

and shear moduli, if available and to calibrate model calculations. In addition, the 

elastic constants can be used to check the phase stability of proposed compounds 

[107, 108]. First-principles calculations can thus be used to predict the existence and 

properties of new materials and phases 
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2.8.2.2. Calculation of elastic constants  

The simplest case by far is the cubic system where there are only three independent 

constants,
11C ,

12C  and 
44C , the off-diagonal stiffness matrix element 

12C  can be 

calculated using one or other of the relations  
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Using both of these relations provides a useful independent check on the accuracy 

of the computation. A symmetry-general formulation of the calculation of elastic 

constants from total energy calculations is given by Le Page and Saxe [109]. 

The stress-strain relation may be used to distinguish the elastic and plastic regimes 

of solid materials [110]. The elastic moduli are the fundamental physical parameters 

which establish the stress-strain relation in the elastic regime. For an isotropic 

polycrystalline solid, the two independent elastic parameters are the bulk modulus 

(B) and the shear modulus (G). On the other hand, the resistance of solids to plastic 

or permanent deformation is governed by dislocation motion and may be expressed 

via the yield stress or mechanical hardness. The hardening mechanism in alloys, 

which arises from disturbances in the lattice caused by the solute atoms in the 

matrix, is often described by the classical Labusch-Nabarro model [111, 112]. 

Furthermore, the ratio of B to G is used to describe the brittleness and ductility of 

metal. High (low) B/G ratio corresponds to ductile (brittle) material. Of importance in 

metallurgy is how the solute atoms affect the elastic properties of ZrO2. 

 

The elastic properties of single crystals are described by the elements Cij of the 

elasticity tensor. For each material, both stress and strain have three tensile and 

three shear components, giving six components in total. According to the theory of 

elasticity, a 6 x 6 symmetry matrix with 36 elements is thus needed to describe the 

relationship between stress and strain. The structural symmetry of crystal makes 

some of the matrix elements equal and others fixed at zero. For the cubic structures, 
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only three elastic constants, corresponding to C11, C12 and C44, are independent. 

Applying two kinds of strains (ε1 and ε4) can give stresses relating to these three 

elastic coefficients, yielding an efficient method for obtaining elastic constants for the 

cubic system. This method has been successfully used to study the elastic 

properties of a range of materials including metallic systems [113]. The mechanical 

stability criteria of cubic systems as outlined elsewhere [114], is given as follows: 

 

 ,044 C 1211 CC     and 02 1211  CC  2.24.  

 

        

                                        

where C11, C12 and C44 are the only three independent elastic constants [115]. While 

for tetragonal structures there are six elastic constants, corresponding to C11, C12, 

C13, C33, C44, and C66 ( 2/)( 121166 CCC  ), are independent [116, 117]. Mechanical 

stability criterion for tetragonal crystal read as; 
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On the other hand, for monoclinic structure, there are 10 independent elastic 

constants. 

 

Mechanical stability criteria are as follows  
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Based on three independent single crystal elastic constants of a cubic crystal, C11, 

C12, C44, the elastic moduli for polycrystalline material are calculated following 

averaging schemes of Voigt (upper bound) and Reuss (lower bound) by Hill [118] as 

follows: 
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2.27.  

                                                                                                                                     

where E is the Young’s modulus, ט  Poisson’s ratio, G isotropic shear modulus, B 

bulk modulus, C′ tetragonal shear modulus and Zener anisotropic factor A. The Hill 

average, in general, is selected as the estimation of bulk modulus and shear 

modulus [119].  

 

Secondly, the calculated elastic constants for tetragonal structures allows us to 

obtain the macroscopic mechanical parameters namely bulk moduli (B) and shear 

moduli (G) – for example, using the Voigt (V) approximation, as: 

 

  ;4)(2
9

1
13331211 CCCCBv   

   ;61233
30

1
66441211 CCCCMGv   

2.28.  

   
 

 2

33331211

2 2)( CCCCC  .42 13331211 CCCCM 

 

,2 1333 CCE 
1211

13

CC

C


  and 

1211

66
1

2

CC

C
A


  

2.29.  

 

     



35 
 

On a basal plane (the plane perpendicular to the principal axis (c axis) in a tetragonal 

or structure). 
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, On (010) plane.        

 

The calculated elastic constants for monoclinic phase allow us to obtain their 

macroscopic mechanical parameters, namely isotropic bulk (B) and shear moduli (G) 

in the Voigt (V) approximation as follows: 
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For an elastically isotropic monoclinic crystal, the three anisotropy ratios (A1, A2 and 

A3) must be simultaneously equal to unity [77]. As given in equation 8 above, Ex 

represents the Young’s modulus along the [100] and [010] directions, whereas Ez on 

the other hand represents Young’s modulus along the [001] direction. The Young’s 

modulus E is defined as the ratio between stress and strain and is used to provide a 

measure of the stiffness of the solid, i.e. the larger the value of E, the stiffer the 

material. Poisson’s ratio (ט) refers to the ratio of transverse contraction strain to 

longitudinal extension strain during stretching, thus reflecting the stability of the 

crystal against shear. Hence, the higher the Poisson’s ratio is, the better ductility the 

crystalline metal has at low temperatures. It is acknowledged that the bulk modulus 

B0 is a measure of resistance to volume changed by applied pressure. The elastic 

anisotropy A has an important implication in engineering science since it is highly 

correlated with the possibility of inducing microcracks in materials [78]. If the material 

is completely isotropic, the value of A will be equal to unity, whereas values smaller 

or larger than 1 measure the degree of elastic anisotropy. Thus the macroscopically 

measurable quantities obtained for materials are the shear modulus G, which 

represents the isotropic response for shearing, Young’s modulus E corresponding to 

the stress–strain ratio in the case of tensile forces, bulk modulus B0, Poisson’s ratio 

 and the anisotropy constant A, which are all important for technological and ט

engineering applications. 

2.9. Density of states  

The density of states (DOS) is a useful mathematical concept allowing integration 

with respect to the electron energy to be used instead of the integration over the 

Brillouin zone. In addition, the DOS is often used for quick visual analysis of the 

electronic structure. Characteristics such as the width of the valence band, the 

energy gap in insulators and the number and intensity of the main features are 

helpful in qualitatively interpreting experimental spectroscopic data. DOS analysis 

can also help to understand the changes in electronic structure caused by, for 

example, external pressure. More accurate methods are based on linear or quadratic 

interpolations of band energies between the reference points in the Brillouin zone. 

The most popular and reliable technique, which is based on the tetrahedron 

interpolation, is unfortunately ill suited to the Monkhorst-Pack grid of special points. 

Therefore CASTEP uses a simplified linear interpolation scheme [120]. This method 
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is based on the linear interpolation in parallelepiped formed by the points of the 

Monkhorst-Pack set, followed by the histogram sampling of the resultant set of band 

energies. 

2.10.  Calculation Steps of the Work 

All of our calculations for the chemical problems mentioned in this thesis have been 

made by means of state of art DFT using the code CASTEP. Various lateral sizes of 

VCA cells were chosen for studying ZrO2-xSx for different x. The x values were 

ranging from 0 to 2 for each calculation. In the present work, to account for exchange 

and correlation functional the generalized gradient approximation as proposed by 

Wu and Cohen (WC) has been applied as it is established that this approximation for 

the functional gives accurate description of solids processes. In all the calculations, 

k-points spacing was set to 0.05 Å within the Brillouin zone as generated by 

Monkhorst-Pack scheme. The plane wave pseudopotential approach combined with 

k-point sampling results in time saving and accurate calculations. Geometry 

optimization was conducted using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method [71]. We employed a convergence criterion of less than 5 x 10-6 eV on the 

total energy per atom, maximum displacement of 5x10-4 Å, residual forces of 3 x 10-2 

eV Å-1 and 0.02 GPa on the residual bulk stress. For each crystal structure, a 

geometry optimization was performed to obtain the equilibrium structural properties, 

from which the elastic constant were computed as described below. All the 

parameters are checked for their sensitivity and the variation in measured quantity 

like lattice parameters. 
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CHAPTER 3 

RESULTS AND DISCUSSIONS 

3. Results and discussions  

The results we present in this work pertain to electronic, structural and elastic 

properties of the solid solution zirconium oxide/sulphide (ZrO2-xSx), which was 

previously investigated theoretically for certain sulphate ZrO2, particularly for c-ZrO2. 

We verify the validation of improved VCA method through comparison with previous 

experimental and theoretical studies. Moreover, we predict additional properties of 

ZrO2-xSx which were not mentioned before [51, 52].  

3.1. Cut-off energy and k-points convergence of ZrO2-xSx 

For total energy calculations providing electronic, structural and elastic properties in 

CASTEP, there are two computational parameters, namely the number of basis 

functions (plane wave cut-off) and the number of k-points (k spacing) that need to be 

checked. Different cut-off energies and k-points have been tested for different 

functionals.  

3.1.1.  Cut-off energy  

In order to determine the appropriate cut-off energy for ZrO2, geometry optimisation 

calculations were performed for different kinetic energy cut-offs at a default number 

of k -points for each system within GGA-PBE, LDA and GGA-WC. We used ultrasoft 

pseudopotentials [121], which require significantly less computational resources than 

the norm-conserving potentials [122]. In figure 5 we show the curves of total energy 

per atom against the cut-off energy for c-ZrO2. An energy cut-off of 400eV was 

chosen for ZrO2. Higher cut-off energies give less energies than that given by 

400eV. beyond this value, total energy differences is less than 1meV/atom. We 

choose this cut-off energy to reduce computational cost.  

3.1.2.  k-points 

We show the convergence of the total energies with respect to the k -point sampling 

set size, as illustrated in figure 5. We have carried out a total energy calculation at 

fixed cut-off energy for a structure (determined above) while the number of k-points 

was varied for GGA-PBE, LDA and GGA-WC functionals. The total energy with 

respect to the number of k-points was considered converged when the energy 
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change per atom (between two consecutive points) was within 1meV per atom. 

Although 2x2x2 gives lowest energy, we found that this setting can affect cell 

parameters and does not provide converged results for other calculations.  

 

Figure 5 The graphs of total energy (eV/atom) against energy cut-off and total 

energy (eV/atom) against number of k -points for the c-ZrO2 

The k -points were chosen to be 6x6x6, as shown in figure 5 and they are set 

according to Monkhorst-Pack scheme. It gives good convergence at reasonable 

computational cost. The exchange correlation potential used in this work is the   

GGA-WC since it gives good lattice constants of c-ZrO2 .Analysis of calculated lattice 

parameters (see table 4) shows that the lowest deviation from the experimental data 
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(lowest relative volume changes) are obtained by using Wu-Cohen (WC) GGA 

functional. The deviation of lattice parameter for c-ZrO2 is less than 1%, while for 

PBE-GGA functional and LDA is 2.5% and 3,5% respectively.  

3.1.3. Summary of cut-off energies and k-points 

Cut-off energy and equivalent number of k-points were used for the other structures 

considered in the current study. The same cut-off energy and k-points were used for 

all c-ZrO2-xSx structures for x>0. The GGA-WC gives the lattice parameters that are 

closest to experimental ones and to other first principle calculations, as seen in Table 

2 the percentage difference between the calculated tetragonal structure t-ZrO2 lattice 

parameters and the experimental is 0.3% for a and 0.8% for c, while for monoclinic 

m-ZrO2-xSx it is 0.7% for a, 0.9% for b and 0.6% for c and for ZrOS the lattice 

parameter is 2.8%. Since all lattice parameters are in good agreement with those 

obtained from experiments, we used the same cut-off energy for the structure 

studied in this thesis. Our cut-off energy and k-point values correspond to other 

values that were used by previous studies for all phases of unsulphated ZrO2 

3.2. Structural properties 

Beginning with experimental structural parameters, the 12-atom cell of c-ZrO2,          

t-ZrO2, m-ZrO2, ZrOS and ZrS2 were optimized (cell shape and size, atomic 

positions). The geometric optimisation parameters corresponding to this fully 

optimised geometry are shown on Tables 4, 5, 6 and 7, and other available first 

principle calculated values are also displayed. The results from earlier studies are 

quoted for comparison. 

3.2.1. Crystal structure 

Present results agree well with previous theoretical and experimental results for 

ZrO2-xSx at x = 0 for all three zirconium dioxide polymorphs and at x = 0.5 which was 

previously investigated for cubic zirconia. VCA simulations were used to study a 

series of disordered ZrO2-xSx compounds. The calculated lattice constants and the 

corresponding cell volumes expansions for ZrO2 and ZrO2-xSx (cubic, tetragonal and 

monoclinic for x ranging from 0 to 2) are all plotted against S atomic compositions as 

presented in figures 6, 9 and 10 respectively. 

The volume expansion rate is given by the formula  
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0

0

V

VV x , 

Where Vx represents the volume of the doped compound with Sx  and V0 represents 

the volume of pure ZrO2. The results show that the expansion rates of ZrO2-xSx differ 

considerably for different x values.  

From Table 4 we obtained the lattice constant 5.082Å which is slightly smaller than 

the experimental lattice constant of 5.086 Å by 0.08%., other available first principle 

calculations agree well with our calculations. The lattice parameters for sulphated c-

ZrO2 in Table 5 also showed good agreement with the available results of sulphated 

structures, a is 0.37% different for ZrO1.5S0.5, 0.4% different for ZrOS and for ZrS2 

0.71% difference for a and 0.17% for b. The distance between atoms of ZrO2-xSx is 

slightly increasing as sulphur increases. 

 

Table 4 Calculated structural parameters c-ZrO2 and of  corresponding available 

theoretical calculations. 

parameter Expt 

[123] 

WC LDA 

[124] 

LDA 

[125] 

PW91 

[126] 

TB 

[127] 

LD 

[128] 

GGA 

[129] 

a(Å) 5.086 5.082 5.037 5.037 5.164 5.20 5.023 5.128 

 

 

Table 5 The optimised structural parameters of ZrOS, ZrO1.5S0.5 and ZrS2 

Structures c-ZrO1.5S0.5 ZrOS ZrS2 

Parameter(Å) WC Exp [51] WC Exp [50] WC Exp 

[130] 

a 5.441 (5.421) 5.691 (5.692) 3.662 (3.636) 

b  5.810 (5.820) 

c-ZrO2-xSx 

The dependence of the lattice constant of c-ZrO2-xSx solid solutions on S content is 

observed in figure 6. As S increases the lattice constants changes and the cell 
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volume expands near linearly, from x = 0 to x = 1.4 but above 1.4 the increasing rate 

decreases slightly until x = 2.0. The reason why the lattice constant (a,b and c) of   

S-doped ZrO2 is greater than that of undoped ZrO2, is that the lattice constant are 

closely related to the radius of the doping atoms,  as the radius of S is larger than  

that of O. 

In the same figure we also showed volume expansion rate which is positive. The 

volume increase has the effect of increasing the average Zr-OS distance, normally 

found in either high temperature or stabilised phase of c-ZrO2. This bond lengthening 

is expected to increase the ionicity of Zr-OS, and such results can be accounted for 

considering the bonding characteristics and properties of O and S atoms. The larger 

size of the S atom forces the system to have a larger lattice constant, this will 

introduce longer bond length in the system.  

Since B α V-1, where V is the unit cell volume, it can be deduced that, a larger lattice 

constant leads to a small bulk modulus. This has also been demonstrated for various 

perovskite and other material [131], consequently an increase in sulphur decrease 

the bulk modulus. 

A parameter η defined as 00 /)( aaacalc  , is used to represent lattice-constant dilation 

or shrinkage relative to pure c-ZrO2-xSx, where a0 is the lattice constant of pure        

c-ZrO2 and acalc is the calculated lattice constant for ZrO2 and the solid solution ZrO2-

xSx for 0<x≤2. η >0 represents lattice constant dilation and η<0 represents the 

shrinkage, in our case sulphur content increases the c-ZrO2 lattice constant by    

1.1%-20%. In material strengthening, the strain field and atomic-size misfit due to 

partial replacement-induced η are responsible for solute-solution strengthening 

through solute-dislocation interactions [132]. Thus the information on dilation of the 

lattice constant, represented by η>0 is useful for further studies of solid solution 

strengthening of ZrO2-xSx. 

Figure 8 presents a variation of bond length of c-ZrO2-xSx as a function of sulphur 

content, this change in bond length is almost linear below x = 1.4, the bond length 

showed a similar trend as the lattice constant and cell volume expansion rate with 

sulphur content. Our calculations of bond length have been done using VCA model. 
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Figure 6 Variation of the lattice parameter and volume expansion rate with S mole 

fraction x, in c-ZrO2-xSx solid solution. 
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Figure 7 Variation of the lattice constant dilation or shrinkage with S mole fraction x. 
for c-ZrO2-xSx solid solution. 
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Figure 8 Variation of bond length (Å) with S mole fraction x in c-ZrO2-xSx solid 
solution. 
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t-ZrO2-xSx and m-ZrO2-xSx 

Presently evaluated lattice parameters a = 3.589 Å and c = 5.21 Å for t-ZrO2 and      

a = 5.140 Å, b = 5.22 Å, c = 5.32 Å and beta = 99.1° agree well with experimental 

and other theoretical data in Table 6 and Table 7 respectively. The percentage 

difference between a and b lattice parameters for t-ZrO2 and their respective 

experimental values is approximately 0.5%, and for m-ZrO2 the difference is 

approximately 0.5% for a,b, c and angle beta. The tetragonal and the monoclinic 

structures also form a series of t-ZrO2-xSx and m-ZrO2-xSx mixed solid solution 

respectively with no restriction on the concentration of the component ;0<x<2: the 

variation of lattice parameters a, b and c for t-ZrO2-xSx and a, b, c and beta for        

m-ZrO2-xSx as a function of their composition are plotted in figure 9 and 10, 

respectively.  

In figure 9 the lattice parameters a and c for tetragonal structure increase at the 

substitution of oxygen concentration by sulphur atomic concentration. In figure 10 a, 

b and c also increase as a function of sulphur concentration. This observation may 

be accounted for by replacing an atom of covalent radius 0.65 Å for the host atom 

oxygen by that of 1.09Å for sulphur. The larger atom replacing the smaller ones 

causes the observed lattice parameters to expand in the solid solution. The volume 

expansion rate could be attributed for by similar cause. 

Figure 11( shows variation of the axial ratio c/a for t-ZrO2-xSx, lattice anisotropy c/b, 

and angle beta for m-ZrO2-xSx as the function of their composition. The axial ratio of 

t-ZrO2-xSx generally increases from x = 0 to 1.1 and it also increases from 1.8 to 2.0, 

and it decreases from 1.1 to 1.8. The change in c/a with sulphur content is important, 

because it has a direct influence on elastic anisotropy. The t-ZrO2-xSx displays a 

common behaviour with a saturation of the axial ratio at limiting value. The axial ratio 

has a minimum value at x = 0 and the maximum value at x = 1.1. 

In figure 11(b) The variation of lattice anisotropy, with composition of mixed crystal 

shows quite a different behaviour, noticeably decreases at first from x = 0 to x = 0.9 

and shows a slight increase from x = 0.9 to x = 1.3. And then increases from x = 1.3 

to x = 2, with the substitution of oxygen by sulphur. Thus when sulphur atoms 

replace oxygen atoms the unit cell becomes less or more anisotropic depending on 
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the concentration of sulphur in m-ZrO2-xSx; on the other hand, when x = 1.3 the unit 

cell is least anisotropic. 

In figure 11(c) the monoclinic angle β also increase with x up to x<1.2, but start 

decreasing for x≥1.2, and the value of β is highest for x=1.2. The is no much change 

on the angle and the structure seems to maintain the monoclinic cell, as a function of 

sulphur content. 

 

Table 6 Experimental, calculated and other first principle lattice parameters for t-
ZrO2 

PARAMETER  Exp 

[123] 

WC LDA 

[124] 

LDA 

[125] 

PW91 

[126] 

TB 

[133] 

LD 

[128] 

GGA 

[129] 

a(Å) 3.606 3.589 3.557 3.565 3.654 3.571 3.637 3.629 

 

c(Å) 5.180 5.12 5.100 5.126 5.364 5.184 5.269 5.207 

 

 

 

Table 7 Experimental, calculated and other first principle lattice parameters and 
angle β for m-ZrO2 

parameter Exp 

[18] 

Exp 

[134] 

Exp 

[123] 

WC LDA 

[124] 

LDA 

[125] 

PW91 

[126] 

TB 

[133] 

GGA 

[129] 

a (Å) 5.169 5.1450 5.1505 5.140 

 

5.108 5.102 5.192 5.076 5.1974 

b (Å) 5.232 5.2075 5.2116 5.222 

 

5.170 5.181 5.254 5.081 5.2798 

c (Å) 5.341 5.3107 5.3173 5.320 5.272 5.264 5.358 5.172 5.3498 

 

β 99.25 99.23 99.230 99.77 99.21 99.65 99.65 98.0 99.53 
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Figure 9 Variation of the lattice parameters and volume expansion rate with S mole 

fraction x for t-ZrO2-xSx solid solution. 
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Figure 10 Variation of the lattice parameters and volume expansion rate with S mole 

fraction x for m-ZrO2-xSx solid solution. 
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Figure 11 Variation of a) axial ratio (c/a) of t-ZrO2-xSx, b) lattice anisotropy (c/b) and 

c) monoclinic angle β of m-ZrO2-xSx solid solutions with S mole fraction x. 

a) 

b) 

c) 
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3.2.2. Formation energies and cohesive energies. 

For the better understanding of the stability of ZrO2-xSx solid solution, the calculations 

of formation energy and cohesive energy were performed, the average formation 

energy of ZrO2-xSx solid solution is defined as; 

)()()( )2(
2 crystalScrystalOcrystalZrSZrO xEExEEH

xx


  

where 
xxSZrOE

2
,

)(crystalZrE , 
)(crystalOE and 

)(crystalSE  are the total energies of ZrO2-xSx, Zr, 

O and S at their most stable states, respectively. The obtained formation energy of 

ZrO2-xSx is shown in figures 12, 13 and 14, for c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx, 

respectively. 

Table 8, summarises values of cohesive and formation energies for m-ZrO2-xSx,        

t-ZrO2-xSx, c-ZrO2-xSx and ZrOS. The calculated cohesive energies for pure 

structures of ZrO2 are in agreement with other first principle calculations within a 

maximum error of 16%. Whereas, for ZrOS the error is less than 1%. The formation 

energies for c-ZrO2 and ZrOS also showed good agreement with the available 

experimental results, 3.2% difference for ZrO2, 4.7% difference for ZrOS.  

From figure 12, for cubic structure, the formation energy of ZrO2-xSx becomes lager 

when x increases from 0 to 0.7, between 0.77 and 1.35 it is positive and above 1.3 it 

is negative again , indicating that the addition of S to the cubic structure does not 

increase the stability of the c-ZrO2, it should be noted that when x equal to 0 or 2 the 

heat of formation is more negative than for any other sulphated c-ZrO2, the stability 

of the structure is also correlated to its cohesive energy; and the cohesive energy is 

often defined as energy needed when the crystal is decomposed into the single 

atoms, so in general the more negative the cohesive energy is, the more stable is 

the crystal. In this work the cohesive energy is calculated using this formula: 

 

)()()( )2(
2 atomSatomOatomZrSZrO xEExEEH

xx


  
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where 
xxSZrOE

2 is the total electronic energy of ZrO2-xSx and 
)(atomZrE , 

)(atomOE and 

)(atomSE  are the electronic total energies of a single Zr, O and S atom in their free 

states, respectively. The obtained cohesive energy of ZrO2-xSx is shown in figures 12, 

13 and 14, for c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx respectively. 

The calculated cohesive energy of c-ZrO2-xSx, increases from 0 to 1.2 and starts to 

decrease from 1.3 to 2 and it is positive from 0.23 to 1.93, hence, this structure can 

be considered energetically unstable for a wide range of S concentrations. The 

cohesive energy of ZrO2-xSx, with an increase in S, exhibits a similar variation 

tendency as seen in the graph of formation energy. 

 Hence from results of formation energy and cohesive energies it can be expected 

that with the increase of x, ZrO2 possess transformation tendency from one 

symmetry to the other by substitution of O with S in ZrO2. This can further degrade 

the mechanical properties of ZrO2 compound, which confirms the analysis by Oleskar 

et al. [51]. The results show not only the extension of the zirconia structure but also 

the small atomic displacements from equilibrium positions. Since it is the main 

causes of stabilation in ZrO2, it is expected that sulphur dope zirconium (SDZ) can 

be stable at room temperature, however the calculated cohesive and formation 

energies for doped structures are higher compared to pure ZrO2. This may be 

attributed to addition of S with higher e/atom (electron per atom) than O, increasing 

the overall e/atom of solid solution to an inappropriate value. 

Table 8 Calculated cohesive energy (eV) and formation energies (eV) for undoped 
and Sulphur-doped zirconia. Bracketed values are from other theoretical work. 

structures m-ZrO
2
 t-ZrO

2
 c-ZrO

2
 ZrOS Refs 

 

E
coh

(eV) 

 

-28.377 

 

-28.287 

 

-28.283 

 

-21.200 

 
WC 

(-24.478)  (-24.050)  (-24.354)   (-21.355)  [51] 

E
form

(eV) -10.854 -10.764 -10.760 -8.276 WC 

  (-11.12)  (-7.88)  [135] 
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For c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx the cohesive energy is positive for 

0.74<x<1.54 while the formation energy is positive for 0.2<x<1.93. which implies that 

at this range the solid solution is not stable or it decomposes in other structures.  

 

Figure 12 Variation of the formation energy and cohesive energy with S mole 

fraction for c-ZrO2-xSx solid solution. 
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Figure 13 Variation of the formation energy and cohesive energy with S mole 

fraction for t-ZrO2-xSx solid solution 
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Figure 14 Variation of the formation energy and cohesive energy with S mole 

fraction for m-ZrO2-xSx solid solution 
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3.2.3. Summary of structural properties  

The main difference between ZrO2-xSx crystals is the fact that, t-ZrO2-xSx and           

c-ZrO2-xSx both have one type of O unlike m-ZrO2-xSx structure that has two types of 

oxygen. A rational explanation of increasing difference between monoclinic, 

tetragonal and cubic phase with an increase of amount of S lies in a specific role the 

size factor plays of the ions participating in the construction of crystal structure. (i) 

The change in lattice parameter is proportional to the radius of substituting atom and 

similar trends were observed for all zirconium dioxide polymorphs as a function of 

sulphur (ii) The volume expansion rate values for cubic and tetragonal are higher 

than those of monoclinic structure. (iii) The lattice parameters a and c of t-ZrO2 tend 

to increase on addition of sulphur, while its c/a ratio is increasing and decreasing for 

different concentration. Both lattice parameters as well as c/a are larger than in pure 

t-ZrO2. The axial ratio c/a for tetragonal structure shows the highest value at x = 1.1 

and a sudden decrease of c/a values from x = 1.1 is due to a difference in rate at 

which a and c are increasing. (iv) The anisotropy and the monoclinic angle also 

showed that b and c of m-ZrO2 are increasing at different rates. (v) There are 

significant changes in c/a for t-ZrO2 and lattice anisotropy (c/b) and monoclinic angle 

for m-ZrO2 as a function sulphur. (vi) The cohesive energy, for all three ZrO2 phases, 

increases with sulphur content and both cubic and tetragonal become positive in the 

x ranges from x=0.72-1.53 which suggest phase instabilities in this concentration 

range. However, they becomes negative again at x ranges from 1.56 to 2.0, which 

shows a phase stability at this range. Additionally, the highest value of cohesive 

energy for all three polymorphs as a function of sulphur content is at x = 1.1. 

Furthermore, the monoclinic structure showed different behaviour, the energy is 

positive at x = 0.6 and x ranges from 0.8 to 1.51 which shows phase instability. (vii) 

The formation energy for all three phases are positive for x ranges from x = 0.21 to   

x = 1.93 which shows that S has a similar effect on the formation of all three 

polymorphs. (viii) The highest values of t-ZrO2-xSx axial ratio corresponds to the 

highest values of both it`s cohesive and formation energies at x = 1.1 and x = 1.2. 

(ix) The highest values of m-ZrO2-xSx structure formation and cohesive energies 

correspond to lowest values of lattice anisotropy and highest values of monoclinic 

angle. 
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3.3. Density of states 

In this chapter, we will theoretically investigate the electronic structure of ZrO2-xSx 

compounds. We calculated the band structures and density of states of the cubic, 

tetragonal and monoclinic structures, where the lattice constants optimised in this 

work are used, through the analysis of band structures and density of states, we can 

find the fundamental role of the individual atoms in the structural instabilities.  

 

The calculated band structures, total density of states (TDOS) and partial density of 

state (PDOS) for m-ZrO2-xSx, t-ZrO2-xSx and c-ZrO2-xSx for x ranges (0 to 0.5), ZrOS 

and for ZrS2 structure, were evaluated by interpolation integration method. 

 

3.3.1. Electronic properties 

 

Figure 15 Crystal structures of (a) ZrOS (b) c-ZrO2 and (c) ZrS2 

 

States below the Fermi energy were considered as valence states. Assuming that 

the 3d and 4s states of Zr can be treated as band states, the 3p states are treated as 

semi-core states, and all other states with energy lower than 3p states are treated as 

core states.  

 

It has been observed that the total DOS of all structures displays mostly p like 

components. In the bottom of the valence band, the DOS is formed by superimposed 

s and p states. In our case we will only concentrate on the upper valence bands and 

conduction band for all structures. 
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Table 9 Comparison of the band gap values obtained in this work with previous 

calculations and experiment. Energy values are given in eV 

ZrO2 

Method  c-ZrO2 t-ZrO2 m-ZrO2 

This work 

GGA-WC                                 3.319 4.019 3.58 

Experimental and other theoretical work 

LDA [136] 3.26 4.07 3.58 

PP-LDA [137] 

 

3.25 4.10 3.12 

PP-GW0
 [137]  

 

5.55 6.40 5.42 

Experimental [26] 

 

6.1 - 7.08 5.8 - 6.6 5.83 

 

c-ZrO2-xSx 

We have predicted the band gap structures for ZrO2-xSx along the high symmetry 

directions in the first Brillouin zone and corresponding density of states from 

calculated equilibrium lattice constant, calculated energy band structure of c-ZrO2-xSx 

compounds along X, R, M, G and R which are the high symmetry lines in the first 

Brillouin zones of c-ZrO2-xSx for all compositions of (x). Both the bottom of the 

conduction band and the valence band maximum are located at the gamma (g) point 

in the Brillouin zone which implies that, undoped c-ZrO2 or c-ZrO2-xSx (at x=0) is a 

direct band insulator. It is seen that the valence band and conduction band do not 

overlap at EF and as a result there is a band gap of 3.319eV, which is in consistent 

with other theoretical work as seen in Table 9. The calculated band structure and 

total DOS are compatible with each other. All these mixed crystals have direct band 

gaps along the gamma direction. The Fermi levels EF are chosen to locate at 0 eV 

and coincide with the upper part of valence band. 

 

We found that calculated band gaps depend strongly on distributions of S electrons 

in the virtual atom, since sulphur perturbs the conduction band structure. A small 

percentage of oxygen replacement by sulphur in c-ZrO2 strongly affects the  
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Figure 16 Total BS and DOSs of the a) unsulphated c-ZrO2 and sulphated c-ZrO2, b) 

c-ZrO1.9S0.1 and c)  c-ZrO1.8S0.2 structures. 
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Figure 17 Partial DOSs of the a) unsulphated c-ZrO2, and sulphated c-ZrO2,  b) c-

ZrO1.9S0.1 and c) c-ZrO1.8S0.2 structures. 

a) 

b) 

c) 



60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Total BS and DOSs of the sulphated c-ZrO2, a) c-ZrO1.7S0.3 , b) c-

ZrO1.6S0.4 and c)  c-ZrO1.5S0.5 structures. 
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Figure 19 Partial DOSs of the sulphated c-ZrO2, a) c-ZrO1.7S0.3, b) c-ZrO1.6S0.4 and 

c) c-ZrO1.5S0.5 structures. 

c) 

b) 

a) 
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electronic properties and the increase of S composition leads to a giant band gap 

reduction due to different atomic properties of c-ZrO2 and ZrS2 or S and O. 

 

The highly directional coupling between metal d and non-metal p electrons results in 

a shear-resistivite covalent bonding and such bonding gives positive contribution to 

hardness. Thus, the region which is composed of the strongly hybridized Zr d and 

O+S p(forming a strong p-d covalent bond), gives a strong positive contribution to 

hardness and a region above the Fermi level mainly consists of metal-metal bonding 

which gives negative contribution to the hardness. Figure 16-19 expresses that there 

is a larger DOS at Fermi for ZrO2 than for the other sulphated c-ZrO2, there is 

maximum shape near Fermi level for each structure. 

 

The states from -5.5eV up to the Fermi level are mainly a mixture of Zr 4d, O and S 

mixed p states. A significantly strong peak just below the Fermi level shows a large 

density of states and this result in a large seeback coefficient value, which is related 

to the fact that electrons are carrier of both electricity and heat. Further insights on 

the electronic structure of c-ZrO2-xSx can be gained by analysing the PDOSs near 

the Fermi level, which are plotted in figure 17 and 19.  

 

Similar features in PDOS are observed for c-ZrO2 and c-ZrO2-xSx (0-0.5) indicating 

that replacement of O by S will not change the electronic structure, especially the Zr 

4d states at Fermi level.  

 

ZrOS 

The calculated energy band structure of ZrOS compound along the high symmetry 

lines in the first Brillouin zone are shown in figure 20. X, R, M, G and R are 

symmetric points for the Brillouin zone of the ZrOS compound crystal. The Fermi 

level was chosen to be 0. The valence band of ZrOS is fully occupied and mainly 

attributed to O 2p and S 3p orbitals, conversely, the empty conduction band formed 

by antibonding orbitals has mainly by Zr 4d character. The sulphur impurity induces 

reduction of the band gap to 2.46 eV which correspond to the other reported first 

principle value of 2.46eV [51] for ZrOS. The reason for such change is the shift of Zr 

4d. In order to further investigate contributions of different atom species to the 

energy level, the partial DOS of ZrOS is also displayed in full. The main difference in 
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electronic structure between ZrO2 and ZrOS is that the S3p valence state appears 

just above the O2p valence state in the former material. Such appearance will lead 

us to expectation that the band gap energy of ZrOS is smaller than the ZrO2. This 

expectation agrees very well with the results that we get for the sulphated and 

unsulphated structures. A broad and intense structure of two peaks at the valence 

band near the Fermi energy may be assigned to the S3p - Zr4d. 
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Figure 20 a) Total BS and DOSs, and b) Partial DOSs of ZrOS. 
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t-ZrO2-xSx 

The calculated equilibrium lattice constant Z, A, M and G are the symmetry points for 

the Brillouin zone of the t-ZrO2-xSx crystal. The bands and DOS graphs are given in 

figure 21 and 23. The Fermi level is chosen to be at 0 eV. The fundamental band 

gaps of t-ZrO2-xSx (x=0-0.5) are indirect from Z to G direction. Again two other gaps 

G-G and A-G are close in energy. The highest valence band along M-G-Z line is 

nearly dispersionless and would also give to indirect transitions in this energy range. 

The band gap for pure t-ZrO2 (t-ZrO2-xSx at x = 0) is compared with the experimental 

values and other theoretical work (Table 9). The calculated values in this work are 

smaller. The reason for this following on the one hand, the experimental values are 

often determined in Z-Z direction while our calculation is mainly focussed in 

directions that give small gaps compared to other directions; on the other hand, it is 

well known that GGA calculations often largely underestimate band gaps, our results 

are closer to the theoretical ones as seen from the table but have small differences. 

This may be attributed to the use of different calculation methods. From the energies 

of band gaps versus composition of t-ZrO2-xSx, (x=0-0.5), it can be seen that the 

composition dependence of the band-gap exhibits decreasing trend and the band-

gap becomes smaller as we increase the sulphur content. It means that the mixture 

of O% and S% cannot increase band-gap. 

In order to get the nature of the change of the band gap, the total and partial density 

of t-ZrO2xSx are discussed; we find that the character of the TDOS for t-ZrO2-xSx is 

quite similar for x = (0-0.5). EF is located above the minimum of the valley and two 

sharp peaks for all compounds. The corresponding partial density of t-ZrO2-xSx are 

also shown in figure 22 and figure 24, in the case of ZrO2-xSx at x = 0  the band 

structures around the Fermi level are derived mainly from O2p and Zr4d orbitals. The 

contribution from Zr4d is noticeable but an order of magnitude smaller than the 

contribution of O2p orbitals. The density of states of the conduction band are also 

derived from O2p and Zr4d only that in the conduction band O2p contribute just a 

little as compared to Zr4d. The conduction bands are shifted toward the Fermi level 

with the increase of sulphur content with subsequent increase in conductivity due to 

the introduction of 3p. 
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Figure 21 Total BS and DOSs of the a) unsulphated t-ZrO2 and sulphated t-ZrO2, b) 

t-ZrO1.9S0.1 and c) t-ZrO1.8S0.2 structures. 
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Figure 22 Partial DOSs of the a) unsulphated t-ZrO2 and sulphated t-ZrO2, b) t-

ZrO1.9S0.1 and c) t-ZrO1.8S0.2 structures. 
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b) 
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Figure 23 Total BS and DOSs of the sulphated  t-ZrO2,  a) t-ZrO1.7S0.3, b) t-ZrO1.6S0.4 

and c) t-ZrO1.5S0.5 structures. 
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Figure 24 Partial DOSs of sulphated t-ZrO2, a) t-ZrO1.7S0.3, b) t-ZrO1.6S0.4 and c) t-

ZrO1.5S0.5 structures. 
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m-ZrO2-xSx 

The energy band structures of m-ZrO2-xSx  along with high-symmetry point of the 

Brillouin zone, are show in figure 25 and 27. The zero of the energy is arbitrary taken 

at Fermi level (dashed line).  

 

 

 

 

 

 

 

 

Figure 25 Total BS and DOSs of the a) unsulphated m-ZrO2 and sulphated m-ZrO2, 

b) m-ZrO1.9S0.1 and c) m-ZrO1.8S0.2 structures. 
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Figure 26 Partial DOSs of the a) unsulphated m-ZrO2 and sulphated m-ZrO2, b) m-

ZrO1.9S0.1 and c) m-ZrO1.8S0.2 structures. 
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Figure 27 Total BS and DOSs of the sulphated m-ZrO2, a) m-ZrO1.7S0.3, b) m-

ZrO1.6S0.4 and c)  m-ZrO1.5S0.5 structures. 
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Figure 28 Partial DOSs of the sulphated m-ZrO2, a) m-ZrO1.7S0.3, b) m-ZrO1.6S0.4 and 

c) m-ZrO1.5S0.5 structures. 
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The top of the valence band and the bottom of the conduction are composed of O2p 

and Zr4d (figure 26 and 28) for m-ZrO2-xSx at x = 0, the calculated band structure 

shows that monoclinic ZrO2 has an indirect band structure because the valence band 

maxima and conduction band exhibit minima at G and B, respectively. In addition, 

the indirect band gap from G to B is calculated to be about 3.58 eV, which agrees 

very well with other theoretical values as seen in Table 9. The energy band -5.63 eV 

to 0 eV at figure 23 and figure 25 consists of O2p states that show two sharp peaks 

due to strong localised two O atoms in m-ZrO2, with some admixture of Zr4d states. 

This shows that m-ZrO2 has some features of covalent bonding, comparing the      

m-ZrO2 and m-ZrO2-xSx for x>0 compounds. As we know that replacement of O by S 

adds the orbitals of S to the electronic structure, we note that S3p electrons 

substantially narrow the band gap, moreover there is a larger contribution of Zr4d in 

the conduction band than of the mixed O and Sp orbitals. 

ZrS2 

The figure 29   shows the graphical presentation of band structure and density of 

states (DOS) of ZrS2. The uppermost valence band is mainly constructed of sulphur 

3p bands, however these states are mixed with components of zirconium 4d, 5s and 

5p orbitals, which suggests that there are strong covalent interactions between 

sulphur atoms and zirconium atoms. The 4d band is mainly located in the conduction 

band which is above EF. The conduction band as seen from the total density of states  

consists of two peaks which Yang et al. [138] indicated could be ascribed as t2e and 

eg-type bands, respectively. Moreover the first peak is almost divided into two peaks 

due to distortion of octahedral position where the zirconium atom resides. The 

zirconium 4d bands are mixed with a considerable number of sulphur 3p orbitals. 

This provides another piece of evidence of strong Zr-S covalent bonding. Wertheim 

et al. reported the valence band structure of ZrS2 by XPS measurement [139]. The 

three peaks in the valence band have also been explained by their measurement. 

Those experimental results are quite similar to our calculated results. In the present 

calculations the main component of bands from 0 to 6eV are sulphur 3p orbitals but 

the considerable number of zirconium orbitals are also involved in the same band. 

The lowest energy at about -5eV is attributed to the strong covalent interaction 

between sulphur 3p and zirconium 5sp. The middle energy peak is also of bonding 

states formed by mixture of zirconium 4d and 5sp and sulphur 3p. But the peak of 
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highest energy is of a non-bonding states; it is essentially composed of sulphur 3p 

orbitals. There is a strong admixture of zirconium 4d and 5sp and sulphur 3p orbitals 

i.e a strong covalent bonding between zirconium and sulphur atoms is  characteristic 

of ZrS2. 
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Figure 29 a) Total BS and DOSs, and b) Partial DOSs and of the ZrS2 structures. 
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Figure 30 Variation of bandgaps of (ctm)-ZrO2-xSx solid solution for x=(0-0.5) 

 

3.3.2. Summary of electronic properties 

The band structure, total DOS and PDOS of Zr states, O states and S states for the 

three oxides / sulphides at different sulphur contents are shown in figure 20 to figure 

28. The main features can be summarized as follows: (i) at the low energy side of 

the DOS, the O2s S3s and Zr4p states contribute to the DOS peaks for the three 

oxides. As the sulphur contents increases, these peaks become more dispersive and 

have a tendency of shifting to the lower energy, (ii) some strong peaks occur at the 

same energy in the PDOS of a particular Zr atom, a particular O atom and a 

particular S atom, indicating that the Zr, O and S atoms are bonded. However, the 

predicted band gap is smaller than the experimental value of 5.2eV from table 9, 

which means that our results underestimate the real band gap value of m-ZrO2. The 

DOS peaks split into smaller peaks and become narrower as the addition of S 

increases. This shows that there is an increase of charge overlap and delocalization 

among the bonded atoms in the system, (iii) With the increment of S, there are some 

differences in the DOS of the O states for the three oxides. This is due to the 
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differences in their local molecular packing. The same is true of the DOS of the Zr 

states, (iv) in the conduction band region, the DOS peaks of the Zr and O states in 

m-ZrO2 shift to lower energy under compression. It may be inferred that the 

interactions between the O and Zr states become stronger as the sulphur contents  

increases. However, for t-ZrO2 and c-ZrO2, the case is quite the contrary and (v) 

overall, the DOS shape of m-ZrO2 in the upper valence band is identical with that of 

its O states. The rigidity of the DOS of O states thus implies that the modifications in 

the DOS of the oxide are mainly due to the changes in the DOS of O states. The 

same is true of t-ZrO2 and c-ZrO2. (vi) In all structures presented the energy band 

gap is complicated, mainly due to impurity inducing energy levels of hybrid orbital 

when forming S-Zr bonds or O-S bonds. (vii) The total electron density of states 

(DOS) for ZrO2 with different S concentration levels presented in figure16-figure 29 

indicates detailed band structure variation with sulphur concentration. By close 

examination of bandwith sequence we note that the band gaps are 3.319, 2.910, 

2.551, 2.232, 1.946 and 1.686 for c-ZrO2-xSx, 4.019, 3.651, 3.320, 3.010, 2.732 and 

2.465 for t-ZrO2-xSx and 3.580, 3.234, 2.924, 2.638, 2.358 and 2.165 eV for            

m-ZrO2-xSx at x=(0, 0.1, 0.2, 0.3, 0.4, 0.5), this implies that weaker covalency in this 

order, the strength of covalency may be related to the calculation results of cohesive 

energies, which are -28.283, -22.94, -18.123, -13.753, -9.850 and -6.387 eV,             

-28.287, -23.017, -18.192, -13.825, -9.88 and -6.425 and -28.377, -23.133, -18.337,  

-13.979, -10.076 and -6.638 for c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx, respectively.  

3.4. Mechanical properties 

In the present work, we performed systematic first principles calculations of elastic 

parameters of ZrO2-xSx single crystals, such as the elastic constants Cij, the bulk 

moduli B and the shear moduli G. These are widely used for describing the elastic 

behaviour of materials. First Cij`s are evaluated by calculating the stress tensors on 

different deformations applied to the equilibrium lattice of cubic, tetragonal and 

monoclinic unit cell. Then the dependence of the resulting energy change from the 

deformation is determined and the constants are evaluated in a standard way. 

Elastic constant Cij could provide important information for mechanical stability, 

elastic moduli, and thus hardness of materials. 

It is of vital importance to theoretically investigate the mechanical properties of   

ZrO2-xSx for the entire x range in order to search for optimum ZrO2-xSx structure. To 
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study the effect of S on mechanical properties of ZrO2 structure the elastic constants 

of various ZrO2-xSx structure are calculated in accordance to the method by Nye, the 

main idea is presented as follows; the elastic stiffness constants were calculated by 

stress-strain method. Both stress and strain have a tensile and three components, 

giving six components in total. The linear elastic constants form a 6 x 6 symmetric 

matrix, having 27 different components, such that jiji C    for small stress σ and 

strain ε. properties such as bulk modulus, Young modulus, and Poisson`s ratio may 

be computed from the values of ijC . 

3.4.1. Single crystal elastic constants 

c-ZrO2 

Table 10 summarise the single crystal elastic constants of c-ZrO2. The elastic 

constants of c-ZrO2 are compared with experimental and calculated values available 

from other reports. Since c-ZrO2 belongs to the cubic system of space group Fm3m, 

the number of independent elastic constant can be as small as three. The derived 

elastic constant for c-ZrO2-xSx at x = 0 or c-ZrO2, are C11, C12 and C44. It could be 

seen clearly from Table 10 that the calculated elastic constant of the c-ZrO2 phase 

from the present study are in better agreement with corresponding calculated values 

than experimental values in the literature for instant, the C11, C12 and C44 are 

calculated to be 541, 101 and 70 GPa, respectively, which match well with values 

from different literature results as seen in Table 10. The c-ZrO2 is mechanically 

stable before we introduce S. Since all mechanical stability criteria for cubic structure 

are met, C11, C12 and C44 are found to be positive as seen in equation 2.38. 

Table 10 calculated, theoretical and experimental elastic constant for c-ZrO2.Exp.: 
experimental data; WC: present work; HF: Hartree-Fock; TB: tight binding; PIB: 
potential-induced breathing; LD: lattice dynamics 

parameter Exp 

[140] 

 

WC HF 

[141] 

 

TB 

[133] 

PIB 

[142] 

LD 

[143] 

LD 

[128] 

C11 (GPa) 417 541 628 543 548 455 409 

C12 (GPa) 82 101 19 193 158 64 53 

C44 (GPa) 47 70 82 57 180 63 60 

B0   (GPa) 194 248 222 310 288 194 171 
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Table 11 lists the predicted Cij c-ZrO2 as a function of sulphur content based on   

GGA-WC. Since the elastic constant C44 of c-ZrO2-xSx is directly linked to the 

mechanical stability of crystals, it will be presented on figure 30 along with E and C`. 

Table 11 Variation of lattice independent elastic constant for c-ZrO2-xSx for 0≤x≤2 

x C11 (GPa) C44 (GPa) C12 (GPa) 

0 541.3 69.5 101.5 

0.1 487.9 60.9 89.9 

0.2 452.7 47.5 83.2 

0.3 419.8 37.4 77.2 

0.4 394.1 29.6 71.6 

0.5 372.3 18.6 68.4 

0.6 483.8 15.7 74.6 

0.7 320.3 38.1 60.0 

0.8 296.9 5.9 56.9 

0.9 283.6 2.2 56.4 

1 266.6 2.4 49.0 

1.1 260.0 0.9 51.0 

1.2 244.3 -0.6 48.3 

1.3 241.2 -1.1 48.0 

1.4 238.7 -1.3 48.3 

1.5 235.0 -1.2 48.0 

1.6 231.1 -1.7 47.3 

1.7 324.0 -2.6 54.6 

1.8 337.8 -11.8 70.5 

1.9 216.2 14.9 51.1 

2 201.4 -4.5 53.0 

 

As shown in Table 11, the trends of C11 and C12 elastic constants decrease with x 

composition ranging between 0 and 0.5, thus decreasing the mechanical stability of 

c-ZrO2-xSx (0≤x≤0.5). However beyond x = 0.5 there is no particular trend on 

relationship between an increase in x composition and C11 and C12  elastic constants. 

The C11 and C12 at x = 0.6 gives higher values compared to x = 0.5, and from x = 0.7 
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composition, they start to decrease.  At x = 1.7 and 1.9. C11 is over 300 and C12 for   

x = 0.8 is 70.5, which is higher compared to all other composition after x =0.5. All the 

compositions predicts C11 is larger than C12 which means the mechanical stability 

criterion for cubic structure C11+C12>0 is met and all the values for C11 and 2C12 are 

all positive as evident from the table.  

t-ZrO2-xSx 

The t-ZrO2-xSx at x = 0 results are summarised in Table 12 which list the values of 

elastic constants, some literature data are listed for C11, C33, C44, C66, C12, C13 and 

B0 [133, 142, 144, 145, 142, 143, 146]. The agreement with experiment is not as 

good as for the lattice parameters, but is in the range normally found in this 

comparison, averaging 10%-20%. Some comments on the effect of difference may 

be appropriate. The effect is small for C11, C33 and C13, it is not that big as compared 

to other elastic constant as seen in Table 12. 

Table 13 shows the variations of elastic constant t-ZrO2 with S concentrations x. The 

constant C11 decreases from x = 0 - 0.6 and increases from x = 0.6 - 0.8 and then 

decreases until it becomes negative.  

 

Table 12 calculated, theoretical and experimental elastic constant for t-ZrO2.; see 
key of table 11. (c) Indicates that the elastic constant is given in the cubic axes,(t) in 
primitive tetragonal axes, and no indication means chosen set of axes unknown.  

parameter Exp 

[144] 

Exp 

[145] 

WC TB 

[133] 

PIB 

[142] 

LD 

[143] 

LD 

[128] 

LD 

[146] 

C11 (GPa) 340 327 366 366 465 395(c) 416(c) 263 

C33 (GPa) 325 264 342 286 326 326(c) 234(c) 262 

C44 (GPa) 66 59 22 78 101 42(c) 39(c) 55.9 

C66 (GPa) 95 64 163 88 156 56(c) 73(c) 44 

C12 (GPa) 33 100 219 180 83 26(c) 30(c) 15 

C13 (GPa) 160 62 64 80 49 105(c) 68(c) 72 

B0  (GPa) 183 149 193 190 179 148 134 122 

 

C33 decreases from x = 0 - 0.3 and increases at 0.4, C33 is larger at 0.8 than C11, C44, 

C66, C12 and C13. C44 is positive only for composition x=0.2 and 0.8. C12 decreases a 
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little from x = 0.4 and increases a little and increases at x = 0.7 to 0.8. C13 and C66 

both remain almost unchanged except at x = 0.8. The criteria as seen in equation 

2.39 for t-ZrO2 as a function of S structure are not met for C11-C12 from x>0.45 and it 

has a minimum value at x = 1.0, C11+C33-2C13 is negative at x = 1.0, 1.2, 1.3, 1.5, 

1.6, 1.7, 1.8 and 1.9. The criterion is not met at this point and all values of the 

2(C11+C33+2C12+4C13) criterion are positive and it has a maximum value at 0.8 as 

shown in figure 31.  

 

Table 13 Variation of independent lattice elastic constant for t-ZrO2-xSx for 0≤x≤2 

x 

C11 

(GPa) 

C33 

(GPa) 

C44 

(GPa) 

C66 

(GPa) 

C12 

(GPa) 

C13 

(GPa) 

0 365.5 341.9 22.2 163.9 219.5 64.5 

0.1 333.6 271.2 26.0 149.3 216.5 74.7 

0.2 320.3 259.7 -4.8 133.6 199.0 36.9 

0.3 282.3 220.4 -51.7 122.4 183.5 58.2 

0.4 232.7 309.0 -117.3 114.5 171.5 41.1 

0.5 200.7 203.8 -154.6 105.9 233.6 55.5 

0.6 138.7 226.1 -1.5 97.2 248.5 63.8 

0.7 156.8 178.2 6.5 92.8 195.3 38.8 

0.8 369.1 512.0 -45.8 165.0 468.3 232.6 

0.9 -32.2 187.8 -298.4 82.6 377.4 55.4 

1 -123.7 145.3 -169.3 77.9 483.9 56.8 

1.1 -36.4 147.4 -293.6 74.8 380.7 47.0 

1.2 -101.1 138.9 -149.8 71.5 347.2 42.3 

1.3 -87.4 154.3 -352.1 69.7 403.8 58.0 

1.4 -80.5 287.5 -329.8 68.0 383.4 71.1 

1.5 -31.5 140.6 -272.7 66.1 343.7 60.3 

1.6 -76.1 159.1 -378.9 64.5 406.0 67.2 

1.7 -66.1 141.7 -343.3 63.0 366.7 52.1 

1.8 -72.1 142.2 -394.3 61.6 393.9 57.2 

1.9 -51.6 140.6 -199.9 59.1 413.3 62.5 

2 -72.1 150.7 -359.3 57.4 377.4 35.4 
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Figure 31  Variation of the tetragonal structure mechanical stability criterion with S 
mole fraction for t-ZrO2-xSx solid solution 
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m-ZrO2-xSx 

The calculation of elastic constants of the m-ZrO2-xSx phase became complicated. It 

belongs to a monoclinic system of space group P21/c. The number of independent 

elastic constants can be as large as thirteen. The elastic constants are computed in 

basis indicated in chapter 2, they are in fair agreement with experimental data for 

diagonal part. Off-diagonal terms are less accurate, in particular C13, and the Ci5=1, 

2, 3 (wrong signs or magnitudes or both); however this is still in line with other 

published results by other researchers. From the Table 14 since C11(C12,C33) of      

m-ZrO2-xSx are slightly larger than the other elastic constant, it has a pronounced 

elastic anisotropy. 

As the sulphur molar fraction increases from 0.0 to 2.0, we note from Table 15 that 

the C11,C22 and C33 elastic constants change by larger amount, while C13  changes by 

a smaller amount, from 82Gpa at x = 0.0 to 78GPa for x = 0.6, C44 start at 87GPa    

(x = 0.0), decreases to 41.99GPa and increases to 49.56GPa (x = 2). 

Table 14 calculated, theoretical and experimental independent elastic constant for 
m-ZrO2. PAW: projected augmented wave. See key of Table 11 

parameter Exp [144] Exp [147] WC paw [148] PIB [142] LD  [143] 

C11 (GPa) 361 358 335 337 353 347 

C22 (GPa) 408 426 378 351 434 364 

C33 (GPa) 258 240 244 268 272 274 

C44 (GPa) 99.9 99.1 87 79.1 156 88 

C55 (GPa) 81.2 78.7 76 70.3 123 108 

C66 (GPa) 126 130 125 114 192 122 

C12 (GPa) 142 144 162 155 233 164 

C13 (GPa) 55.0 67.0 82.5 84.3 138 102 

C15 (GPa) -21.3 -25.9 31.6 25.9 61 28 

C23 (GPa) 196 127 146 153 191 156 

C25 (GPa) 31.2 38.3 -6.91 -4.28 -44 -17 

C35 (GPa) -18.2 -23.3 6.77 1.91 59 11 

C46 (GPa) -22.7 -38.8 -15.0 -14.6 -35 -44 

B0   (GPa) 201 189 184 193 182 194 
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Table 15 Variation of calculated independent elastic constant for m-ZrO2-xSx for 
0≤x≤2 

S 

(x) 
11C

(GPa) 
22C

(GPa) 

33C

(GPa) 
44C

(GPa) 

55C

(GPa) 

66C

(GPa) 
12C

(GPa) 

13C

(GPa) 

15C

(GPa) 

23C

(GPa) 

25C

(GPa) 

35C

(GPa) 

46C

(GPa) 

0 335.9 377.8 244.0 87.1 75.5 125.1 162.6 82.5 31.6 146.1 -6.9 6.8 -15.0 

0.1 307.9 356.7 256.2 76.4 65.6 117.8 136.8 86.8 37.9 107.1 -3.4 16.3 -13.6 

0.2 293.9 324.7 272.5 71.0 63.9 114.5 119.3 88.9 29.5 108.7 -3.6 3.3 -14.4 

0.3 270.3 295.4 275.4 68.2 57.0 67.3 118.8 83.9 36.6 110.2 -3.8 14.5 -2.9 

0.4 251.9 313.2 218.3 63.3 52.9 92.0 111.8 76.1 25.1 125.1 -6.2 0.3 -14.0 

0.5 230.3 259.7 214.2 59.1 45.5 84.6 92.9 72.6 23.5 97.1 -6.2 -2.3 -11.9 

0.6 227.2 243.9 237.8 56.0 47.8 80.7 90.3 78.3 22.8 93.2 -2.2 3.4 -11.0 

0.7 195.2 244.1 211.8 51.0 48.6 79.4 89.8 63.8 20.9 86.3 -1.2 2.1 -9.8 

0.8 69.7 219.1 192.6 48.2 37. 7 71.8 77.6 58.3 19.0 83.6 -3.3 -2.0 -8.9 

0.9 177.6 208.1 182.6 45.1 32.7 66.2 72.3 56.3 20.2 77.8 -1.6 -1.2 -7.1 

1 173.4 199.2 178.7 43.3 30.1 65.8 71.5 57.2 16.2 77.2 -3.5 -2.3 -7.1 

1.1 173.6 194.9 159.0 42.6 29.0 62.3 71.0 54.4 15.8 76.6 -4.4 -1.7 -7.7 

1.2 166.1 186.7 162.6 42.0 28.9 61.9 66.0 50.9 16.6 72.3 -2.1 -0. 2 -7.1 

1.3 168.8 180.2 262.5 40.0 24.8 60.4 59.6 85.2 13.8 74.9 2.2 -8.1 -7.9 

1.4 144.0 178.4 109.6 41.5 27.0 60.7 66.6 26.9 11.5 78.8 0.9 -19.7 -7.9 

1.5 138.2 211.7 87.9 34.9 27.9 43.8 90.8 20.0 30.3 114.2 -11.6 29.0 3.0 

1.6 150.5 154.1 112.4 37.5 30.9 54.9 64.6 39.0 6.8 78.4 0.5 -16.9 3.8 

1.7 151.9 156.0 100.0 34.0 28.0 57.1 64.7 37.6 17.1 78.8 -2.0 6.5 -2.7 

1.8 145.8 153.7 113.4 39.0 27.5 58.0 65.7 32.5 16.1 76.7 -1.0 -0. 2 -5.0 

1.9 298.4 170.3 180.1 47.3 49.1 65.8 89.7 111.6 -61.8 86.1 -25.6 -0.4 -9.8 

2 300.1 169.6 179.6 49.6 51.1 69.1 92.2 60.9 -44.0 72.6 -20.6 10.2 -10.9 

C55 on the other hand, decreases from 75.5GPa (x = 0.0) to 24.5GPa (x = 1.3) and 

increases to 51.102GPa. While C66 has a minimum at x = 1.5 (43.8GPa). C12 varies 

from 162.55GPa down to 59.58GPa (x = 1.3) and then up 92.70GPa (x = 2.0). 

C13(C23) oscillates with minimum value of 19.92GPa(72.34GPa) at x = 1.5 (x = 1.2). 

C25(C35,C46) also oscillates with the maximum values 2.227( 28.97, 3.789)GPa at     

x = 1.3 (x = 1.5, x = 1.6) as seen in figure 32 and 33. 

 



84 
 

m-ZrO
2-x

S
x

(C
2

2
+

C
3

3
-2

C
2

3
)G

P
a

50

100

150

200

250

300

350

400

450

(C22+C33-2C23)
(C

3
3
C

5
5
-C

3
5

2
)G

P
a

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
(C33C55-C35

2
)

Sulphur content (x)

0.0 0.5 1.0 1.5 2.0

(C
4

4
C

6
6
-C

4
6

2
)G

P
a

0

2000

4000

6000

8000

10000 (C44C66-C46

2
)

 

Figure 32 Variation of the monoclinic structure mechanical stability criterion with S 
mole fraction for m-ZrO2-xSx solid solution. 
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Figure 33 Variation of the monoclinic structure mechanical stability criterion with S 
mole fraction for m-ZrO2-xSx solid solution. 
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3.5.2. Polycrystalline elastic properties  

It is of engineering importance to find out the elastic moduli of polycrystalline 

materials. Accordingly, the bulk modulus (B) is derived through fitting to the 

Murnaghan equation of state (EOS) [149]. 

 

The shear modulus (G) of polycrystalline material could be approximated from elastic 

constants of single crystals through Voight`s and Reuss` approximations for 

maximum values of moduli as well as Hill`s approximation for average values 

respectively. Voigt assumes that the ratio of strain is uniform everywhere, while 

Reuss assumes the stress in polycrystalline aggregate to external stress is uniform 

[118]. Vought’s (GV) and Reus’(GR), and Hill`s (GH) approximations are given by 

equations 2.27, 2.28 and 2.29. As a results figure 34-46 summarise the calculated B, 

G, E and v of ZrO2-xSx polymorphs with different x ranges. It can be observed that 

elastic moduli of polycrystalline ZrO2-xSx at x = 0 for three polymorphs from the 

present study are in good agreement with experimental and theoretical data 

available in literature.  

If tetragonal shear modulus (C`), trigonal shear moduli (C44) and young modulus (E) 

are negative, it implies that c-ZrO2-xSx is mechanical unstable. all the values are 

reported in figure 34.  

C44  is negative for the range 1.1≤x≤1.85 implying mechanical instability within this 

range. C` is positive for the whole range of x. It is interesting to note that at the 

region where C` is positive it correlates with mixing enthalpy in terms of stability, and 

the E follow the similar trend to that of C`. As a result c-ZrO2-xSx is more stable at      

x = 0.6 as indicated by the higher C` in figure 34. C` is more reliable compared to C44 

in terms of predicting mechanical stabilities. The highest value of C` for sulphated 

cZrO2 correspond to the highest value of E and high values C11 and C22 at 0.6, which 

shows that the c-ZrO2-xSx is more stable at x = 0.6 than for the other sulphated        

c-ZrO2. 
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Figure 34 Variation of the a) C`, b) C44 and c) E of S mole fraction for c-ZrO2-xSx solid 
solution. 
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The Poisson’s ratios of cubic ZrO2 as a function of S contents ranges from 0 - 0.21 

which shows that all the forces acting on the structure as a function of sulphur 

content are not central, though the values of Ʋ are lowest at x = 0.6 and at x = 1.7, 

and the Ʋ value is highest at x = 2.0. The highest value of Ʋ correlates with the 

lowest value of C`. 
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Figure 35 Variation of the Poisson’s ratio with S mole fraction for c-ZrO2-xSx solid 
solution 

For t-ZrO2-xSx Young modulus and Poisson`s ratios we have Ex=Ey≠Ez and 

Ʋxy=Ʋyx Ʋxz=Ʋyz, and Ʋzx=Ʋzy respectively. The Ex = Ey graph shape is similar to 

the Poisson ratio along Ʋxz=Ʋyz while the shape of Ez is similar to the one of 

Poisson’s ratio along Exz=Ezy for all sulphur concentrations in t-ZrO2. The tetragonal 

solid solution shows a decrease of Ex until it become negative at x ranges from 0.5 

to 08  and it increases drastically until it reaches the maximum value of 2700 at        

x = 0.9 the Ex highest values are at x = 0.9 and x = 1.1.  
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Figure 36 Variation of the Young modulus with S mole fraction for t-ZrO2-xSx solid 
solution 
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Figure 37 Variation of the Poisson’s ratio with S mole fraction for t-ZrO2-xSx solid 
solution 
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In general the Ex values for sulphated structures are higher than the Ex value for 

unsulphated t-ZrO2 from x = 0.9 to x = 2, while all Ex values for x<0.9 are less as 

compared to the unsulphated structure.  

Ez reaches a maximum at x = 0.8 after which it depreciates until it reaches 123GPa 

then recovers again at x = 1.4, and further decreases as a function of sulphur 

contents. It is interesting to note that all Ez values are positive which implies that our 

material is stiffer for the entire x range along Z. Some Ez values are negative. 

Since Young's modulus is stress / strain, the high modulus at x = 0.9 and at x = 0.8 

for Ex and Ez respectively, means that the stress value is greater compared to that 

of the material where the modulus is low, or in other words, the strain is much less 

compared to that of the material having low Young's modulus. So it tells that, if a 

material has high Young's modulus, the material requires more load for deformation 

of shape (within elastic limit). 

Poisson`s ratios of t-ZrO2-xSx, while the trend of Ʋxz=Ʋyz correlates with the Young 

modulus along Ez and Ʋzx=zy correlates with Ex, the shape of Ʋxy=Ʋxy behaves 

like the oscillating shape of Ʋxz. All values of Ʋzx are all within the range of               

-1<Ʋ<0.5, while the Ʋxy and Ʋxz are out of the range for some values. For Ʋxy the 

Poisson’s ratios are positive for x ranges from x=0 to x=0.8 and their negative for 

x>0.8. for Ʋxz the values are negative from x ranges from x=0.4 to x=0.8 and there 

positive for x ranges from x=0 to x=0.3, and their within the range of 0<Ʋ<0.5, the 

Ʋxz for x > 0.8 are all positive but above the Poisson’s ratios ranges. While Ʋzx 

values are all within the 0<Ʋ<0.5 range, all the values for Ʋzx are below 0.25 and 

above 0 except at x = 0.8 where it is above 0.25 but below 0.5 which shows that the 

forces acting on the structure are central forces at x = 0.8 and are not central for all 

the other x values. 

Very little work is reported in the literature on elastic properties of pure monoclinic 

zirconia even with some information there are no experimental values for 

polycrystalline monoclinic zirconia. The plot in figure 38 of Young modulus values 

shows a regular decrease for Ex from x = 0 to x = 1.4 and a dramatic increase at      

x = 1.5 and a decrease again until it reaches the highest value for the entire range 

and increases a little from x = 1.6 to x = 2.0. It is interesting to know that its 

maximum value is at x = 1.5 and all Ex are positive. Ey values start by a small 
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increase from x = 0 to x = 0.2 and then decrease in a small range and then show a 

very low value at x =1.5 and the increases a little from x = 1.5 to x = 2.0;  
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Figure 38 Variation of the young modulus with S mole fraction for m-ZrO2-xSx solid 
solution 
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Figure 39 Variation of the Poisson’s ratio with S mole fraction for m-ZrO2-xSx solid 
solution 
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it is interesting to know that Ey has a minimum value at x = 1.5 and all its values 

ranging from x = 0 to x = 1.3 are higher than the values for x>1.3. Ez values increase 

slightly from x = 0 to x = 0.3 and slightly decrease until x = 1.2 then again they 

increase a little at x =1.3; the decrease drastically from x = 1.3 to x =1.5 were it 

became negative then increases again until x = 2.0. 

Monoclinic ZrO2 Poisson’s ratio are within the range 0<x<0.5 for x>1.3 except for 

Ʋyz at x = 1.2. at x = 1.5 we got values that are out of range for all planes where 

Eyz, Eyx, Exz and Ezy are greater than 1 and Exy and Ezx are below -1. Above        

x = 1.5 Eyz values are above 0.5 at x = 1.6,1.7 and 1.8, Ezy values are above 0.5 at 

x = 1.7 and 1.8 and Exz values are above 0.5 at x = 1.9, while other E values are 

within the 0< Ʋ<0.5. In general Exz and Ezx show that forces acting on the structure 

are not central, however, other E values show that the forces that are acting are 

mainly central. m-ZrO2-xSx. Young modulus and Poisson’s ratios are as follows 

Ex≠Ey≠Ez. 

The bulk modulus (B) which is a measure of resistance to volume change and shear 

modulus (G) which is a measure of resistance to reversible deformation upon applied 

shear stress of a polycrystalline material can be estimated from the individual elastic 

constants Cij by the Voigt approximation and the Reuss approximation. The general 

expressions for Voigt and Reuss approaches are represented in equations 2.27, 

2.28, 2.29, 2.33 and 2.34 for bulk and shear modulus. The mechanical properties 

including bulk modulus, shear modulus and Pugh’s ratios for three ZrO2-xSx 

polymorphs are shown in figure 40. The bulk modulus for m-ZrO2, t-ZrO2 and c-ZrO2 

are 184, 193 and 248 GPa, respectively. The fracture strength for material is 

proportional to the bulk modulus, the stiffer the material, and the smaller the 

deformation of the material is. Therefore, the deformation of the three phases 

becomes easier in the order of c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx at x = 0. It can 

be seen that ZrO2-xSx does not have strong resistance to a volume change of ZrO2 

as a function of sulphur content. The shear modulus decreases in the following order 

112>91>66 GPa for c-ZrO2-xSx>m-ZrO2-xSx>t-ZrO2-xSx at x=0, respectively. The larger 

the value of shear modulus is, the  more pronounced is directional bonding between 

atoms. The present calculations' results demonstrate directional bonding between 

atoms of t-ZrO2-xSx at x = (0.9, 1.0, 1.1) and m-ZrO2-xSx at x = 1.5.  
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Figure 40 Variation of the bulk modulus, shear modulus and Pugh`s ratio with S 
mole fraction for (ctm)-ZrO2-xSx solid solution 



96 
 

The B/G ratio is related to brittleness and ductility of material: a high B/G value 

indicates ductility, while a low value shows brittleness the critical value is about 1.75. 

It can be seen from figure 40 that for all phase structures of ZrO2-xSx at x = 0 the 

Pugh’s have higher values than the critical one, suggesting that they are ductile. We 

also note that the B/G decreases in the following order: t-ZrO2-xSx > c-ZrO2-xSx >     

m-ZrO2-xSx at x = 0 as seen from the figure. The three phase of ZrO2-xSx at x = 0 

change from ductile to brittle in the sequence of t-ZrO2-xSx, c-ZrO2-xSx and               

m-ZrO2-xSx. This shows that m-ZrO2-xSx is the most brittle phase among the three 

structures. Generally, pure zirconia is monoclinic at room temperature. As the 

temperature increases, m-ZrO2 transforms to tetragonal (t-ZrO2) then to cubic         

(c-ZrO2) fluorite structure. This phase transition induces large volume changes and 

makes the pure material unsuitable for applications. The large volume changes may 

cause significant embrittlement of zirconia. These suggestion support our 

conclusions particularly for energy calculations. 

It could be also be observed from figure 40 that B/G values for c-ZrO2-xSx increase 

with the S composition when x>0.1 and shows a slight decrease at x = 0.7 and 1.9. 

Moreover it can be deduced from figure 40 that all c-ZrO2-xSx for x ranges 0 to 2 are 

ductile with B/G values greater than 1.75. For t-ZrO2-xSx it could be observed that 

B/G increases from x=0 to x=0.2 and becomes negative at x = 0.3, 0.4, 0.5, and 0.7. 

A negative Poisson ratio is linked to the bulk modulus only in isotropic material such 

as polycrystalline aggregates, softening in one or more elastic modulus tensor, 

typical shear modulus of single crystal is known to occur during transformation of 

structure, not in bulk modulus of polycrystalline aggregates. A single crystal may 

exhibit a negative Poisson ratio for a restricted range for the angle of deformation. A 

cooperative rotation of groups of atoms can lead to negative Poisson ratio [150].   

Lastly, we investigate the elastic anisotropy factor for all structures of sulphated and 

unsulphated zirconia. It is well known that micro-cracks are induced in ceramics 

owing to anisotropy. Hence an important property of crystalline solids is the elastic 

anisotropy ratio which is defined by equations 2.28, 2.29 and 2.32. Essentially all 

known crystal are elastically anisotropic. For an anisotropic crystal A equals 1, while 

any value smaller or larger than 1 indicates anisotropy. The magnitude of a deviation 

from 1 is a measure of the degree of elastic anisotropy possessed by a crystal. 
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To further study the interatomic bonding in our modelling of random solid solution of 

cubic ZrO2-xSx solid solution, figure 41 represents the Cauchy relationships, C12=C44, 

or zero Cauchy pressure. Pettifor [151] has suggested that it could be used to 

describe the angular character of atomic bonding in metals and compounds. If the 

bonding is more metallic in character, the Cauchy pressure will be more positive, a 

negative Cauchy pressure, however, requires an angular or directional character in 

the bonding. 
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Figure 41 Variation of anisotropic factor with S mole fraction for c-ZrO2-xSx solid 
solution 

 

The more negative the Cauchy pressure, the more directional and lower mobility the 

bonding. In our calculations the Cauchy pressure has positive values for all values of 

x. it is the same ductile/brittle effects of C12-C44 and B/G that leads to the same 

pattern of middle of figure 42. 
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Figure 42 Variation of Cauchy pressure with S mole fraction for c-ZrO2-xSx solid 
solution 

The tetragonal anisotropy deviates considerable from unity, indicating the substantial 

elastic anisotropy for t-ZrO2-xSx. 

It is interesting to note that C44 remains almost essential constant for the first two 

values of x (0 and 0.1). While C66 appears to decrease after an addition of sulphur. 

The denominator in the A1 anisotropy relation represents simple tension on (001) 

plane shear while the A2 anisotropy relation corresponds to shear along [011] 

direction on the )110(


 plane [152]. The C66 and C44 elastic constants then 

correspond to shear resistance along [010] and [100] direction in (001) and (010) 

planes, respectively [152, 153]. 

 Therefore the numerator (denominator) in A3 ratio represents the shear of intra-

(inner-) layer bonds. The A1 elastic ratio starts by increasing from x = 0.0-0.4 and 

decrease drastically at x = 0.5 until the values of A1 becomes negative, A1 values 

increase again within the negative range, from x = 0.9 to x = 2.0 the effect of sulphur 

seems to be the same. A2 decreases throughout the whole range of x values and 

shows a small increase at x = (0.6, 0.7). The fully ordered t-ZrO2 exhibits significant 
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change of elastic properties as a function of sulphur content, which may be 

expressed by the deviation of ratio A3 from unity, A3 = 0.133. However, as sulphur 

content increases, A3 shows that there might be micro changes of the structure; 

sulphur seems to be reducing the magnitude of uniaxial anisotropic elastic properties 

measured for bulk single crystal of t-ZrO2-xSx.  

Furthermore, this indicates that the volume increase of t-ZrO2 caused by the larger 

size of sulphur content uniaxial, anisotropy C11<C33 for x>0.4 and C44<C66 for the 

entire x range. The one parameter that describes the elastic tetragonality, A3, is 

smaller than unity; this implies that the shear stiffness along (100) is smaller than in 

(001) direction.  

The measurements were not accurate enough to prove a significant deviation from 

the unity. The small deviation from the unity of A2/A1 indicates that the elastic shear 

anisotropy of the crystal is close to that of equivalent elastically anisotropic crystal 

with cubic symmetry. Deviations from cubic symmetry of tetragonal elastic anisotropy 

parameters, as expressed by A1/A2 and A3 are smaller 

The elastic ductility behaviour was proposed to be related to so called Cauchy 

pressure. As stated previously, positive or negative values of the Cauchy pressures1 

and 2 indicate a ductile or brittle behaviour.  

Despite the fact that the Young modulus and other elastic constant properties 

showed a general decrease, the Cauchy pressure is positive. This shows a ductile 

behaviour. Both Cauchy pressures increase as the sulphur content increases; this 

indicates that the material is ductile. 
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Figure 43 Variation of anisotropic factor with S mole fraction for t-ZrO2-xSx solid 
solution 
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Figure 44 Variation of Cauchy pressures with S mole fraction for t-ZrO2-xSx solid 
solution 
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The elastic anisotropy ratio is an important physical quality with regards to structural 

phase stabilities of crystal structures, in our case we investigated the anisotropies of 

compression (p) and two shear waves (S1 and S2) which are defined as [154]. 

11

33

C

C
ΔP  ; 

44

1311

2
1

C

CC
ΔS


 ; 

1211

442
2

CC

C
ΔS


 ;      2.36 

Estimation of anisotropy ratios, PΔ , 1SΔ and 2SΔ  are shown in figure 45 indicating the 

anisotropy of m-ZrO2–xSx compound, for x ranges from 0 - 2. It can be seen that the 

anisotropy of compression is fluctuating between 0.6 and 1.0 as a function of sulphur 

content except at x = 0.8 and 1.3 were the PΔ is 2.76 and 1.55 respectively. While the 

shear wave1 also 1SΔ fluctuates except at x=0.8, 2.0, 1.9, 1.7 where it is 0.119, 2.44, 

1.93, 1.6 and 1.69 respectively. Shear wave2 1SΔ ranges from 0.8 to 1.05 for the 

entire x range except at x=0.1, 1.5, 1.9 and 2.0 where the values are -12.23, 1.47, 

0.45 and 0.48 respectively. For a monoclinic structure the shear wave 1 is greater 

than the shear wave 2 and the compression wave except at x = 0.8 and 1.3. It is 

interesting to note from Table 16 that the values of pΔ , 1SΔ and 2SΔ  are not that different 

from other values that where investigated using first principle calculation by other 

researchers[141]. 

 

Table 16 Anisotropy ratios for m-ZrO2-xSx for x= 0 

parameter theoretical [155] WC 

pΔ  0.917 0.727 

1SΔ  1.498 1.460 

2SΔ  0.834 1.00 

 

Additionally the C13/C12 in figure 45 is less than pΔ , for an anisotropic system the 

small C13/C12 as compared to pΔ  indicates that the atomic bonding along Z-axis is 

stronger than along the x-axis for the entire range of x, except at x = 1.9 and x = 2.0, 

where pΔ =0.003 and C13/C12=1.24 respectively. This implies that bonding along the 

x-axis is greater than the bonding along z-axis at these values of x. 
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Figure 45 Variation of anisotropic factor with S mole fraction for m-ZrO2-xSx solid 
solution 
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Figure 46 Variation of anisotropic factor with S mole fraction for m-ZrO2-xSx solid 
solution 

3.5.3. Summary of mechanical stability 

It could be seen clearly that the calculated elastic constants are in agreement with 

the corresponding experimental and calculated values in the literature. (i)The overall 

diagonal element of elastic constants for m-ZrO2 gradually decreases with an 

increasing S content. However, the extent of decrease for elastic constant C11 and 

C22 is higher than that of C44, C55 and C66, while C33 shows an increase for some S 

content concentration, its extent of decrease is higher than that of C44, C55 and C66 . 

As the S increases, the off diagonal elements gradually decrease except at some 

concentration where there are abrupt changes, where they are fluctuating or show 

increase as a function of S content. (ii) In addition, the diagonal elements have a 

higher extent of decrease than the off-diagonal elements. This indicates that the 

compressibility of m-ZrO2 crystal is not anisotropic as sulphur content increases with 

the conclusion drawn from the figure. (iii) For t-ZrO2, the extent of decrease is C11, 

C33, C12 and C13 with increasing S content is higher than that of C44 and C66, whereas 

the extent of decrease C11 and C12 are higher than that of C44 thus it can be 
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concluded that t-ZrO2 and c-ZrO2 are also not anisotropic under compression. The 

elastic constants C11 and C33 for t-ZrO2 decrease gradually and show a sudden 

increase in some S contents with their highest values at x = 0.8. (iv) It was observed 

that B of the solid solution decreases as we add sulphur contents. (v) we notice that 

with the increases in the distance between average Zr-OS bond, the B decreases 

owing to lattice expansion. (vi) In each of the cases, we see that B>G, which implies 

that the limiting parameter for mechanical stability of these materials is the shear 

modulus G. (vii) the direct influence of sulphur on the shear modulus of ZrO2 is less 

obvious than the case of B. (viii) We can see that the examined doped compounds 

for c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx are ductile from x = 0.0 - 2.0, while            

m-ZrO2xSx is showing brittleness at these values of x = 0.4, 0.6 and 0.9. One of the 

reasons that can be attributed to these predictions is the size of doping element, 

which tends  to affect volume of ZrO2. 
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CHAPTER 4 
 

CONCLUSIONS AND  FUTURE WORK 

4.1. Conclusions and summary  

Based on the density functional theory calculations, it has been shown that the 

variation of structural properties, electronic properties and elastic properties of 

random alloys is possible by using VCA. The VCA results resemble those observed 

by other first principle calculations. To draw a conclusion on the work carried out for 

this thesis is rather difficult as, it should be clear from the above discussions that we 

have barely scratched the surface on the applications of solid solutions techniques. 

Even so, we believe that the insights obtained from these initial studies indicate that, 

the chemical approach is quite valuable in elucidating solid solution phenomena. 

although it seems that our calculations using VCA is inadequate to describe this 

system (this work has been motivated by the experimental suggested effect of 

sulphur on c-ZrO2) 

In summary, we have performed first principles calculations within the density 

function theory frame work using GGA WC exchange-correlation functionals for the 

ZrO2-xSx solid solution with x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,  

1.2, 1.3,1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, obtaining optimized geometries, structural 

and elastic constants, electronic band structures were calculated for x = 0.0 - 0.5. 

The unit cell optimizations exhibit a good agreement with the experimental results, in 

most of the cases the equilibrium lattice constants have shown a small error of     

0.05 - 2%. Partial replacement of oxygen by sulphur leads to the almost linear 

expansion of lattice parameter and volume expansion rate due to atomic radius 

difference between oxygen and sulphur, which is equal to 1.09Å for sulphur 

compared to 0.65 Å of the host atom oxygen. Formation energies and cohesive 

energies for both tetragonal and cubic solid solution showed similar trends though 

they differ in magnitudes, they were positive at x = 0.8 to 1.5 for cohesive energies 

and formation energies for all three phases are positive for x ranging from x = 0.3 to 

x = 1.9 which suggests phase instabilities in this concentration range. The difference 

between our calculations of cohesive energies and available calculated cohesive 

energies showed a maximum error of 16%, while formation energies showed a 

maximum error of 4%. 
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The calculated electronic band structures underestimate measured main band gaps 

by about 1.6 eV for c-ZrO2-xSx, 1.5 eV for t-ZrO2-xSx and 2.3 eV for the m-ZrO2-xSx at 

x = 0 computations as compared to the experimental ones. By close examination of 

bandwith sequence we note that the band gaps are 3.319 eV, 2.910 eV, 2.551eV, 

2.232 eV, 1.946 eV and 1.686 eV for c-ZrO2-xSx, 4.019 eV, 3.651 eV, 3.320 eV, 

3.010 eV, 2.732 eV and 2.465 eV for t-ZrO2-xSx and 3.580 eV, 3.234 eV, 2.924 eV, 

2.638 eV, 2.358 eV and 2.165 eV for m-ZrO2-xSx at x = 0, 0.1, 0.2, 0.3, 0.4, 0.5. This 

implies that weaker covalency in this order, the strength of covalency may be related 

to the calculation results of cohesive energies, which are -28.283 eV, -22.94 eV,       

-18.123 eV, -13.753 eV, -9.850 eV and -6.387 eV, -28.287 eV, -23.017 eV, -18.192 

eV, -13.825 eV, -9.88 eV and -6.425 eV and -28.377 eV, -23.133 eV, -18.337 eV,      

-13.979 eV, -10.076 eV and -6.638 eV for c-ZrO2-xSx, t-ZrO2-xSx and m-ZrO2-xSx, 

respectively. It interesting to note that the band gaps obtained are in favourable 

agreement with other available calculated first principle values. c-ZrO2-xSx have 

direct band gaps, while t-ZrO2-xSx and m-ZrO2-xSx have indirect band gaps. The 

PDOS reveals that the uppermost valence bands have mainly a p-like character, 

while the bottom of the conduction band originates mainly from s orbitals, with the 

presence of d levels above 5 eV. Sulphur addition to ZrO2-xSx changes the 

conduction properties of ZrO2 based structures, and this can significantly change the 

traditional properties of ZrO2. ZrS2 shows that the lower orbitals for Zr other than 4d 

are available for bonding. 

We have shown also that we can successfully predict elastic properties of three 

polymorphs m-ZrO2, t-ZrO2 and c-ZrO2 typical to within 10% of experiment, with 

maximum error of 20%. The consistency that was used to estimate the elastic 

constants for unsulphated structures has also been for sulphated structures. A 

strong influence of the size of sulphur atom is seen on elastic properties of ZrO2. 

Sulphur addition causes increase in lattice constants while decreasing bulk modulus. 

The work in this thesis provides evidence for a softening of the bulk modulus and 

negative Poisson’s ratios particularly for t-ZrO2-xSx and m-ZrO2-xSx. c-ZrO2-xSx (at      

x = 0.6) seems to be the most stable structure as compared to all sulphated 

structures evidenced by the higher Young modulus, C11, C12, C` negative cohesive 

energy and low Poisson’s ratio. It can be seen from calculated anisotropy ratios that 

all structures are not elastic isotropic. One of the reasons for the ductile nature of the 
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compound can be attributed to their metallic bonds, known from their positive 

Cauchy pressure. The brittle nature of compound is also shown to be influenced by 

nature of bonding, for example the presence of mixture of ionic and covalent bond in 

ZrO2-xSx, is herein to be a factor contributing to the low ductility of these compounds. 

Generally all sulphated structures are less stable as evidenced by all the results we 

got from this thesis. 

The predicted elastic properties include elastic stiffness constants Cij, the bulk 

modulus and the Young modulus, the Poisson ratio and the anisotropy ratio. 

Despite this intensity of effort, a few of the elastic properties have been studied and 

generally the subject would be strengthened by future studies, these properties 

include all sulphated t-ZrO2 and m-ZrO2 structures. Due to fundamental complexity of 

dopant-induced phase stabilisation of ZrO2, it is not possible at present to undertake 

theoretical and experimental studies of identical system. In the first principle studies 

of this three polymorphs, we do not have theoretical values of sulphated t-ZrO2 and 

m-ZrO2 for all investigated properties. While for sulphated c-ZrO2 we do have other 

first principle calculated values for lattice parameters, formation energy, cohesive 

energy and electronic structure part. However, for sulphated c-ZrO2 we do not have 

any theoretical values to compare with mechanical properties in this thesis.  

The currently used VCA approach does not only predict the available correct 

structural parameters but it is also computationally and time efficient. Since 

sulphated c-ZrO2 is of much interest both scientifically and technologically, one might 

expect many of these areas to be studied intensively within next few years. We hope 

that some of our results estimated for the first time in this work such as the elastic 

properties of ZrO2 as a function of sulphur contents, makes a significant contribution 

to the existing data and simulate the experimental basic properties of hypothetical 

solid solution ZrO2-xSx. 
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4.2. Future work and recommendations 

Modelling work has allowed some suggestions to be made to find experimental 

collaborators regarding possible future work. Considerable success has been 

achieved in deducing structural properties of materials using VCA. In Chapter 3, 

some suggestions were made as to possible structures for a series of ZrO2-xSx 

system.  

It was noted however that these structural postulations were far from conclusive as 

the structures maintain their symmetries using VCA.  Although VCA assumes ZrO2 in 

their symmetry, other symmetry are possible using Supercell and UNiversal CLuster 

Expansion (UNCLE) [156] approach, and future work would ideally consider these in 

combination with the approach already presented. Furthermore, the Supercell and 

UNCLE might be of considerable use in this instance. In MedeA-UNCLE lets you 

determine stable multi-component crystal structures and rank metastable structures 

by enthalpy of formation. Performing VASP ab-initio calculations on automatically 

chosen sets of small models, MedeA-UNCLE captures the configurational complexity 

of real materials at different temperatures by means of Monte Carlo random 

sampling. Future work utilising this approach might be prudent in this instance. 

Future work could involve different approaches like Pettifor-type structure and    

high-throughput (HT) first-principles [157, 158] maps that point to new opportunities 

for solid solution research. The maps demonstrate that the integration of the 

empirical and computational data produces enhanced maps that should provide a 

more comprehensive foundation for rational materials design. The theoretical 

predictions presented by the map will hopefully serve as a motivation for the 

experimental validation and be a guide for future studies of these important systems. 
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