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ABSTRACT 

 

An analysis of price indices of electrical appliances in South Africa is performed using monthly 

data from Statistics South Africa for the period January 1998 to December 2010, with 2005 

as a base year. Time series analysis (exponential smoothing and ARIMA) and neural 

networks are employed in developing forecasting models. The results for single, double and 

triple exponential smoothing are compared and triple exponential smoothing is found to be 

the best model amongst the three to forecast the electrical price indices in South Africa. ARCH 

models were also employed for the variable that failed to pass the requirements from ARIMA. 

Comparing neural networks, ARIMA and triple exponential smoothing results, neural networks 

is found to be the best model for forecasting price indices of electrical appliances. Regression 

analysis was then applied to the lighting equipment variable to check for a monthly effect after 

its plot depicted some seasonality pattern. Only the month of February did not have an impact 

or an effect on time since it was found not to be significantly different from zero. Multivariate 

time series is also applied in checking the correlation between the variables. 

 

Keywords: Time series analysis, ARIMA, ARCH, multiple linear regression, exponential 

smoothing, neural networks, electrical price indices. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Title 

Analysis of price indices of electrical appliances in South Africa. 

1.2 Introduction 

Each year Statistics South Africa (Stats SA) publishes nearly 300 statistical releases. Most of 

the data collected by Stats SA is hardly ever used for research purposes. One of these 

statistical releases is “Manufacturing: Production and Sales”, for which data has been 

collected monthly since 2005 from the Business Register developed from the units registered 

for value added tax and income tax obtained from the South African Revenue Service 

(Statistics South Africa, 2005-2012).  

The physical volume of manufacturing production is calculated using the results of the monthly 

survey on “Manufacturing: Production and Sales”. The indices produced from this survey play 

an important role since they are used as an indicator of the real level of manufacturing activity 

in the economy. They are used in assessing the state of the economy and in formulating 

economic policy. They are also important inputs in estimation of the gross domestic product 

(GDP). The index of physical volume of manufacturing production, also known as the 

production index, is a statistical measure of the change in the volume of production (Statistics 

South Africa, 2005-2012).  

The data from the “Manufacturing: Production and Sales” survey adhere to the Special Data 

Dissemination Standard of the International Monetary Fund (IMF). The statistical unit is the 

enterprise which is classified according to the Standard Industrial Classification (SIC) of all 

economic activities, which is based on International SIC (ISIC) with suitable adaptations for 

local conditions (Statistics South Africa, 2005-2012). 

For our study, we analyse price indices of electrical appliances in South Africa using Stats 

SA’s “Manufacturing: Production and Sales” data. The calculation of the monthly production 

indices is based on the value of sales of products and articles manufactured, and change in 

monthly value of stocks of manufactured products. This is after the effect of price changes 
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has been eliminated through deflation using appropriate indices of the Production Price Index 

(PPI) (Statistics South Africa, 2000-2012). 

With Eskom, the main supplier of electricity in South Africa, on a massive plan for a rapid 

expansion of electricity generation, energy saving has become an important component of 

South Africa’s energy policy. South Africa’s electricity prices have increased enormously in 

recent years due to supply shortages. With a larger uncertainty and a more rapid change in 

today’s price indices of electrical appliances, a heavier role to play lies within predicting future 

prices (Karnani, 2007). Forecasts enable one to anticipate the future and plan accordingly. 

Good forecasts are the basis for short-, medium- and long-term planning with respect to 

consumers and government regarding price indices of electrical appliances in South Africa. 

The challenges surrounding power crisis such as blackouts, power failures, load shedding 

etc., have increased the necessity to explore more energy savings and less costly electrical 

appliances. 

1.3 Research problem 

Prices of electrical appliances keep on increasing depending on the demand, and this makes 

life difficult as they may not be affordable, particularly by most people in developing countries. 

This study investigates the effect of prices of electrical appliances over time in South Africa 

and the impact of price increases on disposable income of consumers and also predict the 

future prices of electrical appliances. 

1.4 Purpose of the study 

1.4.1 Aim 

The aim of the study is to analyse the price indices of electrical appliances in South Africa. 

1.4.2 Objectives 

The objectives of this study are to: 

a. determine the monthly effect on the price of electrical appliances in South Africa. 

b. determine the impact of price increases on disposable income of consumers. 

c. compare time series techniques in predicting the best model for forecasting. 

d. predict the future price indices for electrical appliances by building forecasting models. 
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1.5 Significance of the study 

Today electrical appliances are used throughout our homes, at work, in communication, in 

transformation, and in medicine and science. Therefore, electrical appliances play an 

important role in our lives. People’s lives depend more on electrical appliances, as it is not 

easy to live without these devices. The problem arises when we are failing to afford electrical 

appliances due to their high prices. This study is intended to establish possible causes of the 

changes in prices of electrical appliances for both companies and households.  

With electricity price hikes in recent years, and the majority of households in South Africa 

being poor, it becomes necessary to research on cost-effective energy saving electrical 

appliances, thus rendering our study relevant.  
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CHAPTER 2: LITERATURE REVIEW 

   

2.0 Literature review 

This chapter gives a brief summary of the work done by other researchers on price indices of 

electrical appliances. 

2.1 Prices of Electrical Appliances in United States and Japan 

Between 1955 and 1994, Nakagami (1996) conducted a study on lifestyle change and energy 

use in Japan with respect to household equipment such as air conditioner and colour TV. The 

results of the study revealed that in 1970, 26.3% of Japanese households had a colour TV, 

5.9% had an air conditioner, and 22.1% had a passenger car. In 1970, the proportions of 

households owning these two pieces of equipment (i.e. colour TV and air conditioner) were 

79.1% and 37.4%, respectively. The combined penetration ratio of kerosene stoves and gas 

stoves was 122.5%, indicating that each household had approximately one space heater. 

Nomura and Jorgenson (2005) conducted a study on industry origins of Japanese economic 

growth. The purpose of their study was to quantify impact of IT production on Japanese 

economy. They compared IT prices in the US and Japan at the SIC (Standard Industrial 

Classification) three-digit, four-digit, and five-digit levels. Comparing the US and Japanese 

price data for Personal Computers, General Purpose Computers and Servers at the five-digit 

level from 1995 to 2003, the gap between the two countries was not large if the index numbers 

are constructed by aggregation over the most detailed items available. By adjusting the index 

number formula and aggregation weights for the Wholesale Price Index or Cooperate Goods 

Price Index to be consistent with the Bureau of Economic Analysis output price, the resulting 

price declines for Electronic Computers were comparable. During 1995-2003 prices 

decreased by 29.3% per year in the US, compared to 27.0% per year in Japan. At the three-

digit level the price of Electronic Computers and Peripheral Equipment decreased by 23.8% 

per year in the US compared to 15.0% per year in Japan. A significant portion of the price gap 

at the three-digit level could be explained by the Peripheral Equipment price, which falls less 

rapidly in Japan and had a larger share of total output when exports were included. The 

researchers concluded that computer prices at the SIC three-digit, four-digit, and five-digit 

levels in the US and Japan were appropriately adjusted for quality change after 1995. 



 
5 

 

According to American Council for an Energy-Efficiency Economy, in 1995, American homes 

used almost 25% of the energy consumed in the United States (US) (Amann et al., 2007). 

About 80% of that energy was used in single-family homes, 15% in multi-family homes (such 

as apartments), and 5% in mobile homes. Their study also emphasised that although 

residential energy use had steadily increased over the past 25 years, it had increased at a 

slower rate than the rate of population increase. However, many efficiency gains were being 

offset by increases in the number of electronics and appliances in the average home. 

Residential air conditioning accounted for around 5% of the electricity consumed in the US 

Residential air conditioning technologies which included window air conditioners, central air 

conditioners, heat pumps, passive cooling, and alternatives to air conditioning (including fans). 

Air conditioner efficiency is rated using the SEER (seasonal energy efficiency ratio) and EER 

(energy efficiency ratio) metrics. The higher these numbers are, the more efficient the air 

conditioner. 

Between 1980 and 2000, Dale et al. (2009), conducted a study to provide a retrospective 

evaluation to assess the validity of Department of Energy (DOE) estimates of the consumer 

cost of efficiency standards against actual price data. The DOE in the US announced and 

implemented minimum efficiency standards for a variety of residential appliances, including 

room air conditioners, central air conditioners, refrigerators and clothes washers. 

Accompanying each announcement, DOE issued a technical support document (TSD) for the 

rule making. As part of these studies, DOE contractors forecasted the retail price increases 

that would result in a market of more energy efficient, and presumably, more costly equipment. 

This estimate was generally performed using an engineering approach, that is, by assessing 

the material and labour costs to manufacturers associated with implementing energy 

efficiency technology. Inflation-adjusted prices were assumed constant over time, and uniform 

retail markups were applied. The TSD price estimates are integral in assessing the cost 

impact to the consumer, the payback period and the national impacts of higher appliance 

standards. Life cycle cost and payback period are calculated based on estimates of 

incremental costs related to efficiency improvement. Standards tend to be set at the highest 

cost-effective level.  

In 1982 TSD predicted that, in the US, a unit efficiency increase of small, medium and large 

appliances would raise prices by $55, $132 and $272 dollars, respectively (Dale et al., 2009). 
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The study was conducted using regression analysis that revealed the market price of 

efficiency to range from one-third to two-thirds of the TSD forecast price. A one-unit increase 

in the EER of a small, medium and large room air appliance was estimated to increase price 

by an average of $32, $58 and $66 dollars, respectively.  Again the 1990 TSD predicted the 

price of efficiency to be $56 for small appliances, $66 for medium appliances and $37 for large 

appliances. The regression analysis suggested that the market price of efficiency fell to $9 for 

small appliances and to $41 for medium sized appliances, and that the 1987-1993 price of 

efficiency was $52 higher than the 1990 TSD prediction (Dale et al., 2009). 

2.2 Prices of Electrical Appliances in China 

The Konka Group, one of China’s major home appliance makers, reported 62% growth year 

on year in overseas colour TV sales for January to June 2006 (Xinhua News Agency, 2006). 

Without elaborating on the company’s overseas sales income, Konka had also sold more than 

one million cellular phones overseas during the period. According to the report, in the first half 

of 2005, Konka’s income from overseas colour TV sales reached 610 million yuan (US$76.25 

million), with a gross profit margin of about 9%. In 2005, Konka’s sales income from overseas 

colour TV sales totalled 1.479 billion yuan and made up 13% of the company’s total revenue 

(Xinhua News Agency, 2006). 

Kemmler (2007) presented a paper that examined the factors that influence household 

electrification in India. The 2002 Johannesburg Summit of the United Nations (UN) stated that 

“To implement the goal accepted by the international community to halve the proportion of 

people living on less than US$1 per day by 2015, access to affordable energy services is a 

prerequisite”, Kemmler (2007:15). In particular, electricity with its wide range of applications 

may be important for development. Various studies have attempted to measure the social and 

economic benefits of electrification for rural populations. These studies highlight lower costs 

and higher use of household appliances (lighting, radio, TV), improved returns on education, 

wage income and home business productivity, time savings for household chores and ability 

to use electric pump sets as main benefits of electricity access. The increased recognition of 

the benefits of rural electrification for poverty alleviation and development led to a new 

emphasis on ensuring that rural households have access to, and adopt electricity. 

Cai and Jiang (2008) identified five sites in China, where they studied the energy consumption 

spectra of household change. The five sites ranged from remote mountains to town areas. 
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The main purpose of their study was to determine the differences in energy consumption 

between rural and urban households and to assess its conservation implications. The study 

revealed that the amount of electricity used for entertainment and electrical appliances was 

bigger in urban area, whereas the quantity used for cooking was higher in rural areas.  In the 

Laoxiancheng village, almost all energy is spent on cooking and heating, no energy was used 

for recreation. In Houzhenzi Xiang township, a greater part of the energies was used for 

cooking. A large ratio of energy was used for heating in both Laoxiancheng Village and 

Houzhenzi Xiang township, following the old traditional custom of burning woods in the winter. 

Electricity in the Houzhenzi Xiang township was only used for illumination and for some 

electric appliances like TV. There were almost no customs of heating in the Mazhao town and 

the Zhouzhi County town in winter. Most of the energy the residents consumed was for 

cooking. The amount of energy used for lighting and recreation was low. Electricity 

consumption was a much more important component of energy consumption. Heating in 

winter and using private vehicles are more popular in the city. With the development of 

urbanisation and economics, people use less energy for basic necessities of life, such as 

cooking, and more energy for recreation (Cai and Jiang, 2008). 

2.3 Prices of Electrical Appliances in the Philippines 

Bensel and Remedio (1995), surveyed residential energy use patterns in Cebu city, 

Philippines. The purpose of the survey was to quantify household consumption of electricity 

and other fuels and to determine the major environmental factors that drive fuel-choice and 

fuel-use patterns in residential sector. The scholars found out that electricity accounts for 

20.7% of delivered energy and 50.5% of useful energy consumption in the residential sector 

of Cebu City. Electricity is used primarily for lighting and the a few major appliances, notably 

refrigerators, colour TVs, washing machines, air conditioners, and electric fans. During the 

time of their study residential sector electricity demand in Cebu city was growing faster than 

the national average, and was still quite far from reaching a saturation point. Electric power 

shortages have been a hindrance to economic expansion in the province, prompting the 

Philippine government to undertake projects to interconnect Cebu city’s electric power grid 

with geothermal power plants on the islands of Leyte and Negros. 
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2.4  Prices of Electrical Appliances in Africa 

Wentzel et al. (1997) and James and Ntutela (1997) conducted a post-electrification study at 

Mafefe (Limpopo Province) and Tambo (Eastern Cape Province) to study the use of grid 

electricity by rural households in South Africa. They established that in these two areas 

candles and paraffin were still used substantially for lighting even after six months 

electrification. The main reason for this was that electric lighting was not available in all the 

rooms in the houses. Eskom generally provides households with ready boards comprising a 

light and a row of sockets, which allows households immediate access to electricity without 

the expense of formal house wiring, while reducing the reticulation cost to the utility. A survey 

conducted at Tambo found that about 76% of households had electric lighting in one room 

only, while about 14% had lights in two rooms, and only about 10% had lights in more than 

two rooms (James and Ntutela, 1997). Immediately after electrification the most common fuels 

for lighting were a combination of electricity and other fuels, while almost 40% of households 

were using no electric lighting at all. After two years the situation had changed completely, 

with 79% of households relying solely on electricity, and 21% using it in conjunction with other 

fuels. 

According to Thom (2000), in South Africa (Eastern Cape Province), electric lighting is 

commonly used by electrified households. Research on Electricity in the Integrated Provision 

of Energy to Rural Areas (REIPERA) project indicated that a significant percentage of 

electrified households continued to use other fuels particularly candles, and to a lesser extent, 

paraffin lamps, for lighting purposes. 

Bucini et al. (2010) conducted a study to analyse the geographical differences in unit 

expenditures for domestic energy and to find evidence of an inverted energy ladder with prices 

of useful energy units. They analysed the energy consumption patterns in Mozambique from 

a sample of 8377 energy-consuming households surveyed during 2002/2003. The results of 

their study indicated that urban high-income households were the major consumers of 

electricity, while poor rural households relied mostly on firewood alone. In other words, the 

energy ladder concept, associating high incomes with high-grade sources, (biomass) was 

applicable. The results also indicated that urban households had a higher electricity 

consumption rate (0.99%) than rural household (0.08%). So, income levels were not the 

restraining factor in the adoption of electricity as a domestic source. 
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2.5 Literature reviews about some of the techniques used in the study 

2.5.1 Time Series 

A time series is an ordered sequence of observations. Although the ordering is usually through 

time, particularly in terms of some equally spaced time intervals, the ordering may also be 

taken through other dimensions, such as space. According to Cryer and Clan (2008), time 

series is used in a variety of fields. In agriculture, annual crop production and prices are 

observed. In business and economics, daily closing stock prices, weekly interest rates, 

monthly price indices, quarterly sales and yearly earnings are observed. In engineering, 

sound, electric signals and voltage are observed. In meteorology hourly wind speeds, daily 

temperature, and annual rainfall are observed. In the social sciences, annual birth rates, 

mortality rates, accidents rates and various crime rates are studied. 

2.5.2 Neural Networks  

According to Kaastra and Boyd (1996), neural networks are universal function approximators 

that can map any nonlinear function. As such flexible function approximators, they are 

powerful methods for pattern recognition, classification and forecasting. Neural networks are 

less sensitive to error term assumptions and can tolerate noise and chaotic components. 

Other advantages include greater fault tolerance; robustness and adaptability compared to 

expert systems due to the large number of interconnected processing elements that can be 

trained to learn the pattern.  

According to Thielbar and Dickey (2011), a comparison of linear methods, smooth transition 

autoregressive methods and autoregressive neural networks performed in Terasvirta (2005) 

shed some light on neural network estimation problems and estimated forecasts. 

Furthermore, the claim by some researchers that autoregressive neural networks could 

estimate trend and seasonality was disputed by Zhang and Qi (2005) in their empirical study 

of simulated series with seasonality, which showed that  neural networks performed much 

better after the series was adjusted.  

2.5.3 The Bootstrap technique 

The bootstrap technique can be used to obtain interval forecasts for an autoregressive time 

series. Bootstrap is a useful technique for three reasons; namely: it is distribution-free; takes 

into account that the parameters and order of the model are unknown; and improved computer 
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technology makes the difficult calculations involved with the bootstrap techniques more 

easier. du Plessis (2000); said that Boraine (2000) showed that the bootstrap results for linear 

models can be extracted to non-linear time series models. 
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CHAPTER 3: METHODOLOGY 

 

3.0 Research methodology 

This research will be conducted using secondary data of electrical appliances from Statistics 

South Africa. Statistical techniques such as time series, multivariate time series analysis and 

regression analysis will be used. 

3.1 Univariate time series 

Univariate time series is a time series that consists of single measurements recorded over 

different time intervals. Usually the measurements are recorded at equal spaced time 

intervals, resulting in a discrete series. The series become a stochastic process if measured 

along a continuous time interval. The objective of a time series analysis is to determine the 

relationship between a specific value for a time series and its past values. 

3.1.1 Fundamental components 

3.1.1.1 The autocovariance and autocorrelation functions 

For stationary process {𝑍𝑡}, let the mean E(𝑍𝑡) = 𝜇 and the variance var(𝑍𝑡) = E(𝑧𝑡 − 𝜇)
2 =

𝜎2, which are constant, and the covariance be  cov(𝑍𝑡, 𝑍𝑠), which are functions only of the 

time difference absolute values of 𝑡 − 𝑠. 

Hence in this case, the covariance between 𝑍𝑡 and 𝑍𝑡+𝑘 can be written as 

  𝛾𝑘 = cov(𝑍𝑡, 𝑍𝑡+𝑘) = E(𝑍𝑡 − 𝜇)(𝑍𝑡+𝑘 − 𝜇)………………………………..…..(3.1) 

and the correlation between 𝑍𝑡 and 𝑍𝑡+𝑘 as 

𝜌𝑘 =
cov(𝑍𝑡,𝑍𝑡+𝑘)

√var(𝑍𝑡)var(𝑍𝑡+𝐾)
=

𝛾𝑘

𝛾0
  …………………………………………………......(3.2) 

where var(𝑍𝑡) = var(𝑍𝑡+𝑘) = 𝛾𝑜 is a function of 𝑘. 𝛾𝑘 is called the autocovariance function and 

k  is called the autocorrelation function (ACF) in time series analysis since they represent the 

covariance and correlation between 𝑍𝑡 and 𝑍𝑡+𝑘 from the same process separated only by 𝑘 

time lags.  

It is easy to see that for a stationary process the autocovariance function 𝛾𝑘 and the ACF 𝜌𝑘 

have the following properties: 
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𝛾𝑜 = var(𝑍𝑡) ; 𝜌𝑜 = 1 

The absolute value of 𝛾𝑘 ≤ 𝛾𝑜; the absolute value of 𝜌𝑘 ≤ 1 

𝛾𝑘 = 𝛾−𝑘 and 𝜌𝑘 = 𝜌−𝑘 for all 𝑘, i.e.  𝛾𝑘 = 𝜌𝑘 

which are even functions and symmetric about the time origin, 𝑘 = 0. This follows from the 

fact that the time difference between (𝑍𝑡 and 𝑍𝑡+𝑘) and (𝑍𝑡 and 𝑍𝑡−𝑘) are the same. Therefore 

the ACF is often plotted only for the nonnegative lags. 

Another important property of the autovariance   𝛾𝑘 and the ACF 𝜌𝑘 is that they are positive 

semi definite in the sense that  ∑∑𝛼𝑖𝛼𝑗 𝛾|𝑡𝑖−𝑡𝑗| ≥ 0  and  ∑∑𝛼𝑖𝛼𝑗 𝜌|𝑡𝑖−𝑡𝑗| ≥ 0  for any set of time 

points 𝑡1, 𝑡2, …… . . , 𝑡𝑛 and any real numbers 𝛼1, 𝛼2, … . . , 𝛼𝑛. 

3.1.1.2 The partial autocorrelation function 

In addition to the autocorrelation between 𝑍𝑡 and 𝑍𝑡+𝑘 it may be needed to investigate the 

correlation between 𝑍𝑡 and 𝑍𝑡+𝑘 after mutual linear dependency on the intervening variables 

𝑍𝑡+1, 𝑍𝑡+2, … and 𝑍𝑡+𝑘−1 has been removed. This gives rise to the following conditional 

correlation 

corr(𝑍𝑡, 𝑍𝑡+𝐾 𝑍𝑡+1⁄ , … . , 𝑍𝑡+𝑘−1)………………………………………………...(3.3) 

and is usually referred  to as the partial autocorrelation in time series analysis. 

3.1.1.3 White noise 

Wei (1990) defines a process {𝑎𝑡} as white noise process if it is a sequence of uncorrelated 

random variables from a fixed distribution with constant mean 𝐸{𝑎𝑡} = 𝜇𝑎 usually assumed to 

be zero, constant variance var(𝑎𝑡) = 𝜎
2 and 𝛾𝑘 = cov(𝑎𝑡, 𝑎𝑡+𝑘) = 0 for all 0k . By definition, 

it immediately follows that a white noise process {𝑎𝑡} is stationary with the autocovariance 

function. 
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and partial autocorrelation function (PACF) 

0

0
  

0

1










k

k
kk ……………………………….……………………..………………(3.6) 

When talking about autocorrelation and partial autocorrelations, we are only referring to 𝜌𝑘 

and 𝜙𝑘𝑘, for 0k . The basis phenomenon of the white noise process is that its ACF and 

PACF are identically equal to zero. 

3.1.2 Stationary time series models 

In time series analysis, there are two useful representations to express a time process. One 

is to write a process tZ  as a linear combination of a sequence of uncorrelated random 

variables, i.e., 






 
0

2211

j

jtjtttt aaaaZ   ………………………………... (3.7) 

where ,10    ta is a zero mean white noise process, and .2  j  Here and in the 

following an infinite sum of random variables is defined as a limit in quadratic mean (mean 

square) of the finite partial sums. Thus, tZ  in equation (3.7) is defined such that  

0
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0
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



































j

jtjt aZE   as ,n  

where .
.

 tt ZZ  By introducing the backshift ,jttt xxB   equation (3.7) can be written in the 

compact form 

tt aBZ )(
.

 …………………………………………………………………….….(3.8) 

where 





0

.)(
j

j

j BB   

It is easy to show that for the process in equation  (3.7) 

,)( tZE  ……………………………………………………………………...…(3.9) 
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





0

22 ,)var(
j jatZ 

……………………………………………………………(3.10) 

and 
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………………………………………………………(3.11) 

Hence, 
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 ………………………………………………...(3.12) 

and  
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
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ki

i
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k





  ……………………………………………………..………..(3.13) 

The autocovariance and autocorrelation functions in equations (3.12) and (3.13) are functions 

of the time difference k  only. Because they involve infinite sums, to be stationary we have to 

show that k  is finite for each .k  Now,  

.)var()var(
0

2
..




 









j jkttkttk ZZZZE   

Hence, 


0

2

j j is a required condition for the process in equation (3.7) to be stationary. 

The form in equation (3.7) is called a moving average (MA) representation of a process.  

Another useful form is to write a process tZ  in an autoregressive (AR) representation, in which 

the value of Z  is regressed at time t  on its own past values plus a random shock, i.e.,  

tttt aZZZ   
2211

.

  

Or, equivalently,  

,)( tt aZB  ……………………………………………………………………..(3.14) 
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where ,1)(
1







j

j

j BB   and 1+ .
1




j

j   

The autoregressive representation is useful in understanding the mechanism of forecasting. 

It is not every stationary process that is invertible.  For a linear process tt aBZ )(  to be 

invertible so that it can be written in terms of the AR representation, the roots of 0)( B  as 

a function of B  must lie outside the unit circle. It should be noted that an invertible process in 

not necessarily stationary. For the process that for the presented in equation (3.14) to be 

stationary, the process must be able to be rewritten in a MA representation, i.e., 

,)(
)(

1
ttt aBa

B
Z 


  …………………………………………………………(3.15) 

Such that the condition 


0

2

j

j  is satisfied. To achieve that, the required condition is that 

the roots of 0)( B  all lie outside the unit circle. 

3.1.3 Stationary time series: The Autoregressive process 

In the autoregressive representation of a process, if only a finite number of weights 𝜋 are 

nonzero, i.e. 𝜋1 = 𝜙1, 𝜋2 = 𝜙2, …… , 𝜋𝑝 = 𝜙𝑝 and 𝜋𝑘 = 0 for  𝑘 > 𝑝, then the resulting process 

is said to be an autoregressive process (model) for order p, which is denoted as AR(p). 

It is given by: 

 𝜙𝑃(𝐵) = 1 − (𝜙1𝐵 −⋯−𝜙𝑃𝐵
𝑃). …………………………………….……...(3.16) 

The AR processes are useful in describing situations in which the present value of a time 

series depends on its preceding values plus a random shock. 

3.1.3.1 The first order autoregressive AR(1) process 

For the first order autoregressive process AR(1), the formulae can be written as               (1 −

𝜙1𝐵)𝑍𝑡̇=𝑎𝑡. The process is always invertible. To be stationary the root of (1 − 𝜙1𝐵) = 0 must 

be inside the unit circle. That is, for a stationary process, we have |𝜙1| < 1. The AR(1) process 

is sometimes called the Markov process because the value of 𝑍̇𝑡 is completely determined by 

the knowledge of  𝑍̇𝑡−𝑘. 
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The ACF of the AR(1) process 

The autocovariances are obtained as follows: 

E(𝑍̇𝑡−𝑘𝑍̇𝑡) =  E(𝜙𝑍̇𝑡−𝑘𝑍̇𝑡−1)+(𝑍̇𝑡−𝑘𝑎𝑡) ………………………..…………(3.17) 

and the ACF becomes 𝜌𝑘 = 𝜌1𝜌𝑘−1 = 𝜙1
𝑘, 1k  where 𝜌0 = 1. When |𝜙1| < 1 and the process 

is stationary, the ACF exponentially decays in one of two forms depending on the sign of  𝜙1. 

If 0< 𝜙1 < 1, the autocorrelations are positive. If −1 < 𝜙1 < 0, the sign of the autocorrelations 

shows an alternating pattern beginning with a negative value. 

The PACF of the AR(1) process 

For an AR(1) process, the PACF form is 

2  
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


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
k

k
kk


 ……………………………….………………………..(3.18)  

The PACF of the AR(1) process shows a positive or negative spike at lag 1 depending on the 

sign of 𝜙1. 

3.1.3.2 The second order autoregressive AR(2) process 

The second order autoregressive AR(2) process is given by: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑍̇𝑡  = 𝑎𝑡 …………………………………………………...(3.19). 

The AR(2) process, as a finite autoregressive model, is always invertible. To be stationary, 

the roots of 𝜙(𝐵) = (1 − 𝜙1𝐵 − 𝜙2𝐵
2) = 0  must lie outside of the unit circle. 

The ACF of the AR(2) process 

The autocovariance is obtained by multiplying 𝑍𝑡+𝑘 on both sides of 𝑍̇𝑡 = 𝜙1𝑍̇𝑡−1 +

𝜙2𝑍̇𝑡−2𝑎𝑡  and taking the expectations, 

𝐸(𝑧𝑡−𝑘̇ 𝑧𝑡̇) = 𝜙1𝐸(𝑍𝑡−𝑘𝑧𝑡−1) + 𝜙2𝐸(𝑧𝑡−1𝑧𝑡−2) +  𝐸(𝑧𝑡−𝑘𝑎𝑡), 

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 ;    𝑘 ≥ 1 …………………………………………....(3.20) 

hence the ACF becomes 

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2;    𝑘 ≥ 1. ………………………………....…………(3.21) 
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3.1.3.3 The general pth order autoregressive AR(p) process 

The general 𝑝𝑡ℎ   order autoregressive AR(p) process is expressed as 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵

𝑃)𝑧𝑡̇ = 𝑎𝑡 …………………………………....(3.22)  

or 

𝑍̇𝑡 = 𝜙1𝑍̇𝑡 + 𝜙2𝑍̇𝑡 −⋯−+𝜙𝑝𝑍̇𝑡−𝑝 + 𝑎𝑡. …………………………….……...(3.23) 

The ACF of the general AR(p) process is given by: 

𝑍̇𝑡 = 𝜙1𝑍̇𝑡−1 + 𝜙2𝑍̇𝑡−2 −⋯−+𝜙𝑝𝑍̇𝑡−𝑝 + 𝑎𝑡. …….………………………......(3.24) 

For the ACF of the general AR(p) process, equation (3.24) is multiplied by Ζ𝑡−𝑘 on both sides 

to obtain: 

𝑍̇𝑡𝑍𝑡−𝑘 = 𝜙1𝑍̇𝑡−1𝑍𝑡−𝑘 + 𝜙2𝑍̇𝑡−2𝑍𝑡−𝑘 −⋯−+𝜙𝑝𝑍̇𝑡−𝑝𝑍𝑡−𝑘 + 𝑍𝑡−𝑘𝑎𝑡 …...……(3.25) 

and taking the expected value gives: 

𝛾𝑘 = 𝜙1𝛾𝑘−1 +⋯+ 𝜙𝑝𝛾𝑘−𝑝 ;    𝑘 ≥ 0 …………………………………... (3.26) 

and the ACF is 

𝜌𝑘 = 𝜙1𝛾𝑘−1 +⋯+ 𝜙𝑝𝛾𝑘−𝑝 ;    𝑘 ≥ 0 …………………………………...(3.27). 

The PACF of the general AR(p) process 

By using the fact that  𝜌𝑘 = 𝜙1𝛾𝑘−1 +⋯+ 𝜙𝑝𝛾𝑘−𝑝 ;  for 0k , the PACF will vanish after lag p. 

This is a useful property in identifying an AR model for the time series model building. 

3.1.4 Moving average (MA) process 

The MA representation of a process is given by: 

𝜓1 = −𝜃1, 𝜓2 = −𝜃2…𝜓𝑞 = −𝜃𝑞  ……………………………………………(3.28) 

and 𝜓𝑘 = 0, if only a finite number of 𝜙 weights are nonzero. 

This MA process is invertible if the roots of 𝜃(𝐵) = 0 lie outside of the unit circle. MA processes 

are useful in describing phenomenon in which events produce an immediate effect that only 

lasts for short periods of time. 
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3.1.4.1 The first order MA(1) process  

The first order MA(1) process is given by: 

𝑍̇𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 ……………………………………………………………(3.29)  

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2 and the mean of 

{𝑍𝑡̇} is E[𝑍𝑡̇] = 0 and hence E(𝑍𝑡) =  𝜇. 

The ACF of MA(1) process is given by: 

 𝛾𝑘 = {
(1 + 𝜃𝑎

2)       𝑘 = 0,

−𝜃, 𝜎𝑎
2          𝑘 = 1,

0                    𝑘 > 1.

 ……………………………………………………(3.30) 

and the ACF becomes 

𝜌𝑘 = {

−𝜃1

1+𝜃1
2 ,         𝑘 = 1,

0,                𝑘 > 1,
 ……………………………………………………(3.31) 

which cuts off lag 1 because 1 + 𝜃1
2 is always bounded. The MA(1) process is always 

stationary. 

PACF of the MA(1) process is given by: 

𝜙𝑘𝑘 =
𝜃1
𝑘(1−𝜃1

2)

1−𝜃1
2(𝑘+1)

  for 𝑘 ≥ 1. ………………………………….………………...(3.32) 

3.1.4.2 The second order MA(2) process 

The second order MA(2) process is given by: 

𝑧𝑡̇ = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡 ……………………………………………………(3.33) 

where {𝑎𝑡} is a zero mean white noise process. 

The ACF of the MA(2) process 

The autocovariances of the MA(2) model are 

𝛾0 = (1 + 𝜃1
2 + 𝜃1

2)𝜎𝑎
2 

𝛾1 = −𝜃1(1 − 𝜃2)𝜎𝑎
2 
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𝛾2 = −𝜃2𝜎𝑎
2 

and 

 𝛾𝑘 = 0       𝑘 > 0.  

The ACF is 

𝜌𝑘 =

{
 
 

 
 
−𝜃1(1−𝜃2)

1+𝜃1
2+𝜃2

2 ,           𝑘 = 1

−𝜃2

1+𝜃1
2+𝜃2

2 ,             𝑘 = 2

0,                          𝑘 > 2 

 ……………………………………………(3.34) 

and cuts off at lag 1. 

3.1.4.3 The general qth order MA(q) process 

The general qth order moving average process is 

𝑧𝑡̇ = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞)𝑎𝑡 …………………………………...(3.35). 

The ACF of an MA(q) process cuts off after lag q. 

3.1.5 Autoregressive moving average ARMA(p,q) process 

3.1.5.1 The general mixed ARMA(p,q) process 

The general mixed ARMA(p,q) process is one of the finite order moving average and a finite 

order autoregressive model as it often takes a high order model for good approximation. Thus, 

in model building it may be necessary to include both autoregressive and moving average 

terms in the model. This leads to the following useful mixed autoregressive moving average 

ARMA process: 

𝜙𝑝(𝐵)𝑧̇𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 …………………………………………………………....(3.36) 

where 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝  

and 

 𝜙𝑞(𝐵) = 1 − 𝜙1𝐵 −⋯− 𝜙𝑞𝐵
𝑞  
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For the process to be invertible it is required that the roots of  𝜃𝑞(𝐵) = 0 lie outside the unit 

circle, and for the process to be stationary, it is required that the roots of 𝜙𝑝(𝐵) = 0 lie outside 

the unit circle. If we assume that 𝜃𝑝(𝐵) = 0 and  𝜃𝑞(𝐵) = 0 share no common roots, then the 

process is referred to as an ARMA(p,q) process or model, in which p and q are used to indicate 

the order of the associated autoregressive and moving average polynomials, respectively.  

The stationary and invertible ARMA process can be written in pure autoregressive 

representation as follows: 

𝜋(𝐵)𝑧̇𝑡 = 𝑎𝑡, ……………………………………………………………………(3.37) 

where 

𝜋(𝐵) =
𝜙𝑝(𝐵)

𝜃𝑞(𝐵)
= (1 − 𝜋1(𝐵) − 𝜋2𝐵

2 −⋯). 

This process can also be written as a pure moving average representation as follows: 

𝑧̇𝑡 = 𝜓(𝐵)𝑎𝑡 ……………………………………………………………………(3.38) 

where 

  𝜓(𝐵) =
𝜙𝑞(𝐵)

𝜙𝑝(𝐵)
= (1 + 𝜓1𝐵 + 𝜓2𝐵

2 +⋯). 

ACF of the ARMA(p, q) process is given by: 

𝛾𝜅 = 𝜙1𝛾𝑘−1 +⋯+ 𝜙𝑝𝛾𝑘−𝑝 k≥ (𝑞 + 1) …………………………………....(3.39) 

and hence, 

𝜌𝜅 = 𝜙1𝜌𝑘−1 +⋯+ 𝜙𝑝𝜌𝑘−𝑝  k≥ (𝑞 + 1)  ……………………………………(3.40) 

Equation (3.31) satisfies the pth order homogeneous difference equation. Therefore, the ACF 

of an ARMA(p,q) model tails off after lag q just like an AR(p) process, which depends only on 

the autoregressive parameters in the model. However, first q autocorrelations 𝜌𝑞 , 𝜌𝑞−1, … , 𝜌1 

depend on both autoregressive and MA parameters in the model and serve as initial values 

for the parameters. 
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The PACF of ARMA(p,q) process 

Because the ARMA process contains the MA process as a special case, its PACF will also be 

a mixture of exponential decays and/or damped sine waves depending on the roots of 

𝜙𝑝(𝐵) = 0 and 𝜃𝑞(𝐵) = 0. 

3.1.5.2 The ARMA(1,1) process 

The ARMA(1,1) process is given by  

 (1 − 𝜙1𝐵)𝑧̇𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 ……………………………………………………(3.41) 

or 

𝑧̇𝑡 = 𝜙𝑧̇𝑡−1+𝑎𝑡 − 𝜃1𝑎𝑡−1. ………………………………………..................(3.42) 

For stationary, |𝜙1| < 1 is assumed and for invertibility, |𝜃1| < 1 is required. When 𝜙1 = 0 is 

reduced to an MA(1) process, and when  𝜃1 = 0; it is reduced to an AR(1) process, thus, when 

regarding the AR(1) and MA(1) process as special cases of the ARMA(1,1) process. 

3.1.6 Forecasting: Minimum mean square error forecasts 
Forecasting is essential for planning and operation control in a variety of areas such as 

production management, inventory systems, quality control, financial planning, and 

investment analysis. 

Forecasting is one of the important objectives in the analysis of a time series. The term 

forecasting is used more frequently in recent time series literature than the term prediction.  

The general ARIMA(p,d,q) model is given by: 

𝜙𝐵(1 − 𝐵)𝑑)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 ……………………………………………….......(3.43) 

where 

𝜙(𝐵) = (1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝), 𝜃(𝐵) = (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵

𝑞), 

and the series 𝑎𝑡 is a Gaussian N (0,𝜎𝑎
2) white noise process. 
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3.1.6.1 Minimum mean square error forecasts for ARMA models 
To derive the minimum mean error forecasts, first consider the case when d=0 i.e., the 

stationary ARMA model 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡. Because the model is stationary, it can be rewritten 

in the moving average representations as follows: 

𝑧𝑡 = 𝜙(𝐵)𝑎𝑡 =𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯ ……………………………………(3.44) 

where 

𝜓(𝐵) = ∑ 𝜓𝑗𝐵
𝑗∞

𝑗=0 =
𝜃(𝐵)

𝜙(𝐵)
 and 𝜓0 = 0. 

3.1.6.2 Minimum mean square error forecasts for ARIMA models 

This is the general non-stationary ARIMA(p,d,q) model with d≠ 0, i.e.:  

𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 ……………………………………………………(3.45) 

where 

𝜙(𝐵) = (1 − 𝜙1(𝐵) − ⋯− 𝜙𝑝𝐵
𝑝)  

is a stationary AR operator and 

𝜃(𝐵) = (1 − 𝜃1(𝐵) − ⋯− 𝜃𝑞𝐵
𝑞) 

is an invertible MA operator. 

3.1.6.3 The ARIMA forecast as a weighted average of previous observations 

Smoothing results, such as MA and exponential smoothing are special cases of ARIMA 

forecasting. ARIMA provides a natural and optimal way to obtain the required weights for 

forecasting. ARIMA forecasts are minimum mean square error forecasts. 

3.1.6.4 Updating forecasts 

The updated forecast is obtained by adding to the previous forecast, a constant multiple 𝜓1 

of the one-step ahead forecast error 𝑎𝑛+1 = 𝑍𝑛+1 − 𝑧̂𝑛(1). This is certainly sensible. For 

example, when the value 𝑍𝑛+1 becomes available and is found to be higher than the previous 

forecast, resulting in a positive forecast error 𝑎𝑛+1 = 𝑍𝑛+1 − 𝑧̂𝑛(1), the forecast 𝑧̂𝑛(𝑙 + 1)  

made earlier by proportionally adding a constant multiple of this error, will naturally be 

modified. 
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3.1.7 Model identification 

Model identification refers to the methodology in identifying the required transformations such 

as variance stabilising transformation and differencing transformation. 

3.1.7.1 The useful steps for model identification 
To illustrate the model identification, consider ARIMA(p,d,q) model 

(1-𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃0 + (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵

𝑞)𝑎𝑡……..……(3.46) 

Plot the time series data and choose proper transformations. In any time series analysis, the 

first step is to plot the data. Through careful examination of the plot we usually get a good 

idea about whether the series contains a trend, seasonality outliers, non-constant variances 

and other normal and non-stationarity phenomena. In time series the most commonly used 

transformations are variance-stabilising transformation and differencing.  

Since differencing may create some negative values, then variance stabilising transformation 

should always be applied before taking differences. 

3.1.8 Seasonal process 

Time series data may sometimes exhibit strong periodic patterns. This is often referred to as 

the time series having a seasonal behaviour. This mostly occurs when the data is taken in 

specific intervals: monthly, weekly and so on. One way to represent such data is through an 

additive model where the process is assumed to be composed of two parts: 

ttt NSy   ………………..…………………………………………………..(3.47) 

where tS  is the deterministic component with periodicity s  and tN
 

is the stochastic 

component that may be modeled as an ARMA process, hence ty  can be seen as a process 

with predictable periodic behaviour with some noise sprinkled on top of it. Since the tS  is 

deterministic, then  

.stt SS   ……………………………………...………..............................(3.48) 

Applying the  sB1  operator to equation (3.38), gives: 

      t

s

t

s

t

s NBSByB  111 …………………………………………..…..(3.49) 

  t

s

t NBw  1 ………………..……………………………..….….……………(3.50) 

where  
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  tt

s wyB 1  and   0 1  t

s SB . 

The process tw  can be seen as seasonally stationary. Since an ARMA process can be used 

to model tN , in general the model can be written as: 

       t

s

t BBwB   1   …………………………………....……………...….(3.51) 

where t  is white noise. 

3.1.9 Moving average method 

The moving average method is developed based on the assumption that an annual sum of a 

seasonal time series possesses little seasonal variation. Thus, letting 𝑁𝑡 = 𝑃𝑡 + 𝑒𝑡 be the non-

seasonal component of the series, an estimate of the non-seasonal component can be 

obtained by using a symmetric Moving Average operator. i.e., 𝑁̂𝑡 = ∑ 𝜆𝑖𝑍𝑡−𝑖
𝑚
𝑖=−𝑚  where m is a 

positive integer and the 𝜆𝑖′𝑠 are constants such that 𝜆𝑖 = 𝜆−𝑖 and   ∑ 𝜆𝑖
𝑚
𝑖=−𝑚 = 1. An estimate 

of the seasonal component is derived by subtracting 𝑁̂𝑡 from the original series, i.e., 

𝑆̂𝑡 = 𝑍𝑡 − 𝑁̂𝑡. The above estimate may be obtained iteratively by repeating various moving 

average operators. The series with seasonal fluctuation removed, i.e.  𝑍𝑡 − 𝑆̂𝑡, is referred to 

as the seasonally adjusted series. 

3.1.10 ARCH and GARCH models 

To check the need of ARCH (autoregressive conditional heteroskedasticity) model, once the 

ARIMA model is fitted then not only the standard residual analysis and diagnostics checks 

have to be performed, but also some serial dependence checks for 2

te
 
should be made, where 

tltltt aeee  

22

110

2   , ta
 
is a white noise sequence with zero mean and constant 

variance .2

a  

To further generalise the ARCH model, let us assume that the error can be represented as 

ttt ve  …………………..……………………………………………………(3.52) 

where t  
is independent and identically distributed with mean 0 and variance 1, and  

.2

1

2

22

2

110   tlttt eeev  
…………………………………………….(3.53) 

Hence the conditional variance of te
 
is 
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ttttt veeEee   ),(),var( 2

1

2

1   …………………………………………....(3.54) 

The current conditional variance should also depend on the conditional variance, i.e. 

ltlttktkttt eeevvvv     2

22

2

1122110 ……………..(3.55) 

In this notation, the error term te is said to follow a generalised autoregressive conditional 

heteroskedasticity (GARCH) process of order 𝑘 and 𝑙, i.e. GARCH(𝑘, 𝑙). In equation (3.46) the 

model for conditional variance resembles an ARMA.  

3.2 Exponential smoothing 

Exponential smoothing is a procedure for continually revising a forecast in the light of more 

recent experience. It assigns exponentially decreasing weights as the observation gets older. 

There are three types of exponential smoothing methods.  

3.2.1 Simple exponential smoothing methods 

SES takes the forecast for the previous period and adjusts it using the forecast error, i.e.: 

 tttt FYFF  1  …………………………………......…….………………………..(3.56) 

where  

1tF  is the forecast value of period 1t  

tY  is the actual value for period t  

tF  is the forecast value for period t  

  is a (smoothing constant). 

The value of the smoothing constant,  has to be between 0 and 1. When   has a value 

close to 1, it means that the new forecast will indicate a substantial adjustment for the error in 

the previous forecast and when   is close to zero, the new forecast will indicate very little 

adjustment. Equation (3.47) can also be written as: 

  ttt FYF   11  …………………………………………………………....(3.57) 



 
26 

 

where the forecast 1tF  is based on weighting the most recent observation  tY  with a weight 

value    and weighting the most recent forecast  tF  with a weight of  1 . 

3.2.2 Holt’s linear method (Double exponential smoothing) 

According to Makridakis et al. (2008), Holt (1957) extended single exponential smoothing to 

linear exponential smoothing to allow forecasting of the data with the trends. The forecast for 

Holt’s linear exponential smoothing is found using two smoothing constants,   and  , with 

the values between 0 and 1. The equations of Holt’s linear method can be written as: 

 

  111   tttt bLYL    ……………………..…………………….............(3.58) 

    11 1   tttt bLLb    …………………………………………………....(3.59) 

mtmt bLF    …………………………………………………………....(3.60)  

where tL  denotes an estimate of the level of the series at time t  and tb  denotes an estimate 

of the slope of the series at time, t . Equation (3.58) adjusts tL  directly for the trend of the 

previous period, 1tb , by adding it to the last smoothed value, 1tL . This helps in estimating 

the lag and brings tL  to the appropriate level of the current data value. Equation (3.59) then 

updates the trend, which is expressed as the difference between the last two smoothed 

values. This is appropriate because if there is a trend in the data, new values should be higher 

or lower than the previous ones. Since there may be some randomness remaining the trend 

is modified by smoothing with the trend  . Equation (3.60) is used for forecasting ahead. The 

trend tb
 
is multiplied by the number of periods ahead to be forecasted 𝑚, and added to the 

base value, tL . 

3.2.3 Holt-Winters trend and Seasonality method (Triple Exponential Smoothing) 

According to Makridakis et al. (2008), Holt’s method was extended again by Winters (1960) 

to capture seasonality directly. The Holt-Winters method is based on three smoothing 

equations; one parameter   is for the level,   is for the trend and   is for seasonality. There 

are two different Holt-Winters’ methods, depending on whether seasonality is modeled in an 

additive or multiplicative way. 
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3.2.3.1 Multiplicative seasonality 

The basic equations for Holt-Winters for multiplicative method are as follows: 

  111 



 tt

st

t

t bL
S

Y
L    ……………………………………………(3.61) 

    11 1   tttt bLLb    ………………………………………………....…(3.62) 

  st

t

t

t S
L

Y
S   1   ………………………………………...……….…(3.63) 

sttmtmt SbLF   )(   …………………………………………………………....(3.64) 

where  

s is the length of seasonality,  

tL  is the level of the series, 

tb  denotes the trend,  

tS  is the seasonal component, 

tF  is the forecast for m  periods ahead.  

Equation (3.63) is comparable to a seasonal component as a ratio of the current values of the 

series, tY divided by the current single smoothed value for the series, tL . The data values tY  

do contain seasonality and randomness. In order to smooth this randomness equation (3.61) 

weights the newly computed seasonal factor with   and the most recent seasonal number 

corresponding to the same season with  1 . Equation (3.62) is the same as Holt’s equation 

(3.59) of Double Exponential smoothing method for smoothing the trend. Equation (3.61) 

slightly differs from Holts’ equation (3.58) in that the first term is divided by the seasonal 

number stS  . This is done to deseasonalise tY . 

3.2.3.2 Additive seasonality 

The seasonal component in Holt-Winters’ method may also be treated additively. The 

equations for Holt-Winter’s additive method are: 

    111   ttsttt bLSYL    ……………………………………………(3.65) 

    11 1   tttt bLLb    ……………………………………………………(3.66) 
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    stttt SLYS   1
 

……………………………………………………(3.67) 

msttmtmt SbLF  
 

……………………………………………………(3.68) 

Equation (3.66) is identical to equation (3.62) of multiplicative method. The only difference in 

the other equations from the multiplicative Holt-Winters’ method are that the seasonal indices 

are now added and subtracted instead of taking products and ratios. 

3.3 Multivariate time series  

Multivariate time series involves several variables that are not only in sequence but also cross-

tabulated. As in the univariate case, multivariate or vector ARIMA (autoregressive integrated 

moving average) models can often be successfully used in forecasting multivariate time 

series. The first step to be checked is property of stationary. 

3.3.1 Multivariate Stationary Process 

Suppose that the vector time series  mtttt yyy ,...,, 21Y
 
consists of m  univariate time series. 

Then tY with finite and second order moments is said to be weakly stationary if  

   μYY  stt EE )( , constant for all ,s  

     0)Cov( ΓμYμYY 




 

 ttt E and 

 )(Cov s), stt ΓY(Y   depends only on .s  

3.3.2 The covariance and correlation matrix function 

Let   tmttt ZZZ ,,1,1 ,,, Z , ,,2 ,1 ,0 t be an m  dimensional joint stationary real-valued 

vector process so that the mean   itiZE ,  is constant for each mi ,,2 ,1   and the cross-

covariance between tiz ,  and sjz , for all mi ,,2 ,1   and mj ,,2 ,1   are functions only of the 

time difference  ts  . The mean vector can be written as: 

 





















m

E










2

1

tZ   ……………………………………………………………(3.69) 

and the covariance matrix 

      




 

   kttkt Ek ZZZZΓ ,Cov t
 



 
29 

 

  
m

m

mtmktkt

tm

t

t

ZZZ

Z

Z

Z





































 ,,2,1

,

,2

1,1

,,,
21

2 


 

 

     

     

     

 tkt

mmmm

m

m

kkk

kkk

kkk

ZZ ,Cov

21

22221

11211













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
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











………………….………(3.70)

 

for   ,,,2 ,1  , ,2 ,1 ,0 mik   and mj ,,2 ,1  . As the function of k ,  kΓ  is called the 

covariance matrix function for the vector process tZ . 

For ji  ,  kii  is the autocovariance function for thi component process, .,tiZ  

For ji  ,  kij  is the cross-covariance function between tjti ZZ ,,  and . 

3.3.3 Moving average and autoregressive representations of vector process 

An m-dimensional stationarity vector process tZ is said to be a linear process or purely 

nondeterministic vector of a sequence of m-dimensional white noise random vectors, i.e.: 






 
0

2211 ...
s

ststtttZ aμaaaμ  …………………...……….(3.71) 

where I0  is the mm     identity matrix, the sj


  are mm     coefficient matrices, and the 

sat
  are m-dimensional white noise random vectors with zero mean and covariance matrix 

structure: 

 kttE 
aa ={

 , 𝑘 = 0

0 , 𝑘 ≠ 0
 ……………………………………………………(3.72) 

where ∑ is any arbitrary mm     symmetric definite matrix. 

Thus, although the elements of ta
 

at different times are uncorrelated, they may be 

contemporaneously correlated. Another useful form to express a vector process is through 

autoregressive representation, in which the value of Z at time t regressed on its own past 

values plus a vector of random shocks, i.e., 
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tst

s

stttt aZaZZZ  





 
1

2

.

21

.

1

.

  ………………..…………..(3.73)
 

where s  are mm     autoregressive coefficient matrices. The vector process is said to be 

invertible if the autoregressive coefficient matrices are absolutely summable, i.e.; 





0s

ij s

for all i and j . 

3.3.3.1 The vector autoregressive moving average process 

A useful class of parsimonious models is the vector autoregressive moving average 

ARMA(p,q) process, which is given by  

    ;
.

tqtp aBZB 


 ……………………………………………………(3.74)
 

where 

  p

pp BBBB  2

210  

and  

  q

qq BBBB  2

210   

are the autoregressive and moving average matrix polynomials of order p and q, respectively, 

and 0  and 0  are nonsingular mxm    matrices. 

3.3.3.1.a Vector AR(1) models 
The vector AR(1) model is given by: 

  tt aZB
.

 11
 ……………………………………………………………(3.75)

 

or 

ttt aZZ  1

.

1

.

 ………………………………………...……………....….(3.76)
 

For m=2 the vector AR(2) becomes: 

.
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1,2
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.
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
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
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
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

t

t

t

t

t

t

Z a

aZ

Z

Z




  ……………………………………………(3.77) 
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Note that each ti ,

.

Z involves not only lagged values of ti ,

.

Z but also lagged values of other 

variables tj ,

.

Z . 

If 012  , then the equation (3.68) becomes  































t

t

t

t

BB

B

,2

,1

,2

,1

2221

11

11

01

a

a

Z

Z








 ……………………………...………..………(3.78) 

or 

 



















ttt

tt

B
Z

B

B

B

,2

22

,1

22

21
,2

.1

11

,1

1

1

1

1

1

aZ

aZ










………………………………………………(3.79) 

To reduce equation (3.79) to a casual transfer function model, let  









ttt

tt

ba

b

,2,1,2

,1,1

a

a
 

where   is the regression coefficient of t,2a  on t,1a . The error term tb ,2  is independent of t,1a  

and hence tb ,1 . 

3.3.3.1.b Vector AR(p) models  
The general vector AR(p) process is given by: 

tt
p

p BB aZ 


)1( 1    ……………………………………………(3.80) 

or  

tptptt ZZ aZ  







11  ……………………………………………(3.81) 

and it is invertible. For the process to be stationary require that the zeros of 

p

pBB  1I  lie outside the unit root circle, or equivalently the unit root of 

01  

pp

ppI   be inside the unit circle. 

3.3.3.1.c Vector MA(1) models 

The vector MA(1) models are given by: 
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  tt aBZ 1

.

1   

where the ta are 1m vector white noise with mean zero and variance matrix  . For m = 2, 

MA(1) models can be written as 


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a

a

Z

Z
. ……………………….…………...(3.82) 

The covariance matrix function of t

.

Z  is 

       







 tttt BBEE aIaIZZ 11

..

,0  

11   ………………………………………………..………………..…(3.83) 

    1111

..

, 







  ktktttktt EEk aaaaZZ  















 ,

 .1          ,0

1   ,

 ,1  ,

1

1

 k  

-k

k 

 ………………………….……………………………...…(3.84) 

The     ,11


 and  k  cuts off after lag 1, a behavior that parallels to univariate MA(1) 

process. 

3.3.3.1.d Vector MA(q) models 

The general vector MA(q) process is given by: 

  .1 t

q

qt BB aIZ   ……………………………………………………………...……(3.85) 

The covariance matrix function is  

    qqktktktqtqttEk   aaaaaa  1111   

      











  







,                    ,0

, , 1, ,0for    
0

qk

qk
kq

j

kjj 
 ……………………………………(3.86) 

where I1  and    .kk    k  cuts off after lag q. The process is always stationary. 
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3.3.3.1.e Vector ARMA(1,1) models 

The vector ARMA(1,1) is given by 

 

    .1 11 tt BB aZI    …………………………………………………....(3.87) 

The model is stationary if the zeros of the determinant polynomial B1I are outside the unit 

circle or if all the eigenvalues of 
1 are inside the unit circle. Then the formula is given by: 







0s

stst aZ  ……………………………………………………………(3.88) 

where the s  weights are obtained by equating the coefficients of 
jB in the following matrix 

equation  

    BBBB 1

2

211  III  ……………………………………(3.89)  

i.e., 

  .1   ,11

1

111 


 j
j

jj
 

The process is invertible if the zeros of B1I  are outside the unit circle or if all the 

eigenvalues of 
1  are inside the unit circle. 

3.3.3.2 Identification of vector time series models 

For a given observed vector time series nZZZ ,,, 21  , we identify its underlying model from 

the pattern of its sample correlation and partial correlation matrices after proper 

transformations are applied to reduce a non-stationary series to be stationary. 

 

3.3.3.2.a Sample correlation matrix function 

Given a vector time series of n observations nZZZ   and ,,, 21  , the sample correlation matrix 

can be written as  

    kk ij ˆˆ    ……………………………………………………..……..(3.90) 

where  kij̂  are the sample cross-correlations for thi  and 
thj  components series 
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̂  ……………………………………….(3.91) 

where iZ  and jZ  are the sample means of the corresponding components series. 

The sample correlation matrix function is useful in identifying a finite order MA model as the 

correlation matrices are zero beyond lag q for the vector MA(q) process. 

3.3.3.2.b Partial autoregression matrices 

PACF is a useful tool for identifying the order of univariate AR model. Partial autoregression 

function is the correlation between tZ  and ktZ   after their mutual linear independency on the 

intervening variables ,,, 21  tt ZZ  and 1ktZ  has been removed, i.e., 

   

   ktkttt

ktkttt

kk

ZZZZ

ZZZZ










ˆVar  ˆVar

ˆ,ˆCov
  ……………………………………(3.92) 

where 
tẐ  and ktZ 

ˆ  are the minimum mean squared error linear regression estimators of tZ  

and ktZ   based on ,,, 21  tt ZZ  and 1ktZ  respectively. PACF is also useful in identifying the 

order of the univariate AR(p) model since kk  is zero for pk  . 

3.4 Neural networks models 

The aim of this section is to illustrate the identification, estimation and evaluation of neural 

network models. These models define linear relationships between a time series observation 

at time t , the dependent variable and a set of time series observations that occurred prior to 

time t . 

Any linear model can be expressed as a simple feed forward neural network model with linear 

activation functions. The versatility of a neural network lies in the fact that it is used to model 

non-linear relationships between input and output variables. 

3.4.1 Estimation 

In neural terminology, estimation of the parameter of the model takes place during the training 

period, during which the network learns with generalisation through certain learning 
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algorithms. Weights connected to each input value (parameters) are constantly updated with 

the error function, )(wE , which is often the sum of squares errors that reaches its global 

minimum. 

3.4.2 Evaluation  

After a model has been identified and the parameters estimated, the model must be 

evaluated. Evaluation procedures are the same for both ARIMA and neural network model. If 

the model fits the data well, then the residuals should almost have the properties of 

uncorrelated, identically distributed, random variables with mean and fixed standard deviation 

(Cryer, 1986). If the estimated value of tY is given by 

);ˆ,,,,(ˆ
21 wYYYfY ptttt   .,2,1 Nt ,   ……………………………………….(3.93) 

Then the residual at time t is defined as ;ˆˆ
tt YY   Nt ,  ,2,1  

The residuals of a fitted model are useful indicators of any inadequacies in the specification 

of the model or violations of underlying assumptions. Examination of various plots of the 

residuals is an indispensable step in the evaluation process of any model (Box and Jenkins). 

If a plot of the residuals exhibits a trend over time, it is an indication that the trend in the data 

is not adequately modeled. 

A histogram of standardised residuals should correspond with symmetrical normal curve if the 

model fits the data well. Any outliers will imply significant differences between the tŶ  and the 

corresponding observed value, tY
 
that should be investigated since the model fits the data 

poorly at those points. The sample autocorrelation function of the residuals ,ˆ
k  

can be 

observed to check for the independence of the residual in the model. Usually the sample 

autocorrelations are approximately uncorrelated and normally distributed with mean of zero 

and constant variance. 

3.4.3 Forecasting a time series using Neural Network 

In this chapter a neural network model is used to forecast a time series. Bootstrap methods 

can be used to calculate standard errors and prediction limits for the forecasts. Suppose that 

 1, 0, ,1  , tYt  is an equally spaced weakly stationary or covariance stationary time 
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series. A linear model of the analysis of time series in the domain belongs to an ARMA class 

of the form: 

qtqtttptpttt YYYY     221122110 ………….(3.94) 

where }{ t  
is a sequence of uncorrelated variables, also as a white noise process, with 

conditions   0tE   and  


 


otherwise   

 for

0
,

2 


t
E a

tt
 

and qtp   ,,,,0 ,  1  are unknown constants or parameters. 

Considering the ARMA model (equation (3.94)) for a stationary time series  tY  with 

.,1 Nt  , 2,   The linear AR(1) model is given by  

tttt YY   1 ………………………………………………….…………………(3.95) 

where  t  is a white noise process. 

By using equation (3.95) for the second step predictive, 2NY ; the MSE linear predictor can be 

written in terms of the observed data; :NY  

      NNNNN YYYYYYEY 1,,2111 10,2     ………………………………….(3.96) 

In case of a nonlinear model such as the neural network; 

  itt aYfY   ,1 ………………………………………………………………...(3.97) 

The one step minimum MSE predictor is given by  

  ),(,)1( ,,211 NNNN YfYYYYEY    ……………………………………………(3.98) 

Two or more step forecasts are expectations of non-linear functions, for example 

},,,]],)1(([[{

},,,]],),([[{

],,,),([)2(

211

211

2111

NNN

NNN

NNNN

YYYYfFE

YYYYfFE

YYYYfEY

























……………………………………….(3.99) 
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Multi-step forecasts for neural network models 

Let NYYY ,,, 21   be a stationary time series described by  

  tptttt wYYYfY   ;,,, 21  ....................................................................(3.100) 

Where ()f  is a non-linear function defined by the neural architecture, p  is the number of 

input variables in the network, and w  the weight vector. 

The st '  are uncorrelated, identically distributed random variables with mean zero and 

variance. The observation at time 1N  can be written as 

.),,,,( 1111   tpNNNN wYYYFY 
 
……………………………………..….(3.101) 

The minimum MSE forecast for a single step is  

 wYYYfY pNNNN ;,,,)1( 11    with estimator  ……………………...……..(3.102) 

 .ˆ;,,,)1(ˆ
11 wYYYfY pNNNN   …………………………..…………………..(3.103) 

The observation at time 2N  is 2212 ),,,,(   tpNNNN wYYYFY   with the minimum MSE 

forecast  

  .],,,;,,,[)2(ˆ
2121 NpNNNN YYYwYYYfY   ……………………………….(3.104) 

For the estimation of the MSE forecast, the bootstrap method can be used and therefore the 

bootstrap forecast for )2(NY is proposed as 





m

j

pNN

j

NN wYYYf
m

Y
1

2

)(*

1 )ˆ;,,,(
1

)2(ˆ  ………..………………………………(3.105) 

where  

)*(

111

)*(

1 )ˆ;,,,( j

NpNNN

j

N wYYYfY     

And 
)*(

1

j

N  is an observation, drawn with replacement, from Np  ˆ,,ˆ
1   with  
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)ˆ,,,(ˆ
1 wYYfY ptttt   with .,,2,1 Nppt  ………………………..(3.106) 

For a forecast of h time steps, ,hNY  the estimator is 




 


m

j

jjj

hNN wYYYf
m

hY
phNhN

1

)(*)(*)(*

1 )ˆ;,,,(
1

)(ˆ
2
 …………………………………….(3.107) 

where 

)*()*()*(

2

)*(

1

)*( )ˆ;,,,( j

hN

j

phN

j

hN

j

hN

j

hN wYYYfY   
 

and 

phN

j

phN YY  )*(  if 0 ph
 

The bootstrap procedure can be summarised in few steps: First fit the model (using equation 

(3.100)) to the time series .,,, 21 NYYY  Then calculate estimates of the residual term using 

equation (3.105). The last step is to calculate **

1 ,, hNN YY  
 
condition on .,,, 21 NYYY   

***

2

*

1

* )ˆ;,,,( hNphNhNhNhN wYYYfY    ……………………..…………….(3.108) 

where 

phNphN YY  *

 
if 0 ph  and *

hN  is an observation drawn randomly with replacement  from 

.ˆ,,ˆ
1 Np    Usually repeat this m  times where .100m  Now calculate the one-to step 

forecasts the time series generated in the previous step using equations (3.102), (3.105) and 

(3.107). 

The prediction limits for hNY   

The prediction error is  

)(ˆ)( hYYhe NhNN    

and the standardised prediction error is defined as: 
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ˆ

)(
)(



he
hr N

N   

By using the bootstrap methodology the distribution of )(hrN can be approximated using the 

Monte Carlo algorithm. 

An approximate 1 prediction interval for hNY   is 

]ˆ)(ˆ;ˆ)(ˆ[  UNLN rhYrhY   

where  

Lr and Ur are the th
2








 
B  and th

2
1 











B order statistic of **

1 )(,,)( BNN hrhr  , respectively, 

and B is the number of bootstrap replications. To estimate the standard error of ,),( heN  a 

large number of bootstrap realisations of )(heN is required; )(hrN is a function of .̂   For good 

approximation of the distribution of ),(hrN at least 1000 bootstrap replications are required. 

3.5 Chapter summary 

In chapter 3 the research methodology to be adopted in this study has been defined.  

In the next chapter the data used for the study is analysed and interpreted.   
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

 

This chapter presents results from Minitab, Stats Graphics, Zaintun Time Series, SAS and 

SPSS on the analysis of Stats SA data on “Manufacturing: Production and Sales” for the 

period January 1998 to December 2010. The results generated by the various statistical 

software packages are included in Appendix A. 

The results presented in this chapter are based on the following five variables pertaining to 

electrical appliances included in the data set: 

1. Lighting equipment 

2. Electric machines 

3. Other electrical equipment 

4. Communication apparatus 

5. Accumulators 

The analysis is performed using the following statistical techniques: 

a. Univariate time series analysis (ARIMA models and forecasting) 

b. Multivariate time series analysis 

c. Regression analysis 

In section 4.1 we analyses the ARIMA models. Section 4.2 analyses ES and differences 

between three types of ES while section 4.3 studies the regression analyses. Finally, section 

4.4 analyses the multivariate time series. 

4.1 ARIMA models 

The ARIMA (autoregressive integrated moving average) procedure analyses and forecasts 

equally spaced univariate time series data, and intervention data using autoregressive 

integrated moving average. The model predicts a value in a response time series as a linear 

combination of its own past values, current and past values of other time series. ARIMA 

models consist of three steps. The first step is model identification in which the observed 

series is transformed (differenced) to be stationary. The second step is model estimation, in 

which the orders p and q are selected and corresponding parameters are estimated. The third 
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and final step is forecasting, in which the estimated model is then used to forecast future 

values of the observed time series. 

4.1.1 Lighting equipment 

Figure 4.1 shows that a time series plot of differenced/transformed data for lighting equipment 

is stationary for a regular pattern since the mean is zero but still strongly seasonal since 

lighting peaks repeat after fixed time intervals. The accuracy measures (MAPE, MAD and 

MSD) are computed by Minitab. All measures are based on the ‘errors’ (deviations) between 

the actual and fitted values. Montgomery et al. (2008) indicated that the accuracy measures 

are used to compare different methods of modeling time series. The smaller the value of the 

accuracy measure the better the fit of the model.  

 

 
Figure 4.1 Trend of transformed data for lighting equipment 

Figure 4.2 and figure 4.3 show an ACF and PACF of transformed data of lighting equipment, 

respectively. If all of the bars fall within the indicated confidence intervals (the dotted lines), 

there are no significant autocorrelations in the series. On the other hand, if the bars cross the 

dotted lines then there are correlations in the series.  

Figure 4.2 confirms that very little autocorrelation remains in the series after differencing has 

been applied. This plot also suggests that a simple model which incorporates seasons of lag 

12, lag 24 and lag 36 autocorrelations must be adequate seasons. 

The PACF displayed in figure 4.3 also confirms that very little autocorrelation still remains in 

the series after differencing at lag 2, and between lag 10 and lag 14, inclusively. 
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Figure 4.2 The ACF of transformed data for lighting equipment 

 
Figure 4.3 The PACF of transformed data for lighting equipment 

4.1.1.1 Outlier identification: Lighting equipment using Grubbs' test  
Test statistic = 2.9392 

P-Value = 0.45432 

 

The Grubbs’ test is used to detect outliers from normal distributions. The test detects one 

outlier at a time and if the outlier is found (i.e. it is above 3.5 standard deviation) it is removed 

from the data and the test repeated until no outliers are detected. 

 

Grubbs’ test analysis identifies and treats potential outliers in samples from normal 

populations. Tables 4.1 to 4.3 display the usual estimates of the mean and standard deviation 

together with estimates which are designed to be resistant to outliers. For the 156 values of 

lighting equipment, the sample mean and sample standard deviation are 107.851 and 26.078, 

respectively. The corresponding Winsorized estimates of which 15.0% of the largest and 
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smallest data values are replaced by values from the interior of the sample, are 106.364 and 

27.106. 

 

Table 4.1 Location estimates of lighting equipment 

Sample mean 107.851 

Sample median 105.650 

Trimmed mean 105.834 

Winsorized mean 106.364 
Trimming: 15.0% 

 

Table 4.2 Scale estimates of lighting equipment 
Sample std. deviation 26.0781 

MAD/0.6745 25.9451 

Sbi 25.8022 

Winsorized sigma 27.1055 

 

Table 4.3 The 95% confidence interval for the mean of lighting equipment 
 

Lower Limit Upper Limit 

Standard 103.727 111.976 

Winsorized 101.242 111.486 

 

Table 4.4 shows the smallest and largest values of lighting equipment. The Studentised 

values measure how many standard deviations each value is from the sample mean of 

107.851. The most extreme value is in row 142, which is 2.9392 standard deviations from the 

mean. Since the p-value for Grubbs' test is greater or equal to 0.05, 184.5 is not a significant 

outlier at the 5% significance level, assuming that all the other values follow a normal 

distribution. Similar scores are displayed after deleting each point one at a time when 

computing the sample statistics, and when the mean and standard deviation are based on the 

MAD. Values of the modified scores greater than 3.5 in absolute value, will be outliers of which 

in this case there is none as indicated by table 4.4 and figure 4.4. 
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Table 4.4 Sorted Values of lighting equipment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Outlier plot with sigma limits 

4.1.1.2 Model comparison for lighting equipment  

Stats Graphics was used, and automatically suggested a set of models that can be fitted. On 

the basis of these models, the Akaike Information Criterion (AIC) method is used to select the 

best one. The model with the minimum value of the AIC is considered as the best model. 

Models which are closer to the minimum AIC are acceptable. 

 

Table 4.5 compares the results of fitting different models to the data.  

Outlier Plot with Sigma Limits

Sample mean = 107.851, std. deviation = 26.0781
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Studentised Values 
With Deletion Modified MAD Z-Score 

24 53.1 -2.09951 -2.13704 -2.02543 

12 57.6 -1.92695 -1.95685 -1.85198 

48 65.2 -1.63552 -1.65519 -1.55906 

30 68.7 -1.50131 -1.51726 -1.42416 

85 70.0 -1.45146 -1.46617 -1.37405 

...     

128 165.7 2.21829 2.26181 2.31450 

129 168.5 2.32566 2.37518 2.42240 

131 181.0 2.80499 2.88872 2.90420 

130 182.1 2.84717 2.93456 2.94660 

142 184.5 2.93920 3.03496 3.03910 
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The model with the lowest value of the AIC is model M, which has been used to generate the 

forecasts. 

 

(A) Random walk 

(B) Constant mean = 107.748 

(C) Linear trend = 81.7286 + 0.331462 t  

(M) ARIMA(0,1,1)x(1,0,2)12 

(N) ARIMA(0,1,1)x(1,0,1)12 

(O) ARIMA(0,1,1)x(2,0,1)12 

(P) ARIMA(1,1,1)x(1,0,2)12 

(Q) ARIMA(1,1,1)x(2,0,1)12 

 

Table 4.5 summarises the performance of the currently selected model M in fitting the 

historical data. The results display the following: 

 

   (1) the root mean squared error (RMSE) 

   (2) the mean absolute error (MAE) 

   (3) the mean absolute percentage error (MAPE) 

   (4) the mean error (ME) 

   (5) the mean percentage error (MPE) 

 

Each of the above statistics is based on the one-ahead forecast errors. The first three statistics 

measure the magnitude of the errors (RMSE, MAE and MAPE). A better model will give a 

smaller value of the AIC. The last two statistics (MPE and ME) measure bias. A better model 

will give a value of AIC close to zero. 
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Table 4.5 Model comparison for lighting equipment 

Model RMSE MAE MAPE ME MPE AIC 

(A) 12.02930 9.56067 9.37368 0.029027 -0.680228 5.10891 

(B) 21.10230 15.87450 14.70720 0.102889 -3.238700 6.25261 

(C) 13.55270 10.30170 9.78697 0.043471 -1.374600 5.37984 

(M) 10.52020 8.18041 8.00659 0.769022 0.042480 4.75787 

(N) 10.59330 8.28534 8.10267 0.784672 0.041609 4.75891 

(O) 10.57970 8.27993 8.16303 -0.121928 -0.877561 4.76915 

(P) 10.52210 8.20329 7.98851 0.991610 0.231558 4.77106 

(Q) 10.53390 8.20324 7.98815 0.979127 0.211299 4.77330 

 

RMSE = Root Mean Squared Error 

RUNS = Test for excessive runs up and down 

RUNM = Test for excessive runs above and below median 

AUTO = Box-Pierce test for excessive autocorrelation 

MEAN = Test for difference in mean 1st half to 2nd half 

VAR = Test for difference in variance 1st half to 2nd half 

OK = not significant (p >= 0.05) 

* = marginally significant (0.01 < p <= 0.05) 

** = significant (0.001 < p <= 0.01) 

*** = highly significant (p <= 0.001) 

 

Table 4.6 summarises the results of five tests run on the residuals to determine whether or 

not each model is adequate for the data.  An “OK” means that the model passes the test at 

95% confidence level. One *(asterisk) means that the model fails at the 95% confidence level. 

Two *(asterisks) mean that it fails at the 99% confidence level. Three *(asterisks) mean that 

the model fails at the 99.9% confidence level. The currently selected model is model M, which 

passes all the five (5) tests. Since no tests are statistically significant at the 95% or higher 

confidence level, the current model is adequate for the data. 
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Table 4.6 Estimation period of lighting equipment 

Model RMSE RUNS RUNM AUTO MEAN VAR 

(A) 12.0293 OK *** *** OK OK 

(B) 21.1023 OK *** *** *** *** 

(C) 13.5527 OK *** *** OK OK 

(M) 10.5202 OK OK OK OK OK 

(N) 10.5933 OK OK OK OK OK 

(O) 10.5797 OK OK OK OK OK 

(P) 10.5221 OK OK OK OK OK 

(Q) 10.5339 OK OK OK OK OK 

 
 
Figure 4.5 also confirms that the selected model M since there is no autocorrelation. 
 

 
Figure 4.5 Residual autocorrelation for adjusted lighting equipment 

Table 4.7 summarises the statistical significance of the terms in the forecasting model. Terms 

with p-values less than 0.05 are statistically significantly different from zero at 5% level of 

significance. The p-values for the parameters, MA(1), SAR(1) and SMA(2) are less than 0.05, 

and hence significantly different from zero.  

 
Table 4.7 Estimates of parameter for lighting equipment 

Parameter Estimate Stnd. Error T P-value 

MA(1) 0.727775 0.0577587 12.6003 0.000000 

SMA(1) 0.707191 0.0790038 8.95136 0.000000 

SMA(2) 0.175834 0.0761189 2.31000 0.022350 
Estimated white noise variance = 198.877 with 140 degrees of freedom 
Estimated white noise standard deviation = 14.1024 

Residual Autocorrelations for adjusted lighting equipment
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4.1.1.3 Diagnostic check for lighting equipment 
After a chosen model has been fitted to the data, the adequacy of the model should be 

examined. This is done through residuals analysis and modified Box-Pierce test. The modified 

Box-Pierce test is used to check if autocorrelation still exist in the residuals. 

The modified Box-Pierce (Ljung-Box) test suggests that there is no autocorrelation left in the 

residuals. This is also confirmed by the sample ACF and the PACF of the residuals since they 

are both lying within the limits of residual plots shown in figure 4.6 and figure 4.7, respectively. 

So the model can be fitted well. 

 

 
Figure 4.6 ACF of residuals for lighting equipment 

 
Figure 4.7 PACF of residuals for lighting equipment  
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Table 4.8 Modified Box-Pierce Chi-Square statistic of lighting equipment 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lags 12 24 36 48 

Chi-Square 6.100 21.200 27.900 36.200 

DF 7 19 31 43 

P-Value 0.527 0.328 0.624 0.758 

 

The last diagnostic check is the 4-in-1 residual plots for the differenced data of lighting 

equipment given in figure 4.8. It can be observed from the residuals against the percentage 

plot that the points are close to the line which assumes that the residuals are independent 

and normally distributed. 

The fitted values and the residual plot show no pattern, which suggests that the model is 

adequate. The histogram of the residuals is approximately symmetric about mean zero which 

suggests that the residuals are normally distributed. 

 

 
Figure 4.8 Residual plots for lighting equipment  

Table 4.9 presents the forecasted values and the confidence interval for the year 2011 of 

lighting equipment using ARIMA (0, 1, 1)x(1, 0, 2)12. 
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Table 4.9 Forecasts for lighting equipment 

LL 
FORECAST FOR LIGHTING 

EQUIPMENT (2011) UL 

70.67997 92.7884 114.8968 

98.37080 122.1202 145.8696 

98.50581 123.7899 149.0741 

92.04348 118.7743 145.5052 

101.41890 129.5221 157.6254 

93.45740 122.8690 152.2807 

105.93100 136.5953 167.2595 

107.43690 139.3046 171.1723 

101.76100 134.7883 167.8156 

117.82750 151.9751 186.1226 

117.55540 152.7876 188.0198 

53.59378 89.8782 126.1626 

 

4.1.2 Electric machines 

A visual inspection of figure 4.9 reveals that the mean and the variance remain stable while 

there are some short runs where successive observations tend to follow each other for very 

brief durations. 

 

 
Figure 4.9 Time series plot of electric machines 
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As shown from ACF plot in figure 4.10 most of the correlations are small. There are fairly large 

negative correlations at certain lags (i.e. lag 1, 10, 12, 14, 22 and 27) and large positive 

correlations of 0.7, 0.55 and 0.49 at lag 12, lag 24 and lag 36, respectively. 

Figure 4.11 of the PACF shows that there are large negative correlations of -7.10, -6.26 and 

-4.38 at lag 10, lag 2 and lag 11, respectively and a positive correlation of 0.27 for both lag 12 

and lag 13. 

 
Figure 4.10 ACF of transformed data for electric machines 

 

 
Figure 4.11 PACF of transformed data for electric machines 
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4.1.2.1 Outlier identification: Electric machines using Grubbs' test  
Test statistic = 2.52183 

P-Value = 1.0 

Grubbs’ test analysis identifies and treats potential outliers in samples from normal 

populations. Table 4.10 to table 4.12 display the usual estimates of the mean and standard 

deviation, together with estimates which are designed to be resistant to outliers. For the 156 

values of electric machines, the sample mean and sigma are 110.613 and 14.241, 

respectively. The corresponding Winsorized estimates, of which 15% of the largest and 

smallest data values are replaced by values from the interior of the sample, are 110.443 and 

14.3228 for location estimates and scale estimates, respectively. 

 
Table 4.10 Location estimates of electric machines 
Sample mean 110.613 

Sample median 110.400 

Trimmed mean 110.504 

Winsorized mean 110.443 

Trimming: 15.0% 

 
Table 4.11 Scale estimates of electric machines 

Sample std. deviation 14.2410 

MAD/0.6745 12.7502 

Sbi 14.3923 

Winsorized sigma 14.3228 

 
Table 4.12 The 95% confidence interval for the mean of electric machines 
 

Lower Limit Upper Limit 

Standard 108.361 112.866 

Winsorized 107.736 113.150 

 

Table 4.13 shows the smallest and largest values of electric machines. The Studentised 

values measure how many standard deviations each value is from the sample mean of 

110.613. The most extreme value is the one in row 85, which is 2.52183 standard deviations 

from the mean. Since the p-value for Grubbs' test is greater than 0.05, that value is not a 

significant outlier at the 5% significance level, assuming that all the other values follow a 
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normal distribution. Similar scores are displayed after deleting each point one at a time when 

computing the sample statistics, and when the mean and standard deviation are based on the 

MAD. Values of the modified scores greater than 3.5 in absolute value will be considered as 

outliers, of which there are none. 

Table 4.13 Sorted Values of electric machines 

Row Value 
Studentised  Values 
Without Deletion 

Studentised  Values  with 
Deletion Modified MAD Z-Score 

85 74.7 -2.52183 -2.58381 -2.79996 

12 77.4 -2.33224 -2.38215 -2.58820 

73 79.3 -2.19882 -2.24132 -2.43918 

97 81.2 -2.06540 -2.10132 -2.29016 

84 84.0 -1.86879 -1.89639 -2.07056 

...     

153 137.7 1.90201 1.93091 2.14115 

129 140.5 2.09862 2.13610 2.36075 

147 141.6 2.17586 2.21717 2.44702 

130 142.9 2.26715 2.31333 2.54898 

155 145.1 2.42163 2.47700 2.72153 

 

4.1.2.2 Model comparison for electric machines 

Table 4.14 compares the results of fitting different models to the data. The model with the 

lowest value of the AIC is model M, which has been used to generate the forecasts. Table 

4.15 summarises the performance of the currently selected model M in fitting the historical 

data. 

 

(A) Random walk 

(B) Constant mean = 110.608 

(C) Linear trend = 100.996 + 0.122447 t  

(M) ARIMA(2,0,0)x(2,1,2)12 with constant 

(N) ARIMA(2,0,0)x(2,1,2)12 

(O) ARIMA(1,1,0)x(2,1,2)12 

(P) ARIMA(1,1,0)x(2,1,2)12 with constant 

(Q) ARIMA(0,1,1)x(0,1,2)12 
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Table 4.14 Model comparison of electric machines 

Model RMSE MAE MAPE ME MPE AIC 

(A) 7.82156 5.98037 5.42775 -0.00385338 -0.242577 4.24820 

(B) 10.45790 8.08041 7.26306 0.00576924 -0.792385 4.84855 

(C) 8.66202 6.88130 6.31290 -0.00316562 -0.561769 4.48456 

(M) 5.85547 4.48266 4.05884 -0.16994900 -0.390084 3.62450 

(N) 5.95797 4.46488 4.01744 0.27000200 -0.006919 3.64638 

(O) 6.09703 4.63977 4.20808 0.08433140 -0.110372 3.67971 

(P) 6.10219 4.64552 4.21699 0.03210860 -0.142934 3.69422 

(Q) 6.26228 4.84591 4.38771 -0.06053910 -0.335397 3.70755 

 

Table 4.15 summarises the results of 5 tests run on the residuals to determine whether each 

model is adequate for the data. An “OK” means that the model passes the test. The current 

selected model M passed all the 5 tests. Since no tests are statistically significant at the 95% 

or higher confidence level, the current model is adequate for the data.  

 
Table 4.15 Estimation period of electric machines 

Model RMSE RUNS RUNM AUTO MEAN VAR 

(A) 7.82156 * *** *** OK OK 

(B) 10.45790 OK *** *** *** *** 

(C) 8.66202 OK *** *** OK ** 

(M) 5.85547 OK OK OK OK OK 

(N) 5.95797 OK OK * OK OK 

(O) 6.09703 OK OK ** OK OK 

(P) 6.10219 OK OK ** OK OK 

(Q) 6.26228 OK OK OK OK OK 
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 Figure 4.12 Residuals autocorrelation for adjusted electric machines  

 

This ARIMA model selected will be used in forecasting future values of electric machines. The 

data cover 156 time periods. Currently, ARIMA model has been selected. This model 

assumes that the best forecast for future data is given by a parametric model relating the most 

recent data value to previous data values and previous noise. 

 

Each value of electric machines has been adjusted before the model was fitted. Table 4.16 

summarises the statistical significance of the terms in the forecasting model. Parameters with 

p-values less than 0.05 are statistically significantly different from zero at the 95% confidence 

level. The p-values for the parameters AR(2), SAR(2) and SMA(2) are less than 0.05, so it is 

significantly different from zero. The estimated standard deviation of the input white noise is 

6.27869. 

 

Table 4.16 Estimates of parameters of electric machines 

Parameter Estimate Stnd. Error T P-value 

AR(1) 0.355515 0.0821945 4.32529 0.000029 

AR(2) 0.327082 0.0821918 3.97950 0.000112 

SAR(1) 1.128970 0.0741390 15.22780 0.000000 

SAR(2) -0.542350 0.0601540 -9.01602 0.000000 

SMA(1) 1.722490 0.0522924 32.93960 0.000000 

SMA(2) -0.758869 0.0495383 -15.31880 0.000000 

Mean 1.662870 0.5097050 3.26241 0.001395 

Constant 0.218180    

Residual Autocorrelations for adjusted Electrical machinery
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4.1.2.3 Diagnostic check for the residuals of electric machines 

It is observed from the sample ACF and PACF plots of the residuals in figure 4.13 and figure 

4.14 that there are some small significant values as indicated by the modified Box-Pierce 

(Ljung-Box) test in table 4.17, but most of the autocorrelation is modeled out. The ACF shows 

that there is a little correlation at lag 11 while with PACF there is a little correlation at lag 25. 

 

Table 4.17 Modified Box Pierce Chi-Square statistic of electric machines 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lags 12 24 36 48 

Chi-Square 19.700 29.200 47.50 56.20 

DF 5 17 29 41 

P-Value 0.001 0.033 0.02 0.06 

 

 
Figure 4.13 ACF of Residuals for electric machines  
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Figure 4.14 PACF of Residuals for electric machines  

 

The 4-in-1 residual plots for the differenced data of electric machines also indicate that the fit 

is acceptable as indicated by figure 4.15 because it is noticed that on the normality probability 

plot against the percentage that the points fall approximately on a straight line and which 

indicate that the normality assumption holds. From the histogram of the residuals and the 

fitted values they assume symmetric and no patterns is formed. 

 

 
Figure 4.15 Residual Plots for Electric machines  
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Table 4.18 presents the forecasted values and the confidence interval of electric machines 

for the year 2011 using ARIMA (2,0,0)x(2,1,2)12. 

 

Table 4.18 Forecasts for electric machines 

LL 
FORECAST FOR ELECTRIC MACHINES 

(2011) UL 

95.7668 108.1551 120.5434 

109.8226 123.0454 136.2682 

119.6170 134.0101 148.4031 

106.8498 121.6860 136.5221 

109.6828 124.8518 140.0208 

112.8557 128.2026 143.5494 

109.6962 125.1576 140.6191 

114.3993 129.9283 145.4572 

112.1497 127.7204 143.2912 

114.2017 129.7977 145.3937 

120.6312 136.2427 151.8543 

89.6882 105.3092 120.9302 

4.1.3 Other electrical equipment 

Figure 4.16 is a trend analysis for differenced data which confirms that the data is stationary 

at a constant variance and mean zero. 

 

 
Figure 4.16 Time series plot of transformed data for other electrical equipment 
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Figure 4.17 and figure 4.18 respectively show ACF and PACF for transformed data of other 

electrical equipment with significant values at certain lags. 

 

 
Figure 4.17 ACF of transformed data for other electrical equipment 

 

 
Figure 4.18 PACF of transformed data for other electrical equipment 

4.1.3.1 Outlier identification: Other electrical equipment using Grubbs' test  
Test statistic = 2.48462 

P-Value = 1.0 
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with estimates which are designed to be resistant to outliers. For the 154 values of other 

3525155

0.4

0.2

0.0

-0.2

-0.4

A
u
to

c
o
rr

e
la

ti
o
n

LBQtCorrLagLBQtCorrLagLBQtCorrLagLBQtCorrLag

166.21

157.22

155.97

154.72

154.15

151.10

151.09

150.36

150.21

145.30

145.15

135.26

132.60

126.27

125.60

119.95

119.71

113.47

113.30

107.61

107.47

103.73

103.34

 98.24

 97.46

 89.21

 89.21

 68.10

 68.08

 44.63

 43.14

 39.13

 38.64

 37.43

 37.43

 31.57

 31.46

 14.26

-1.54

 0.58

 0.58

 0.40

-0.92

 0.02

 0.46

 0.21

-1.20

 0.21

 1.75

-0.92

-1.44

 0.47

 1.39

 0.29

-1.50

-0.25

 1.46

-0.23

-1.20

 0.39

 1.44

-0.57

-1.88

-0.02

 3.23

 0.12

-3.73

 0.95

 1.58

-0.56

-0.88

-0.06

 2.01

 0.28

-3.77

-3.74

-0.21

 0.08

 0.08

 0.05

-0.12

 0.00

 0.06

 0.03

-0.16

 0.03

 0.23

-0.12

-0.18

 0.06

 0.17

 0.04

-0.18

-0.03

 0.18

-0.03

-0.15

 0.05

 0.17

-0.07

-0.22

-0.00

 0.35

 0.01

-0.37

 0.09

 0.16

-0.05

-0.09

-0.01

 0.19

 0.03

-0.33

-0.30

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

ACF of other electric eqiupment

3525155

0.3

0.1

-0.1

-0.3

-0.5

P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n

tPACLagtPACLagtPACLagtPACLag

-0.86

 0.11

-0.13

 0.54

-1.03

-0.22

-0.76

 0.59

-0.32

-0.17

 0.37

-0.69

 1.12

 1.66

 0.83

 0.25

-0.77

-0.89

 0.05

-0.27

-0.66

 0.54

 0.80

 0.05

 1.22

 1.01

-0.08

-3.15

-2.45

 2.97

 0.77

-1.43

-0.76

-1.25

-2.07

-4.45

-5.74

-3.74

-0.07

 0.01

-0.01

 0.04

-0.08

-0.02

-0.06

 0.05

-0.03

-0.01

 0.03

-0.06

 0.09

 0.13

 0.07

 0.02

-0.06

-0.07

 0.00

-0.02

-0.05

 0.04

 0.06

 0.00

 0.10

 0.08

-0.01

-0.25

-0.20

 0.24

 0.06

-0.12

-0.06

-0.10

-0.17

-0.36

-0.46

-0.30

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

PACF of other electric equipment



 
60 

 

electrical equipment, the sample mean and sigma are 129.375 and 21.3615, respectively. The 

corresponding Winsorized estimates of which 15% of the largest and smallest data values are 

replaced by values from the interior of the sample, are 129.445 and 21.9618 respectively.  

 

Table 4.19 Location estimates of other electrical equipment 

Sample mean 129.375 

Sample median 128.850 

Trimmed mean 128.715 

Winsorized mean 129.445 
Trimming: 15% 

 

Table 4.20 Scale estimates of other electrical equipment 

Sample std. deviation 21.3615 

MAD/0.6745 17.3462 

Sbi 21.6664 

Winsorized sigma 21.9618 

 

Table 4.21 shows the smallest and largest values of other electrical equipment. The 

Studentised values measure how many standard deviations each value is from the sample 

mean of 129.375. Since the p-value for Grubbs' test is greater or equal to 0.05, that value is 

not a significant outlier at the 5% significance level, assuming that all the other values follow 

a normal distribution. Similar scores are displayed after deleting each point one at a time when 

computing the sample statistics, and when the mean and standard deviation are based on the 

MAD. Values of the modified scores greater than 3.5 in absolute value are declared as 

outliers, of which there is none, as shown in table 4.22 and figure 4.19. 

 

Table 4.21 The 95% confidence intervals for the mean of other electrical equipment 
 

Lower Limit Upper Limit 

Standard 125.975 132.776 

Winsorized 125.256 133.635 
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Table 4.22 Sorted Values of other electrical equipment 

Row Value 
Studentised Values 

Without Deletion 
Studentised Values 

With Deletion 
Modified 

MAD Z-Score 

85 76.3 -2.48462 -2.54489 -3.02949 

97 80.7 -2.27864 -2.32610 -2.77583 

4 81.3 -2.25056 -2.29644 -2.74124 

12 90.2 -1.83392 -1.86056 -2.22816 

96 91.0 -1.79647 -1.82173 -2.18204 

     

152 174.8 2.12647 2.16582 2.64900 

154 176.9 2.22478 2.26924 2.77006 

22 178.0 2.27627 2.32360 2.83348 

151 178.4 2.29500 2.34339 2.85654 

135 178.8 2.31372 2.36321 2.87960 

 

 
Figure 4.19 Outlier plot of other electrical equipment  

 

4.1.3.2 Model comparison for other electrical equipment  

Table 4.23 compares the results of fitting different models to the data. The model with the 
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(A) Random walk 

(B) Constant mean = 130.159 

(C) Linear trend = 116.72 + 0.171198 t  

(M) ARIMA(0,1,1)x(0,1,2)12 

(N) ARIMA(0,1,1)x(1,1,1)12 

(O) ARIMA(1,0,1)x(0,1,2)12 

(P) ARIMA(0,1,1)x(0,1,2)12 with constant 

(Q) ARIMA(0,1,1)x(0,1,1)12 

 

Table 4.23 Model comparison of other electrical equipment 

Model RMSE MAE MAPE ME MPE AIC 

(A) 16.9550 12.75770 10.09480 -0.021849 -0.87531 5.79546 

(B) 21.4807 16.30910 13.03420 -0.001665 -2.61263 6.28815 

(C) 19.9712 15.73170 12.77300 -0.008486 -2.31434 6.15525 

(M) 13.2358 10.05160 7.90262 -0.261074 -1.08007 5.20431 

(N) 13.2481 10.01590 7.87201 -0.470550 -1.21133 5.20617 

(O) 13.2029 9.88524 7.69024 0.865738 -0.13887 5.21215 

(P) 13.2129 9.85558 7.79181 -0.769235 -1.46267 5.21367 

(Q) 13.3902 10.33220 8.10228 0.106072 -0.84083 5.21469 

 

Table 4.24 summarises the results of five tests run on the residuals to determine whether 

each model is adequate for the data.  An “OK” means that the model passes the test. The 

currently selected model, i.e. model M passes all the five tests.  Since no tests are statistically 

significant at the 95% or higher confidence level, the current model is adequate for the data.  
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Table 4.24 Estimation period of other electrical equipment 

Model RMSE RUNS RUNM AUTO MEAN VAR 

(A) 16.9550 OK ** *** OK * 

(B) 21.4807 OK *** *** OK *** 

(C) 19.9712 OK *** *** ** *** 

(M) 13.2358 OK OK OK OK OK 

(N) 13.2481 OK OK OK OK OK 

(O) 13.2029 OK OK OK OK OK 

(P) 13.2129 OK OK OK OK OK 

(Q) 13.3902 OK OK OK OK OK 

 

Figure 4.20 corfirms that the selected model, i.e. ARIMA(0,1,1)x(0,1,2)12 of other electrical 

equipmenrt is adequate since there is no autocorrelation in the residuals. 

 
Figure 4.20 Residuals autocorelation for adjusted other electrical equipment 

 

Table 4.25 summarises the statistical significance of the terms in the forecasting model. 

Terms with p-values less than 0.05 are statistically significantly different from zero at the 95% 

confidence level.  

 

The p-values for the parameters are less than 0.05, and hence significantly different from 
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Table 4.25 Estimates of parameters of other electrical equipment 

Parameter Estimate Stnd. Error T P-value 

AR(1) 0.355515 0.0821945 4.32529 0.000029 

AR(2) 0.327082 0.0821918 3.97950 0.000112 

SAR(1) 1.128970 0.0741390 15.22780 0.000000 

SAR(2) -0.542350 0.0601540 -9.01602 0.000000 

SMA(1) 1.722490 0.0522924 32.93960 0.000000 

SMA(2) -0.758869 0.0495383 -15.31880 0.000000 

Mean 1.662870 0.5097050 3.26241 0.001395 

Constant 0.218180    

Estimated white noise variance = 39.4219 with 137 degrees of freedom 
Estimated white noise standard deviation = 6.27869 
 

4.1.3.3 Diagnostic test for residuals 

The modified Box-Pierce test suggests that there is no autocorrelation left in the residuals 

(Table 4.26). This is confirmed by the ACF and PACF plots of the residuals given in figure 

4.21 and figure 4.22 respectively. 

 

Table 4.26 Modified Box-Pierce Chi-Square statistic of other electrical equipment 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lags 12 24 36 48 

Chi-Square 9.400 16.800 30.400 47.400 

DF 8 20 32 44 

P-Value 0.309 0.666 0.545 0.336 

 

 
Figure 4.21 ACF of Residuals for other electrical equipment  
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Figure 4.22 PACF of Residuals for other electrical equipment 

 

The last diagnostic check is the 4-in-1 residual plots in figure 4.23 which is the normal 

probability plot, residual versus the fitted value, histogram of the residuals and time series plot 

of the residuals. 

 

Figure 4.23 indicates that the fit is acceptable because from the normality plot it can be 

observed that the residuals are independent and normally distributed since they fall 

approximately on a straight line. The histogram plot shows that the residuals are normally 

distributed since the plot is approximately symmetric about the mean zero. The fitted values 

against the residuals confirm that the model is adequate since there is no correlation. The 

time series of the residuals also indicate that correlation does not exist. 
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Figure 4.23 Residual Plots for other electrical equipment 

 

Table 4.27 presents the forecasted values and the confidence interval for the year 2011 of 

other electrical equipment using ARIMA (0, 1, 1)x(0, 1, 2)12. 

 

Table 4.27 Forecasts for other electrical equipment 

LL 
FORECASTS FOR OTHER ELECTRICAL 

APPLIANCES (Jan-Dec 2011) UL 

136.7026 162.9260990 189.1496 

157.2820 184.3282224 211.3744 

168.1752 196.0198406 223.8645 

144.5108 173.1315525 201.7523 

147.7548 177.1312691 206.5077 

153.8972 184.0103967 214.1235 

160.1591 190.9913399 221.8236 

156.2398 187.7747437 219.3097 

158.2721 190.4944466 222.7168 

168.0046 200.8999792 233.7954 

165.8346 199.3895641 232.9445 

145.0328 179.2345470 213.4363 
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4.1.4 Communication apparatus  

Figure 4.24 is a trend analysis for differenced communication apparatus data which confirms 

that the data is stationary at a constant variance and mean zero. 

 

 
Figure 4.24 Trend of transformed data for communication apparatus 
Transfd.=Transformed data 

 

Figure 4.25 and figure 4.26 of the ACF and PACF respectively show that there are large 

positive correlations at certain lags of the ACF plot and a negative correlation at certain lags 

of the PACF plot. 

 
Figure 4.25 ACF of transformed data for communication apparatus 
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Figure 4.26 PACF of transformed data for communication apparatus 
 

4.1.4.1 Testing for Heteroskedasticity using ARCH test: Communication apparatus 

Table 4.30 shows the Yule-Walker maximum likelihood estimates used in computing the 

maximum likelihood estimates. The MSE for the autoregressive model table 4.30 is 211.48 

which is small compared to that of the ordinary least square (308.53) in table 4.28. The total 

R-squared statistic computed by autoregressive model is 0.33 (table 4.30), which is too small 

in helping to improve the prediction of the next communication apparatus values. Durbin-

Watson statistic indicates that there is no autocorrelation left in the residuals since the value 

is approximately 2 from table 4.30. 

 
Table 4.28 Ordinary Least Square estimates of communication apparatus 

Ordinary Least Squares Estimates 

SSE 47513.628 DFE 154 

MSE 308.53000 Root MSE 17.5650200 

SBC 1344.95941 AIC 1338.85969 

MAE 28.6855313 AICC 1338.93813 

MAPE 15.5386644 Regress R-Square 0.0073 

Durbin-Watson 0.8617000 Total R-Square 0.0073 
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Table 4.29 Parameter estimates of communication apparatus 

Variable DF Estimate Standard Error t Value Approx Pr> |t| 

Intercept 1 96.2380 2.8262 34.05 <.0001 

Time 1 0.0331 0.0312 1.06 0.2903 

 
Table 4.30 Yule-Walker estimates of communication apparatus 

Yule-Walker Estimates 

SSE 32145.4763 DFE 152 

MSE 211.48340 Root MSE 14.5424 

SBC 1294.49297 AIC 1282.29354 

MAE 11.4888108 AICC 1282.55844 

MAPE 12.36726 Regress R-Square 0.0032 

Durbin-Watson 2.0051 Total R-Square 0.3284 

 
Table 4.31 Parameter estimates of communication apparatus 

Variable DF Estimate Standard Error t Value Approx Pr> |t| 

Intercept 1 95.2082 5.6301 16.91 <.0001 

time 1 0.0430 0.0619 0.70 0.4880 

 

Figure 4.27 shows the standardised residuals against the fitted values. The points in the plot 

seem to be fluctuating randomly around zero in an un-patterned fashion. The assumptions of 

zero mean and constant variance of the random errors hold. 

 

 

Figure 4.27 Standardised residuals for communication apparatus  
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Figure 4.28 depicts the predicted values and actual values of the accumulators. The predicted 

values seem to follow the pattern formed by the actual values of accumulators, which indicates 

that the model fitted is good. 

 
 
 
 

 

 

 

 

 

 
 
 
 
 

Figure 4.28 Predicted values versus actual plot for communication apparatus 
 

Figure 4.29 and figure 4.30 show that the residuals are normally distributed since the Q-Q plot 

dots lie on a straight line. 

 

 

Figure 4.29 The Q-Q plot of residuals for communication apparatus 
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Figure 4.30 Histogram of the residuals for communication apparatus 
 

Figure 4.31 presents the ACF of the residual plot depicting no autocorrelation, with the 

exception of a high autocorrelation of 0.4 at lag 12. It can be concluded that the overall model 

is a good model to be fitted. 

 

 

Figure 4.31 Autocorrelation of Residuals plot for communication apparatus 
 

Figure 4.32 presents the PACF of residual plot indicating no autocorrelation left except at 

lag 12. It can thus be concluded that the model shows a good fit. 
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Figure 4.32 Partial autocorrelation of residuals plot for communication apparatus 
 

4.1.5 Accumulators 

Figure 4.33 is a trend analysis for differenced accumulators data which confirms that the data 

is stationary at a constant variance and mean zero. 

 

 
Figure 4.33 Trend analysis for differenced accumulators 
Transf=transformed data  
 

As shown from ACF plot in figure 4.34 most of the correlations are small. There are fairly large 

negative correlations at certain lags (lag 1 and 10) and positive correlations of 0.28 and 0.30 
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As shown from ACF plot in figure 4.35 most of the correlations are small. There are fairly large 

negative correlations at certain lags (lag 1, 2 and 10) and a positive correlation of 0.19 at lag 

13. 

 
Figure 4.34 ACF of transformed data for accumulators 

 

 
Figure 4.35 PACF of transformed data for accumulators 
 

4.1.5.1 Testing for Heteroskedasticity using ARCH test: Accumulators 

Table 4.35 shows the Yule-Walker maximum likelihood estimates used in computing the 

maximum likelihood estimates. The MSE for the autoregressive model is 223.92 (table 4.35) 
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which is small compared to the ordinary least squares of 295.01 in table 4.32. The total R-

squared statistic computed by autoregressive model is 0.58 (table 4.35), which is too small in 

helping to improve the prediction of the next accumulator values. Table 4.35 presents Durbin-

Watson value of 2.0727 which indicates that most of the autocorrelation has been removed 

in the ACF and PACF of the residuals. Thus the residuals are independent. 

 

Table 4.32 Ordinary Least Squares Estimates for accumulators 

Ordinary Least Squares Estimates 

SSE 45432.1951 DFE 154 

MSE 295.01425 Root MSE 17.17598 

SBC 1337.9713 AIC 1331.87158 

MAE 27.3255705 AICC 1331.95002 

MAPE 13.9964523 Regress R-Square 0.4410 

Durbin-Watson 
1.0333 Total R-Square 0.4410 

 
Table 4.33 Parameter estimates for accumulators 

Variable DF Estimate Standard Error t Value Approx Pr> |t| 

Intercept 1 75.8612 2.7636 27.45 <.0001 

Time 1 0.3366 0.0305 11.02 <.0001 

 
Table 4.34 Estimates of Autoregressive Parameters for accumulators 

Estimates of Autoregressive Parameters 

Lag Coefficient Standard Error t Value 

1 
-0.412082 0.080225 -5.14 

2 
-0.147390 0.080225 -1.84 

 

Table 4.35 Yule-Walker estimates for accumulators 

Yule-Walker Estimates 

SSE 34036.5854 DFE 152 

MSE 223.92490 Root MSE 14.96412 

SBC 1303.33052 AIC 1291.13110 

MAE 11.8931847 AICC 1291.39600 

MAPE 12.1496983 Regress R-Square 0.17860 

Durbin-Watson 2.0727 Total R-Square 0.58120 
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Table 4.36 Parameter estimates for accumulators 

Variable DF Estimate Standard Error t Value Approx  Pr> |t| 

Intercept 
1 75.9596 5.3284 14.26 <.0001 

Time 
1 0.3367 0.0586 5.75 <.0001 

 

Figure 4.36 shows the standardised residuals against the fitted values. The points in the plot 

seem to be fluctuating randomly around zero in an un-patterned fashion. The assumptions of 

zero mean and constant variance of the random errors hold. 

 

 

Figure 4.36 Standardised residuals plot for accumulators 
 

Figure 4.37 indicates the predicted and actual price indices of the accumulators. The predicted 

values seem to follow the pattern formed by the actual values which indicates that the model 

is appropriately fitted. 

 

Figure 4.37 Predicted values versus actual plot for accumulators 
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The Q-Q plot and the histogram in figure 4.38 and figure 4.39 of the residuals respectively, 

assure normality of the residuals. 

 

 

Figure 4.38 The Q-Q plot of residuals for accumulators 
 

 

Figure 4.39 Histogram of the residuals for accumulators 
 

The ACF of the residuals shown in figure 4.40 shows that there is still some small significant 

values left (at lag 12) but most of the autocorrelation has been modeled out. 
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Figure 4.40 Autocorrelation of Residuals plot for accumulators 

 

Although most of the autocorrelation is now modeled out, some small significant values are 

left at lag 12 as depicted from the PACF of residuals (figure 4.41). Hence the model fits quite 

well. 

 

 

Figure 4.41 Partial autocorrelation of residuals plot for accumulators 
 

4.2 Exponential smoothing  

Exponential smoothing (ES) is a particular type of moving average technique applied to time 

series data. It is used to produce smoothed data for presentation, or to make forecasts. It 

describes a class of forecasting methods. ES assigns exponentially decreasing weights as 

the observations get older, i.e. new observations are given relatively more weights in 

forecasting than the older observations. 
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4.2.1 Types of Exponential smoothing 

We describe three types of ES.  

1. Single Exponential smoothing (SES) 

SES, also known as simple exponential smoothing, is used for short-range forecasting, 

usually just one month into the future. This model assumes that the data fluctuates around a 

reasonably stable mean (no trend or consistent pattern of growth). 

 

2. Double Exponential smoothing (DES) 

DES method is used when the data shows a trend. Exponential smoothing with a trend works 

much like simple exponential smoothing except that two components must be updated each 

period level and trend. The level is the smoothed estimate of the value of the data at the end 

of each period and the trend is the smoothed estimate of the average growth at the end of 

each period. 

 

3. Triple Exponential smoothing (TES) 

TES method is used when the data shows trend and seasonality. To handle seasonality, a 

third parameter should be added and the resulting set of equations will be called the Holt-

Winters. There are two main Holt-Winters models, depending on the type of seasonality. The 

methods are multiplicative seasonal model and additive seasonal model. 

4.2.1.1 SES results: Accumulators 
Statistical package “Zaitun Time Series” was used to select parameter values. Table 4.37 

shows a summary of the results from the SES model. The only two accuracy measures of 

interest are MAE and MAPE. The smaller the accuracy measure the better the model. SES 

has the accuracy measures of MAE=11.84 and MAPE=11.96 values with 𝛼 = 0.3. Figure 4.42 

shows the actual and predicted values of monthly data for the accumulators. 

Table 4.37 SES model summary for the Accumulators 

Alpha (for data) 0.300 

Accuracy Measures  

Mean Absolute Error (MAE) 11.814404 

Sum Square Error (SSE) 34598.201377 

Mean Squared Error (MSE) 221.783342 

Mean Percentage Error (MPE) -1.113259 

Mean Absolute Percentage Error (MAPE) 11.955545 
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Figure 4.42 Actual and predicted accumulators graph using SES (Holt) 

 

The plot of the residuals depicts a pattern that appears from the graph (figure 4.43). The next 

step is to check the DES and TES and determine which one has the best accuracy measures. 

This is done by selecting the one with the smallest accuracy measures from the three 

exponential smoothing models. 

 
Figure 4.43 Residual graph for accumulators 

 

4.2.1.2 DES results: Accumulators 

Table 4.38 shows the results found from DES with  =0.4 and  =0.1. SES does not appear 

to be the best model since the accuracy measures have higher values of MAE=12.45 and 

MAPE=12.65. 
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Table 4.38 DES model summary for accumulators 

Alpha (for data) 0.400 

Gamma (for trend) 0.100 

Accuracy Measures  

Mean Absolute Error (MAE) 12.454235 

Sum Square Error (SSE) 37594.129794 

Mean Squared Error (MSE) 240.988011 

Mean Percentage Error (MPE) -1.514052 

Mean Absolute Percentage Error (MAPE) 12.654135 

 

Figure 4.44 shows the actual and predicted values of monthly data for the accumulators using 

DES method. The predicted values seem to follow the pattern formed by actual values of 

accumulators. 

 
Figure 4.44 Actual and predicted graph for accumulators using DES (Holt) 

 

Figure 4.45 presents the residual plots for the variable “accumulators”. The plot indicates that 

there is a pattern that appears from the graph. It is then required to assess the TES results 

and compare them with those from SES and DES. 
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Figure 4.45 Residual graph for accumulators 
 

4.2.1.3 TES results: Accumulators 

Table 4.39 presents the results from TES with  =0.4, 1.0  and  =0.1. SES and DES do 

not appear to be providing the best models because their values of accuracy measures are 

higher than those of the TES model, hence the TES model is the best model for this data 

generating smaller values of accuracy measures of MAE=9.80 and MAPE=9.72.  

Table 4.39 TES model summary for accumulators 

Alpha (for data) 0.4 

Gamma (for trend) 0.1 

Beta (for seasonal) 0.1 

Accuracy Measures  

Mean Absolute Error (MAE) 9.801742 

Sum Square Error (SSE) 24088.27023 

Mean Squared Error (MSE) 154.411989 

Mean Percentage Error (MPE) -0.910708 

Mean Absolute Percentage Error (MAPE) 9.716937 
 

Figure 4.46 shows the actual and predicted values of monthly data for the accumulators. TES 

predicted the best results compared to SES and DES. 
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Figure 4.46 Actual and predicted graph for accumulators using TES (Holt) 

 

The plot of the residuals (figure 4.47) indicates that there is no trend and the residuals are 

randomly fluctuating around zero.  

 
Figure 4.47 Residual graph for accumulators 
 

4.2.1.4 Comparative model analysis: Accumulators 

In this section, comparative analysis of the TES and neural networks model results is 

performed. The mean absolute error (MAE) and root mean square error (RMSE) are used for 

comparing these models. Table 4.40 presents the TES and neural networks with RMSE of 

12.43 and 0.48, and MAE of 9.8 and 3.46, respectively. Since neural networks have the least 

values of MAE and RMSE, it is considered to be the best model to be fitted. 
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Table 4.40 TES and neural networks results: Accumulators 

Performance criteria 

Model 

TES Neural Networks 

MAE 9.80 3.46 

RMSE 12.43 0.48 

 

Table 4.41 gives the short-term forecasted values using TES and neural networks for 

accumulators. Using the comparative analysis, neural networks outperformed the TES since 

it predicted the best model compared to SES and DES. 

Table 4.41 One year forecast for accumulators 

Period (1 Year) 

Forecasting 

TES Neural Networks Actual values  
Jan-11 123.4120 148.7311 114.7 

Feb-11 147.4224 150.1124 137.7 

Mar-11 156.9043 130.8205 143.2 

Apr-11 152.2763 154.6733 111.8 

May-11 152.8114 104.6015 115.7 

Jun-11 167.8487 128.3510 136.2 

Jul-11 170.2942 103.7154 119.2 

Aug-11 168.2151 128.2186 145.6 

Sep-11 167.6442 95.1595 134.4 

Oct-11 170.2876 52.7081 117.4 

Nov-11 184.9422 57.5935 128.2 

Dec-11 140.6878 78.2054 93.9 

 

Figure 4.48 shows the graphical plot of actual and the predicted monthly values of the 

accumulators. The pattern of the actual values is observed, which has an indication that it can 

produce the best model compared to TES plot.  



 
84 

 

 
Figure 4.48 Actual and predicted graph for accumulators using neural networks 
 

4.2.2.1 TES results: Lighting equipment 

Table 4.42 indicates that the results from TES with  = 0.4, 1.0  and  = 0.1 provide the 

best model compared to SES and DES (Appendix A2.2) since their values of accuracy 

measures were higher compared to the TES model. Thus TES model is the best model for 

this data with smaller accuracy measures of MAE and MAPE (8.53 and 8.36 respectively). 

Table 4.42 TES model summary for lighting equipment 

Alpha (for data) 0.4 

Gamma (for trend) 0.1 

Beta (for seasonal) 0.1 

Accuracy Measures  

Mean Absolute Error (MAE) 8.53 

Sum Square Error (SSE) 17033.84 

Mean Squared Error (MSE) 109.19 

Mean Percentage Error (MPE) -1.03 

Mean Absolute Percentage Error (MAPE) 8.36 

 

Figure 4.49 shows the actual and predicted values of lighting equipment using TES. The plot 

shows that the predicted values seem to follow the seasonal pattern that is formed by the 

original values (actual values of lighting equipment). The results are then compared with the 

results generated by neural networks in table 4.43 and figure 4.44. 
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Figure 4.49 Actual and predicted graph for lighting equipment using TES (Holt)  
 
 

Figure 4.50 shows the residual plot of lighting equipment, which indicates that there is no 

trend because the residuals are constant around mean zero. 

 
Figure 4.50 Residual graph for lighting equipment 
 

4.2.2.2 Comparative model analysis: Lighting equipment 

Comparative analysis of the ARIMA, TES and neural networks model results is performed. 

The RMSE and MAE of the three techniques is performed and neural networks was found to 

be the best predictor with smaller values of the errors, i.e. RMSE = 0.40 and MAE = 4.38. 
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Table 4.43 TES and neural networks results: Lighting equipment 

Performance criteria 

Model 

TES ARIMA Neural Networks 

MAE 8.530331 
8.18 

4.37663 

RMSE 10.449460 
10.52 

0.40362 

 

Table 4.44 shows both the forecasts from exponential smoothing, ARIMA and neural 

networks. The forecasted values to be considered are the ones which were created by neural 

networks since it generated minimum errors compared to TES. 

Table 4.44 One year forecast for lighting equipment 

Period (1 Year) TES ARIMA Neural Networks Actual values 

Jan-11 
90.1389 92.7884 69.5737 

79.9 

Feb-11 
116.5828 122.1202 152.2121 

133 

Mar-11 
118.2939 123.7899 163.1418 

145.9 

Apr-11 
112.5606 118.7743 119.3162 

126.3 

May-11 
123.1749 129.5221 102.3312 

127.5 

Jun-11 
112.8458 122.8690 71.5500 

147.8 

Jul-11 
124.5759 136.5953 64.6909 

120.6 

Aug-11 
123.0088 139.3046 75.8854 

157.1 

Sep-11 
118.7897 134.7883 94.3615 

148.6 

Oct-11 
133.6877 151.9751 129.5268 

168 

Nov-11 
133.5377 152.7876 169.2942 

177.3 

Dec-11 
77.2135 89.8782 53.3467 

81.4 

 

Figure 4.51 shows the graphical plot of actual and the predicted monthly values of the lighting 

equipment. The predicted values follow the pattern of the actual values as an indication that 

it can produce the best model compared to TES plot. 
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Figure 4.51 Actual and predicted graph for lighting equipment using neural networks 
 

Figure 4.52 shows the residual plot of lighting equipment and indicates that there is no trend 

because the residuals are constant around mean zero. 

 

 
Figure 4.52 Actual and predicted graph for lighting equipment using neural networks 
 

4.2.3.1 TES results: Electric machines 

Table 4.45 shows the results found from TES with  =0.3, 1.0  and  =0.1. TES provides 

the best model compared to SES and DES (Appendix A2.3) since the values of accuracy 

measures for SES and DES were higher compared to the TES model. TES model is the best 

model for electric machines data since it has the smaller accuracy measures of MAE and 

MAPE which are 5.01 and 4.57 respectively. 
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Table 4.45 TES model summary for lighting equipment 
Alpha (for data) 0.3 

Gamma (for trend) 0.1 

Beta (for seasonal) 0.1 

Accuracy Measures   

Mean Absolute Error (MAE) 5.01205 

Sum Square Error (SSE) 6315.581 

Mean Squared Error (MSE) 40.48449 

Mean Percentage Error (MPE) -0.23336 

Mean Absolute Percentage Error (MAPE) 4.56679 

 

 
Figure 4.53 Actual and predicted graph for electric machines using TES (Holt) 
 

Figure 4.54 shows the residual plot of electric machines and indicates that there is no trend 

because the residuals are constant around mean zero. 

 
Figure 4.54 Residual graph for electric machines using TES 
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4.2.3.2 Comparative model analysis: Electric machines 
Comparative analysis of the TES, ARIMA and neural networks model results is performed in 

Table 4.46 by comparing the RMSE and MAE for the three techniques. Neural Networks was 

found to be the best predictor of the model by having smaller values of the errors i.e. 0.15 and 

1.31. 

 
Table 4.46 TES and neural networks results: Electric machines 

Performance criteria 

Model 

TES ARIMA Neural Networks 

MAE 
5.012058  4.48266 1.312039 

RMSE 
6.362742  5.85547 0.147486 

 

Table 4.47 shows both the forecasts from ARIMA, TES and neural networks. The forecasted 

values to be considered are the ones which were created by neural networks since it is the 

one with minimum errors compared to TES. 

Table 4.47 One year forecast for electric machines 

Period (1 Year) TES ARIMA Neural networks Actual values 

Jan-11 106.1498 108.1551 97.9053 106.9 

Feb-11 133.2847 123.0454 123.7332 132.0 

Mar-11 139.1603 134.0101 136.1493 144.7 

Apr-11 127.4952 121.6860 116.0232 118.5 

May-11 132.8614 124.8518 126.4274 126.0 

Jun-11 136.6502 128.2026 109.3370 132.9 

Jul-11 139.4348 125.1576 134.8024 122.0 

Aug-11 139.4816 129.9283 127.4171 133.3 

Sep-11 142.8753 127.7204 132.2890 152.1 

Oct-11 149.0648 129.7977 140.2567 139.6 

Nov-11 149.2470 136.2427 143.6134 153.3 

Dec-11 112.2193 105.3092 87.7596 98.6 
 

Figure 4.55 indicates the graph of electic machines and the predicted plot using neural 

networks. Neural networks plot (predicted plot) shows that it is indeed the best since it is 

following the pattern of the actual values of electric machines. 
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Figure 4.55 Actual and predicted graph for electric machines using neural networks 
 

Figure 4.56 shows the residual plot of electric machines and the figure indicates that there is 

no pattern formed because the residuals are constant around mean zero. 

 

 
Figure 4.56 Residual graph for electric machines using neural networks 
 

4.2.4.1 TES results: Communication apparatus 

The results in Table 4.48 were generated from TES with  =0.5, 1.0  and  =0.1. TES is 

the best model compared to SES and DES (Appendix A2.1) since their values of accuracy 

measures were higher compared to those of the TES model. TES model is the best model for 
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this data with smaller accuracy measures of MAE and MAPE, which are 9.06 and 9.67, 

respectively. 

Table 4.48 TES model summary: Communication apparatus 

Alpha (for data) 0.5 

Gamma (for trend) 0.1 

Beta (for seasonal) 0.1 

Accuracy Measures   

Mean Absolute Error (MAE) 9.064287 

Sum Square Error (SSE) 21226.39 

Mean Squared Error (MSE) 136.06660 

Mean Percentage Error (MPE) -1.17068 

Mean Absolute Percentage Error (MAPE) 9.67242 

 

Figure 4.57 shows the actual values of communication apparatus from TES that fitted well 

compared to SES and DES. 

 
Figure 4.57 Actual and predicted graph for communication apparatus using TES 
 

Figure 4.58 shows the residual plot of communication apparatus, and indicates that there is 

no trend because the residuals are constant around mean zero.  
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Figure 4.58 Residual graph for communication apparatus using TES 
 

4.2.4.2 Comparative model analysis: Communication apparatus 

Comparative analysis of the TES and neural networks model results is performed. Table 4.49 

presents the TES and neural networks results. The TES model has MAE and RMSE of 9.06 

and 11.66, respectively; and neural networks model has MAE and RMSE of 1.53 and 0.18, 

respectively. Since neural networks model has the small values of MAE and RMSE it is 

considered to be the best model to be fitted. 

Table 4.49 TES and neural networks results: Communication apparatus 
 
 

 

 

 

Table 4.50 indicates the short-term forecasted values using TES and neural networks for 

communication apparatus. Using the comparative analysis, neural networks outperformed the 

TES.   

Performance criteria 

Model 

TES Neural Networks 

MAE 
9.0642 1.532061 

RMSE 
11.6600 0.184373 
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Table 4.50 One year forecast for communication apparatus 

Period (1 Year) 

Forecasting 

TES Neural Networks Actual values 
Jan-11 86.0517 91.0477 61.8 

Feb-11 109.5270 114.0435 119.9 

Mar-11 109.5417 114.5475 93.8 

Apr-11 93.6122 105.4487 77.3 

May-11 96.0300 123.2062 92 

Jun-11 110.2820 134.0027 97.4 

Jul-11 109.1477 125.2421 114 

Aug-11 105.6018 76.9848 121.1 

Sep-11 122.8064 105.1858 145.3 

Oct-11 118.4200 118.7969 117.2 

Nov-11 122.2045 129.8764 123.9 

Dec-11 102.9943 55.2551 86.1 

 

Figure 4.59 shows the graphical plot of actual values of the communication apparatus and the 

predicted monthly values of communication apparatus using neural networks. The predicted 

graph shows a pattern of the actual values which is a reflection that neural networks produced 

the best model compared to TES plot.  

 
Figure 4.59 Actual and predicted graph for communication apparatus using neural networks  
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Figure 4.60 shows the residual plot of communication apparatus which indicates that there is 

no trend because the residuals are constant around mean zero. 

 
Figure 4.60 Residual graph for communication apparatus using neural networks 
 

4.2.5.1 TES results: Other electrical equipment 

Table 4.51 shows the results generated from TES with  =0.2, 1.0  and  =0.1. TES 

provides the best model compared to SES and DES (Appendix A2.4) since the values of 

accuracy measures for SES and DES were higher compared to the TES model. TES model 

is the best model for this data with smaller accuracy measures of MAE and MAPE which are 

8.33 and 10.44 respectively. 

Table 4.51 TES model summary for other electrical equipment 

Alpha (for data) 0.2 

Gamma (for trend) 0.1 

Beta (for seasonal) 0.1 

Accuracy Measures   

Mean Absolute Error (MAE) 10.43655 

Sum Square Error (SSE) 28873.47193 

Mean Squared Error (MSE) 185.08636 

Mean Percentage Error (MPE) -0.41479 

Mean Absolute Percentage Error (MAPE) 8.33371 
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Figure 4.61 shows the actual and predicted values of communication apparatus from TES. 

TES fitted well by following the pattern of the actual values of other electrical equipment. 

 
Figure 4.61 Actual and predicted graph for other electrical equipment using TES 
 

Figure 4.62 presents the residual plot of other electrical equipment which reveals that there is 

no trend because the residuals are constant around mean zero. 

 
Figure 4.62 Residual graph for other electrical equipment using TES 
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4.2.5.2 Comparative model analysis: Other electrical equipment 

Comparative analysis of the TES, ARIMA and neural networks model results is performed. 

Table 4.52 shows the comparative analysis of TES, ARIMA and the results from neural 

networks. TES and neural networks models have RMSE of 13.60, 13.24 and 0.32 respectively 

and MAE of 10.44, 10.05 and 3.03 respectively. Since neural networks has the small values 

of MAE and RMSE, it is considered to be the best model for forecasting prices of other electric 

equipment. 

Table 4.52 TES and neural networks results: Other electrical equipment 

Performance criteria 

Model 

TES ARIMA Neural Networks 

MAE 10.44 10.05 3.03 

RMSE 13.60 13.24 0.32 

 

Table 4.53 presents the short-term forecasted monthly values for 2011 using TES, ARIMA 

and neural networks for other electrical equipment. Using the comparative analysis, neural 

networks outperformed the TES and ARIMA as the best predictive model. Forecasted values 

from neural networks will be considered since they have the smaller values of RMSE and 

MAE. 

Table 4.53 One year forecast for other electrical equipment 

Period (1 Year) 

Forecasting 

TES ARIMA Neural Networks Actual values  

Jan-11 155.0360 
162.9260900 

104.4897 151.7 

Feb-11 185.5668 
184.3282224 

89.6304 181.2 

Mar-11 195.1242 
196.0198406 

194.0351 183.7 

Apr-11 168.8430 
173.1315525 

134.8331 143.6 

May-11 176.1188 
177.1312691 

194.1389 158.5 

Jun-11 184.1556 
184.0103967 

104.0365 155.9 

Jul-11 189.0652 
190.9913399 

195.2032 149.3 

Aug-11 184.7671 
187.7747437 

187.6238 140.5 

Sep-11 192.7898 
190.4944466 

195.4617 163.2 

Oct-11 207.9910 
200.8999792 

156.9773 156 

Nov-11 201.5963 
199.3895641 

197.7333 188.1 

Dec-11 176.7968 
179.234547 

187.0586 118.5 
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Figure 4.63 shows the actual and predicted values of other electrical equipment using neural 

networks, and reveals that the actual and predicted values seem to follow the same pattern. 

 
Figure 4.63 Actual and predicted graph for other electrical equipment using neural networks 

 

Figure 4.64 shows the residual plot of other electrical equipment, and reveals that there is no 

trend because the residuals are constant around mean zero. 

 
Figure 4.64 Residual graph for other electrical equipment using neural networks  
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4.3 Regression analysis 

Regression analysis is a statistical technique investigating relationships between variables. 

Usually the researcher seeks to ascertain the impact of a number of (independent) variables 

on a single (dependent) variable. The general formulae for multiple linear regression model 

can be written as the response of y  (dependent variable) to several predictors (independent 

variables), i.e.  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜀 …………………………………………………… (3.109) 

 

where y  is the dependent variable (response variable. The parameters 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 are 

regression coefficients and 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 are the predictors (independent variables). 

 

In this study regression analysis is applied in assessing the effect of price indices of electrical 

appliances. In order to incorporate this effect in regression model, monthly dummy variables 

were created. The number of variables depend on the type of data, 11 (eleven) dummy 

variables are created on a 12-month basis. The rule in regard to dummy variables is that the 

number of dummy variables should be equal to the number of categories minus one (Levine 

et al., 2003). The regression model for this study is written as: 

 

LQ = ∑ 𝑑𝑖
12
𝑖=1 + 𝑡 …………………………………….……………………….. (3.110) 

 
where LQ (lighting equipment) is used as predicted variable, 𝑑𝑖 represents the dummies for 

the month effect and 𝑡 represents trend line or time.  

 

The model was fitted using the transformed LQ (lighting equipment) data after removing one 

of the independent variables (d2). Since d2 was found not to be significant we then reran the 

data and the equation developed without that variable. 

 
Table 4.54 shows the model coefficients for the transformed LQ data. The significant column 

(sig.) indicates a significant relationship in linear trend (sig. = 0.000). It is also noticed that all 

the independent variables are significant predictors at the 5% level. The full regression 

equation using unstandardised coefficients (B) is given by:  

LQ (lighting equipment)=0.014-0.000027trend+0.001d1-0.002d3-0.002d4-0.003d5-0.002d6 

-0.003d7-0.003d8-0.003d9-0.004d10-0.004d11 
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where 

d1=January 

d2=February 

d3=March 

d4=April 

d5=May 

d6=June 

d7=July 

d8=August 

d9=September 

d10=October 

d11=November 

d12=December 

t=trend  
 
Table 4.54 Model coefficients for LQ 

Coefficientsa 

Model 1 

Unstandardised Coefficients 
Standardised 
Coefficients 

t Sig. B Std. Error Beta 

(Constant) .014 .000   40.350 .000 

Trend -2.734E-05 .000 -.518 -10.785 .000 

d1 .001 .000 .123 2.180 .031 

d3 -.002 .000 -.241 -4.278 .000 

d4 -.002 .000 -.191 -3.399 .001 

d5 -.003 .000 -.311 -5.532 .000 

d6 -.002 .000 -.208 -3.700 .000 

d7 -.003 .000 -.330 -5.871 .000 

d8 -.003 .000 -.320 -5.696 .000 

d9 -.003 .000 -.304 -5.414 .000 

d10 -.004 .000 -.425 -7.569 .000 

d11 -.004 .000 -.441 -7.844 .000 

a. Dependent Variable: LQ_transformed 
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Table 4.55 presents the model summary. The R-square for the regression model indicates 

that 66.9% of the variation in the price of lighting equipment is accounted for by the regression 

model. The adjusted R-square corrects for the fact that in regression models the R-square 

increases with the number of independent variables or predictors (d1, d3, … ,d11 and t ). The 

adjusted R-square estimates the explained model variation more predictably at 64.4%, which 

seems reasonably high.  

Table 4.55 Model summary for LQ transformed 

Model Summaryb 

Model1 R R Square 
Adjusted R 

Square 

Std. Error of 
the 

Estimate Durbin-Watson 

 .818a .669 .644 .0014232 1.432 
a. Predictors: (Constant), d11, Trend, d6, d7, d5, d8, d4, d9, d3, d10, d1 

b. Dependent Variable: LQ_transformed 

 

The hypotheses tested for this model are: 

HO: There is no linear relationship between the dependent variable (LQ) and the predictors or 

independent variables. 

H1: There is a linear relationship between the dependent variable (LQ) and the predictors or 

independent variables. 

 

Table 4.56 provides the ANOVA table results. A p-value of 0.000 in table 4.56 indicates that 

at least one of the independent variables or predictors is significant in predicting the price 

indices of LQ (lighting equipment) at 5% significant level. 

Table 4.56 ANOVA table 

ANOVAa 

Model 1 
Sum of 
Squares df 

Mean 
Square F Sig. 

Regression .001 11 .000 26.476 .000b 

Residual .000 144 .000   

Total .001 155    
a. Dependent Variable: LQ_transformed 

b. Predictors: (Constant), d11, Trend, d6, d7, d5, d8, d4, d9, d3, d10, d1 
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Figure 4.65 fits regression model to the transformed LQ data. The interest is to find how well 

the model fits the data. The R-square indicates that the model fit is good (R-square=0.669), 

but this needs to be confirmed by plotting lighting equipment and unstandardised predicted 

variables. The fit looks fairly impressive, although the model sometimes tends to over predict 

and under predict at the peaks. 

 

 
Figure 4.65 Fitting regression model to LQ data 

 

Figure 4.66 is the sequence charts of errors of transformed LQ data. The figure intends to find 

out if the errors are random. There appears to be a roughly approximately equal number of 

positive and negative errors. The errors are not random because one positive error tends to 

be followed by another. This indicates that there might be autocorrelation left. 

 

 
Figure 4.66 The sequence charts of errors 
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Figure 4.67 is the ACF plot for transformed LQ data. It can be deduced from ACF plot that 

there is evidence of autocorrelation. In fact, there is a tendency of positive errors but decaying 

slowly. Most of the lags attain significance. For example, for lag 1, lag 3 and lag 12 and only 

three lags are significant. 

 
Figure 4.67 ACF plot of regression error 

 

Figure 4.68 shows the unstandardised residual for the transformed LQ data. The PACF plot 

has basically the same pattern but for only 3 lags being significant (lag 1, lag 3 and lag 12). 

 
Figure 4.68 The PACF plot of regression error 
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4.4 Multivariate time series 

4.4.1 Summary statistics 

Table 4.57 represents the summary statistics for the five variables, namely: Lighting 

equipment, Communication apparatus, Electric machines, Accumulators and Other electrical 

equipment. The table also shows the minimum and the maximum values of each variable of 

the price indices of electrical appliances. 

Table 4.57 Simple Summary Statistics 

Simple Summary Statistics 

Variable Type N Mean 
Standard 
Deviation Min Max Label 

LQ Dependent 156 107.85128 26.07808 53.10 184.50 LIGHTING EQUIPMENT 

CA Dependent 156 98.83910 17.57215 53.80 136.50 COMMUNICATION APPARATUS 

EM Dependent 156 110.61346 14.24103 74.70 145.10 ELECTRIC MACHINES 

AC Dependent 156 102.28333 22.89844 55.40 168.00 ACCUMULATORS 

OEE Dependent 156 130.15769 22.31377 76.30 192.20 OTHER ELECTRICAL EQUIPMENT 
 

4.4.2 Unit Root Test 

Dickey-Fuller unit root test is the most widely used test for non-stationarity that was developed 

by Dickey and Fuller (1979). 

Table 4.58 presents the Dickey–Fuller Root Test and it is used to check whether or not the 

variables are stationary. Table 4.58 suggests that the variables attain stationarity except only 

AC with the single mean of 0.0113. 
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Table 4.58 Dickey-Fuller Unit Root Tests 

Dickey-Fuller Unit Root Tests 

Variable Type Rho Pr < Rho Tau Pr < Tau 

LQ Zero Mean -2.19 0.3083 -1.03 0.2712 

 Single Mean -58.07 0.0012 -5.34 <.0001 

 Trend -120.13 0.0001 -7.47 <.0001 

CA Zero Mean -1.03 0.4661 -0.67 0.4245 

 Single Mean -57.02 0.0012 -5.30 <.0001 

 Trend -57.42 0.0005 -5.30 0.0001 

EM Zero Mean -0.91 0.4877 -0.66 0.4316 

 Single Mean -101.82 0.0001 -7.04 <.0001 

 Trend -139.79 0.0001 -8.21 <.0001 

AC Zero Mean -0.51 0.5666 -0.36 0.5531 

 Single Mean -25.35 0.0024 -3.44 0.0113 

 Trend -58.80 0.0005 -5.36 0.0001 

OEE Zero Mean -0.59 0.5488 -0.44 0.5231 

 Single Mean -44.56 0.0012 -4.52 0.0003 

 Trend -54.84 0.0005 -5.11 0.0002 

 

4.4.3 Sample cross correlations 

Table 4.59 and table A1.3 (Appendix A) have the correlation of 0.82 at lag 0 between EM and 

LQ and thus shows that there is a strong positive relationship between them. The values less 

than close or less than 0.4 will be indicating that there is a little or no correlation between the 

variables.  

Table 4.59 Schematic Representation of Cross Correlations 

 Schematic Representation of Cross Correlations 

Variable/Lag 0 1 2 3 4 5 6 7 8 9 10 

LQ +++++ +++++ +.+++ +.+++ +++++ +.+++ +.+++ +.+++ +.+++ +.+++ +.+++ 

CA +++++ ++.+. .+... .+... .+..+ .+.++ .+... .+... +++++ .++.+ .+... 

EM +++++ +++++ +.+++ +.+++ +.+++ +.+++ +.+.+ +.+.+ +.+++ ...++ ..... 

AC +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ 

OEE +++++ +.+++ +.+++ +.+++ +.+++ +.+++ +.+.+ +.+.+ +.+++ ..+.+ .-..+ 

+ is > 2*std error,  - is < -2*std error,  . is between 
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4.4.4 Tentative order selection 

Table 4.60 and table A1.4 (Appendix A) suggest that VAR (3) is appropriate. Minimum 

information criterion method was used in fitting several models with different values of p and 

q and then selecting the model with the minimum value of the information. According to minic 

(minimum information criterion) method, the smallest value of the criterion is 24.46. 

Table 4.60 Minimum information based on AICC 

Minimum Information Criterion Based on AICC 

Lag MA 0 MA 1 MA 2 MA 3 MA 4 

AR 0 26.797796 26.665288 26.767769 26.734155 26.807283 

AR 1 24.897163 24.557788 24.758209 24.757078 24.848466 

AR 2 24.665451 24.556510 24.655061 24.786243 25.020200 

AR 3 24.455190 24.458712 24.705670 24.993883 25.256593 

AR 4 24.616783 24.649956 24.984307 25.226616 25.491020 

 

Table 4.61 is a schematic representation of partial autoregression. The table works as a 

guideline to determine the order of the VAR model by constructing a confidence interval of 

2 estimated standard errors. Each element of the partial autoregression matrix is classified as 

a “-“, “.” or “+” depending on whether it is below confidence limit, between confidence limits or 

above confidence limit. 

Table 4.61 Schematic representation of Partial Autoregression 

Schematic Representation of Partial Autoregression 

Variable/Lag 1 2 3 4 5 6 7 8 9 10 

LQ +.... ...+. +.-+. ..... ..... ..... ..... .+... ..... ..... 

CA .+... ...+. ..... ..... ..... ..... ..... ..... ..-+. ..... 

EM ..... ..-+. ..... ..... ..... ..... .+... .+... ..... ..... 

AC +.-+. ...+. ..-+. ..... ..... ..... ..... ....+ ..... ..... 

OEE ....+ ..-.+ ..... ..... ...-. ..... ..... ..... ..... ..... 

+ is > 2*std error,  - is < -2*std error,  . is between 
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4.4.5 Model estimation 

Multivariate time series analysis extends many of the ideas of univariate time series analysis 

to systems of equations. The primary model in time series analysis is the vector 

autoregression (VAR), a direct and natural extension of the univariate autoregression. The 

VAR process is the mechanism that is used to link multiple stationary time series variable 

together. 

Table 4.62 and table A1.5 (Appendix A) provide the method and model for the five variables 

of price indices of electrical appliances. A VAR (3) was fitted using the method of the least 

squares. 

Table 4.62 Type of model selected 

Type of Model VAR(3) 

Estimation Method Least Squares Estimation 

 

4.4.6 Multivariate diagnostics 

Diagnostics check is performed in order to determine whether the selected model is an 

adequate model representation of the data, and if the model is adequate the residuals should 

have no significant trend or pattern. 

 

Table 4.63 shows different information criteria methods that were used in the data but the one 

which was considered is AICC method with 24.46. 

 
Table 4.63 Information Criteria 

Information Criteria 

AICC 24.45519 

HQC 24.97673 

AIC 24.33306 

SBC 25.91760 

FPEC 3.71E10 

 

4.4.7 Forecasts 

Forecasted values using multivariate time series are provided in table A1.6 (Appendix A) for 

the five variables for the period of one year.  



 
107 

 

CHAPTER 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 

This chapter focuses on the discussion of findings, conclusion and recommendations. 

In this study price indices of electrical appliances in South Africa using Stats SA’s 

“Manufacturing: Production and Sales” data were analysed. The data was monthly collected 

from January 1998 to December 2010 (2005 was used as a base year). The ultimate aim of 

this study was to analyse the price indices of electrical appliances in South Africa in order to 

determine the factors affecting the price of electrical appliances. The impact of price increases 

on disposable income of consumers was also determined. The final step was to predict price 

indices of electrical appliances by building statistical models for forecasting. 

5.1 Summary and conclusion 

Univariate (ARIMA and Exponential smoothing) time series, multivariate time series, 

regression and neural networks were applied to price indices of the five electrical appliances, 

namely :( lighting equipment, electric machines, other electrical equipment, communication 

apparatus and accumulators).  

Regression analysis was applied to the lighting equipment variable to check for a monthly 

effect after its plot depicted some seasonality pattern. Only February did not have an impact 

or an effect on time since it was found not to be significantly different from zero. December 

was used as the reference variable.  

Based on the monthly effect the impact of price increases on disposable income of consumers 

was largely felt because of the high cost of electrical appliances such as heaters (electric 

machines) during winter season. 

ARIMA models were fitted to three variables namely: lighting equipment, electric machines 

and other electric machines. The other two variables considered in this research, 

accumulators and communication apparatus, failed the diagnostic test for ARIMA. ARCH 

models were then applied to the two variables: accumulators and communication apparatus 

that failed some of the tests when fitting ARIMA models. ARCH managed to give the model 

which satisfied the diagnostic of the residuals.  
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The best models from exponential smoothing, ARIMA models and neural networks were then 

employed in the study for forecasting. The first comparison was made among the three types 

of exponential smoothing (single, double and triple exponential smoothing). Triple exponential 

smoothing was found to be the best model for forecasting compared to SES and DES based 

on the accuracy measures. Comparing the accuracy measures of the three techniques 

(ARIMA, ES and Neural networks), neural networks outperformed the exponential smoothing 

model and ARIMA.  

Multivariate time series was also done with respect to the five variables. The descriptive 

statistics of the price indices of electrical appliances were also performed. 

Then using the Dickey-Fuller unit root test all variables were stationary except accumulators 

with the single mean of 0.0113. A sample cross correlation was done and it revealed a strong 

positive correlation between electrical machines and lighting equipment (0.82) at lag 0 and 

the lowest correlated variables were between LQ and CA of about 0.37 at lag 0. 

The VAR (3) model was selected based on the smallest AICC (24.46). The forecasted values 

using VAR (3) model for the five variables considered under the research has been displayed 

in table A1.6 (Appendix A) for one year. 

Neural networks were then used for the prediction of forecast. 

5.2 Recommendations 

Forecasting is a very important key for the consumers of electrical appliances. During summer 

season electrical appliances such as electric fans and air conditioning plants are used to 

provide us with cool atmosphere. In winter, heaters and air conditioners are used to keep the 

rooms warm. Also refrigerators are very important for food and beverage preservations. 

Communication apparatus are in much use in the modern era. Most companies and 

households will not function in the absence of these speedy means of communication.  

The microwaves and kettles in the majority of workplaces and households get used at regular 

times. Millions of newspapers, magazines and books are published daily. These days 

everyone can find a book of his/her choice and of a relevant standard with the help of electrical 

appliances. Life itself will not be worth living in the absence of such means of invention. 
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The government has to take note of forecasting the price indices for electrical appliances so 

that the consumers can have time in planning ahead. Awareness can also play an important 

role because it will be alerting consumers of the right time to purchase these electrical 

appliances. It is also important to take into consideration the quality and price of the appliances 

to avoid buying them more often as there is a relationship between price and quality of 

appliances. 

With escalating prices of electricity from time to time, information communicated to consumers 

could assist them to more cost-effective electrical appliances.  
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APPENDIX A 

A1 RESULTS OF MULTIVARIATE TIME SERIES 

Table A1. 1 Simple Summary Statistics 

Variable Type N Mean 
Standard 
Deviation Min Max Label 

LQ Dependent 156 107.85128 26.07808 53.10 184.50 LIGHTING EQUIPMENT 

CA Dependent 156 98.83910 17.57215 53.80 136.50 COMMUNICATION APPARATUS 

EM Dependent 156 110.61346 14.24103 74.70 145.10 ELECTRIC MACHINES 

AC Dependent 156 102.28333 22.89844 55.40 168.00 ACCUMMULATORS 

OEE Dependent 156 130.15769 22.31377 76.30 192.20 OTHER ELECTRICAL EQUIPMENT 

 

 

  

Table A1. 2 Cross Covariances of Dependent Series 

Lag Variable LQ CA EM AC OEE 

0 LQ 675.70699 169.48062 302.73751 437.22419 309.27749 

 CA 169.48062 306.80110 96.75723 155.34001 106.65967 

 EM 302.73751 96.75723 201.50693 211.02881 252.27249 

 AC 437.22419 155.34001 211.02881 520.97729 210.46506 

 OEE 309.27749 106.65967 252.27249 210.46506 494.71270 

1 LQ 423.15925 118.56756 182.42429 365.65653 226.10143 

 CA 108.61587 172.60125 32.20097 95.04785 39.11621 

 EM 196.39607 43.46931 105.84505 142.60563 152.92846 

 AC 328.14336 107.42905 128.40864 366.38498 155.64947 

 OEE 229.48723 36.05909 147.28415 153.82627 300.61897 

2 LQ 267.61588 21.98880 63.55264 243.84504 138.30757 

 CA 60.90956 113.52307 -6.35419 53.58328 -6.12156 

 EM 111.52406 -14.17520 33.04663 82.25022 78.70814 

 AC 283.99078 85.56319 89.19071 320.75281 124.40576 

 OEE 138.97746 -34.99041 81.71607 98.05289 216.17290 

3 LQ 291.27074 50.46072 89.27625 258.20522 173.38152 

 CA 32.65144 115.64443 -0.12873 32.17615 38.33784 

 EM 98.52512 17.05068 47.04563 75.80462 115.68355 

 AC 295.76188 125.14256 116.49529 335.66285 161.06550 

 OEE 128.52433 1.59769 94.53789 81.67043 253.95148 

4 LQ 256.10762 89.53525 125.14770 269.11842 237.37939 

 CA 41.28786 119.56115 21.58931 61.58615 78.05846 

 EM 102.01413 36.66117 68.21501 84.32986 156.76769 

 AC 283.92478 122.02132 119.21797 303.48801 180.90271 

 OEE 160.63850 17.25518 124.69946 100.02065 293.33666 

5 LQ 224.41703 15.64287 94.34868 221.19014 216.00302 

 CA 52.44786 103.48229 28.73684 68.86420 70.36117 

 EM 93.24300 1.69796 52.11989 76.12366 126.76047 

 AC 249.26692 94.58017 84.60075 285.16331 130.56492 

 OEE 150.46363 -0.96172 110.69168 95.50866 256.63094 

6 LQ 248.28776 -12.64908 92.51903 215.38575 166.83860 

 CA 6.83203 71.33637 6.34586 31.11497 49.18980 

 EM 75.47817 -22.57847 39.73269 43.90710 98.00549 

 AC 219.14199 77.80095 65.48095 238.87518 104.65510 

 OEE 116.19350 -29.00883 87.74490 45.38573 210.98666 

7 LQ 205.51492 13.06011 89.45055 198.59544 163.46111 

 CA 41.19424 69.63514 29.32516 36.86362 61.98868 

 EM 71.21431 -7.24041 43.24217 45.47139 106.21305 

 AC 230.55567 96.31483 80.33795 243.50241 127.98692 

 OEE 146.51244 -25.59802 99.76308 39.30028 218.14650 

8 LQ 235.42317 11.24564 95.62729 221.85662 176.31016 

 CA 118.16149 95.25049 78.15605 74.61309 114.32304 

 EM 96.61380 -6.75494 56.57560 72.81942 115.35395 

 AC 254.02040 103.87450 87.68922 252.64155 138.47549 

 OEE 170.04519 -5.79058 131.07962 97.39703 235.55669 

9 LQ 233.12059 -13.05074 82.71257 229.68029 133.06061 

 CA 71.49550 82.99268 55.97102 63.58092 104.44720 

 EM 57.99910 -35.02720 29.46015 60.95007 76.05468 

 AC 230.72132 87.69953 72.65614 247.56757 104.18518 

 OEE 89.54563 -41.92379 76.93225 59.81911 184.44693 

10 LQ 199.34247 21.92255 80.42569 207.49859 114.67047 

 CA 21.16158 61.73776 7.94092 18.48219 43.03833 

 EM 20.51043 -36.74252 6.74199 26.08434 40.84862 

 AC 197.46870 92.53515 60.17003 216.32743 85.66982 

 OEE 35.91491 -75.02277 21.87441 -8.68471 105.98937 

Table A1. 3 Cross Correlations of Dependent Series 

Lag Variable LQ CA EM AC OEE 

0 

LQ 1.00000 0.37223 0.82043 0.73691 0.53492 

CA 0.37223 1.00000 0.38914 0.38855 0.27378 

EM 0.82043 0.38914 1.00000 0.65131 0.79900 

AC 0.73691 0.38855 0.65131 1.00000 0.41457 

OEE 0.53492 0.27378 0.79900 0.41457 1.00000 

1 

LQ 0.62625 0.26041 0.49438 0.61629 0.39106 

CA 0.23855 0.56258 0.12951 0.23774 0.10040 

EM 0.53224 0.17483 0.52527 0.44013 0.48436 

AC 0.55306 0.26871 0.39631 0.70326 0.30659 

OEE 0.39692 0.09256 0.46648 0.30300 0.60766 

2 

LQ 0.39605 0.04829 0.17223 0.41098 0.23922 

CA 0.13378 0.37002 -0.02556 0.13403 -0.01571 

EM 0.30223 -0.05701 0.16400 0.25385 0.24929 

AC 0.47865 0.21402 0.27527 0.61568 0.24505 

OEE 0.24037 -0.08981 0.25881 0.19314 0.43697 

3 

LQ 0.43106 0.11083 0.24194 0.43519 0.29988 

CA 0.07171 0.37694 -0.00052 0.08048 0.09841 

EM 0.26701 0.06858 0.23347 0.23396 0.36640 

AC 0.49849 0.31302 0.35955 0.64429 0.31726 

OEE 0.22229 0.00410 0.29942 0.16087 0.51333 

4 

LQ 0.37902 0.19665 0.33916 0.45358 0.41057 

CA 0.09068 0.38970 0.08683 0.15404 0.20036 

EM 0.27646 0.14745 0.33852 0.26027 0.49652 

AC 0.47854 0.30521 0.36795 0.58254 0.35634 

OEE 0.27784 0.04429 0.39495 0.19702 0.59294 

5 

LQ 0.33212 0.03436 0.25569 0.37280 0.37360 

CA 0.11519 0.33729 0.11558 0.17225 0.18060 

EM 0.25269 0.00683 0.25865 0.23494 0.40148 

AC 0.42012 0.23657 0.26111 0.54736 0.25718 

OEE 0.26024 -0.00247 0.35059 0.18813 0.51875 

6 

LQ 0.36745 -0.02778 0.25073 0.36302 0.28856 

CA 0.01501 0.23252 0.02552 0.07783 0.12626 

EM 0.20455 -0.09081 0.19718 0.13551 0.31041 

AC 0.36935 0.19460 0.20210 0.45851 0.20615 

OEE 0.20097 -0.07446 0.27791 0.08940 0.42648 

7 

LQ 0.30415 0.02868 0.24241 0.33472 0.28272 

CA 0.09048 0.22697 0.11794 0.09221 0.15911 

EM 0.19299 -0.02912 0.21459 0.14034 0.33640 

AC 0.38859 0.24091 0.24795 0.46740 0.25210 

OEE 0.25341 -0.06571 0.31597 0.07741 0.44096 

8 

LQ 0.34841 0.02470 0.25915 0.37392 0.30495 

CA 0.25952 0.31046 0.31433 0.18663 0.29345 

EM 0.26183 -0.02717 0.28076 0.22475 0.36535 

AC 0.42813 0.25982 0.27064 0.48494 0.27276 

OEE 0.29411 -0.01486 0.41516 0.19185 0.47615 

9 

LQ 0.34500 -0.02866 0.22415 0.38711 0.23014 

CA 0.15703 0.27051 0.22511 0.15903 0.26810 

EM 0.15718 -0.14087 0.14620 0.18811 0.24088 

AC 0.38887 0.21936 0.22424 0.47520 0.20522 

OEE 0.15488 -0.10761 0.24366 0.11783 0.37284 

10 

LQ 0.29501 0.04815 0.21796 0.34972 0.19833 

CA 0.04648 0.20123 0.03194 0.04623 0.11047 

EM 0.05558 -0.14777 0.03346 0.08051 0.12938 

AC 0.33282 0.23146 0.18571 0.41523 0.16875 

OEE 0.06212 -0.19257 0.06928 -0.01711 0.21424 
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Table A1. 5 Model Parameter Estimates 

Equation Parameter Estimate 
Standard 

Error t Value Pr > |t| Variable 

LQ CONST1 34.39722 23.83365 1.44 0.1512 1 

 AR1_1_1 0.32793 0.14127 2.32 0.0217 LQ(t-1) 

 AR1_1_2 0.07004 0.12862 0.54 0.5869 CA(t-1) 

 AR1_1_3 0.72369 0.37734 1.92 0.0572 EM(t-1) 

 AR1_1_4 -0.12582 0.14266 -0.88 0.3793 AC(t-1) 

 AR1_1_5 -0.18414 0.16587 -1.11 0.2689 OEE(t-1) 

 AR2_1_1 -0.22027 0.14548 -1.51 0.1323 LQ(t-2) 

 AR2_1_2 0.00134 0.13678 0.01 0.9922 CA(t-2) 

 AR2_1_3 -0.13887 0.37940 -0.37 0.7149 EM(t-2) 

 AR2_1_4 0.13085 0.14701 0.89 0.3750 AC(t-2) 

 AR2_1_5 -0.03616 0.16767 -0.22 0.8296 OEE(t-2) 

 AR3_1_1 0.51198 0.14306 3.58 0.0005 LQ(t-3) 

 AR3_1_2 -0.16921 0.12510 -1.35 0.1784 CA(t-3) 

 AR3_1_3 -0.89250 0.35966 -2.48 0.0143 EM(t-3) 

 AR3_1_4 0.33463 0.14256 2.35 0.0203 AC(t-3) 

 AR3_1_5 0.34386 0.16515 2.08 0.0392 OEE(t-3) 

CA CONST2 33.40171 16.51110 2.02 0.0450 1 

 AR1_2_1 0.16810 0.09787 1.72 0.0881 LQ(t-1) 

 AR1_2_2 0.48153 0.08910 5.40 0.0001 CA(t-1) 

 AR1_2_3 0.03387 0.26141 0.13 0.8971 EM(t-1) 

 AR1_2_4 -0.07990 0.09883 -0.81 0.4202 AC(t-1) 

 AR1_2_5 -0.01319 0.11491 -0.11 0.9088 OEE(t-1) 

 AR2_2_1 -0.21908 0.10078 -2.17 0.0314 LQ(t-2) 

 AR2_2_2 0.10583 0.09476 1.12 0.2660 CA(t-2) 

 AR2_2_3 -0.28099 0.26284 -1.07 0.2869 EM(t-2) 

 AR2_2_4 0.16782 0.10184 1.65 0.1017 AC(t-2) 

 AR2_2_5 -0.10433 0.11615 -0.90 0.3706 OEE(t-2) 

 AR3_2_1 -0.08521 0.09910 -0.86 0.3914 LQ(t-3) 

 AR3_2_2 0.07479 0.08666 0.86 0.3897 CA(t-3) 

 AR3_2_3 0.18845 0.24916 0.76 0.4507 EM(t-3) 

 AR3_2_4 0.16884 0.09876 1.71 0.0896 AC(t-3) 

 AR3_2_5 0.08076 0.11441 0.71 0.4814 OEE(t-3) 

EM CONST3 58.13641 13.53351 4.30 0.0001 1 

 AR1_3_1 0.10120 0.08022 1.26 0.2093 LQ(t-1) 

 AR1_3_2 0.01522 0.07304 0.21 0.8352 CA(t-1) 

 AR1_3_3 0.64931 0.21427 3.03 0.0029 EM(t-1) 

 AR1_3_4 -0.12305 0.08101 -1.52 0.1311 AC(t-1) 

 AR1_3_5 -0.08247 0.09419 -0.88 0.3828 OEE(t-1) 

 AR2_3_1 -0.17109 0.08261 -2.07 0.0402 LQ(t-2) 

 AR2_3_2 -0.04430 0.07767 -0.57 0.5694 CA(t-2) 

 AR2_3_3 -0.46025 0.21544 -2.14 0.0344 EM(t-2) 

 AR2_3_4 0.15061 0.08348 1.80 0.0734 AC(t-2) 

 AR2_3_5 0.14855 0.09521 1.56 0.1210 OEE(t-2) 

 AR3_3_1 0.08062 0.08123 0.99 0.3227 LQ(t-3) 

 AR3_3_2 -0.07260 0.07104 -1.02 0.3086 CA(t-3) 

 AR3_3_3 -0.08894 0.20422 -0.44 0.6639 EM(t-3) 

 AR3_3_4 0.17655 0.08095 2.18 0.0309 AC(t-3) 

 AR3_3_5 0.16315 0.09378 1.74 0.0842 OEE(t-3) 

AC CONST4 77.26063 16.99515 4.55 0.0001 1 

 AR1_4_1 0.34857 0.10074 3.46 0.0007 LQ(t-1) 

 AR1_4_2 0.01734 0.09172 0.19 0.8503 CA(t-1) 

 AR1_4_3 -0.14230 0.26907 -0.53 0.5978 EM(t-1) 

 AR1_4_4 0.19908 0.10173 1.96 0.0524 AC(t-1) 

 AR1_4_5 -0.02881 0.11828 -0.24 0.8079 OEE(t-1) 

 AR2_4_1 -0.17467 0.10374 -1.68 0.0945 LQ(t-2) 

 AR2_4_2 -0.02540 0.09754 -0.26 0.7949 CA(t-2) 

 AR2_4_3 -0.27770 0.27054 -1.03 0.3065 EM(t-2) 

 AR2_4_4 0.25566 0.10483 2.44 0.0160 AC(t-2) 

 AR2_4_5 0.05986 0.11956 0.50 0.6174 OEE(t-2) 

 AR3_4_1 0.18816 0.10201 1.84 0.0673 LQ(t-3) 

 AR3_4_2 -0.17527 0.08921 -1.96 0.0515 CA(t-3) 

 AR3_4_3 -0.69888 0.25646 -2.73 0.0073 EM(t-3) 

 AR3_4_4 0.45867 0.10166 4.51 0.0001 AC(t-3) 

 AR3_4_5 0.23740 0.11776 2.02 0.0458 OEE(t-3) 

OEE CONST5 36.24153 19.65961 1.84 0.0674 1 

 AR1_5_1 0.02663 0.11653 0.23 0.8196 LQ(t-1) 

 AR1_5_2 0.07475 0.10610 0.70 0.4823 CA(t-1) 

 AR1_5_3 0.46374 0.31125 1.49 0.1385 EM(t-1) 

 AR1_5_4 -0.12618 0.11768 -1.07 0.2855 AC(t-1) 

 AR1_5_5 0.25270 0.13682 1.85 0.0669 OEE(t-1) 

 AR2_5_1 -0.03043 0.12000 -0.25 0.8002 LQ(t-2) 

 AR2_5_2 -0.17599 0.11283 -1.56 0.1211 CA(t-2) 

 AR2_5_3 -0.98984 0.31296 -3.16 0.0019 EM(t-2) 

 AR2_5_4 0.24620 0.12127 2.03 0.0443 AC(t-2) 

 AR2_5_5 0.40293 0.13830 2.91 0.0042 OEE(t-2) 

 AR3_5_1 0.03072 0.11800 0.26 0.7950 LQ(t-3) 

 AR3_5_2 0.04636 0.10319 0.45 0.6540 CA(t-3) 

 AR3_5_3 0.12242 0.29667 0.41 0.6805 EM(t-3) 

 AR3_5_4 0.06400 0.11759 0.54 0.5871 AC(t-3) 

 AR3_5_5 0.28939 0.13623 2.12 0.0354 OEE(t-3) 

 

  

Table A1. 4 Partial Autoregression 

Lag Variable LQ CA EM AC OEE 

1 LQ 0.50722 -0.03251 -0.24643 0.24248 0.17630 

 CA 0.16204 0.55971 -0.36650 0.04408 0.01905 

 EM 0.13564 -0.08554 0.13752 0.04505 0.14207 

 AC 0.43109 -0.05023 -0.79732 0.59658 0.20505 

 OEE 0.18330 -0.12230 -0.37983 0.05695 0.68890 

2 LQ -0.02531 -0.02659 -0.46948 0.36797 0.05279 

 CA -0.13916 0.15837 -0.32556 0.20207 -0.04715 

 EM -0.07473 -0.04741 -0.50358 0.20959 0.18915 

 AC -0.10798 -0.08803 -0.51810 0.44733 0.09504 

 OEE 0.14012 -0.10113 -1.03999 0.22347 0.49170 

3 LQ 0.48951 -0.16610 -0.85389 0.29945 0.29161 

 CA -0.10720 0.07070 0.22210 0.14358 0.04129 

 EM 0.05514 -0.07308 -0.06123 0.14757 0.11906 

 AC 0.18007 -0.15872 -0.63561 0.40868 0.16644 

 OEE -0.00743 0.05668 0.13878 0.02532 0.22593 

4 LQ -0.07514 -0.01763 -0.33311 0.11958 0.24423 

 CA -0.07890 0.15136 0.24512 -0.08547 -0.05941 

 EM -0.03278 0.06549 -0.04055 -0.00628 0.12812 

 AC -0.08464 0.17837 -0.00873 -0.05202 0.01931 

 OEE -0.07281 0.16123 0.23048 -0.10272 0.15634 

5 LQ -0.11000 0.11553 0.05496 -0.11337 0.03277 

 CA -0.17045 0.17357 -0.12504 0.04781 0.08387 

 EM -0.04725 0.13391 0.07352 -0.15016 0.00694 

 AC -0.23243 0.14459 0.18990 0.02044 -0.06068 

 OEE 0.11899 0.15106 0.06395 -0.29425 0.06099 

6 LQ 0.23286 -0.21938 -0.05178 -0.10563 0.05714 

 CA -0.04198 -0.02448 -0.03644 0.02592 0.06766 

 EM 0.10481 -0.08484 0.06742 -0.13790 0.04446 

 AC 0.11041 -0.05780 -0.13381 -0.08309 -0.00247 

 OEE 0.07427 -0.02093 0.26831 -0.24905 -0.03348 

7 LQ -0.02486 0.21944 -0.63881 0.17823 0.35013 

 CA -0.13320 0.07726 0.37318 -0.04244 -0.09928 

 EM -0.05821 0.17139 -0.18162 0.01261 0.13807 

 AC -0.18304 0.07985 0.27229 0.05318 -0.12869 

 OEE -0.14619 0.08841 0.11520 -0.03126 0.07656 

8 LQ 0.08341 0.31676 -0.33541 0.04432 0.09549 

 CA 0.03601 0.19976 -0.50993 0.08576 0.19231 

 EM 0.01609 0.20680 -0.19095 -0.06302 0.17941 

 AC 0.10529 0.11837 -0.40882 -0.01164 0.30729 

 OEE -0.00389 0.20466 -0.02700 -0.04844 0.08730 

9 LQ 0.02147 -0.15272 -0.28763 0.20539 -0.14554 

 CA 0.02717 0.02402 -0.78516 0.26156 0.21728 

 EM 0.03906 0.00508 -0.35370 0.07838 0.03865 

 AC 0.07351 -0.06319 -0.34439 0.16097 0.08414 

 OEE 0.03405 0.16435 -0.40760 -0.00242 0.06960 

10 LQ 0.29001 -0.15376 -0.32874 -0.05989 -0.04047 

 CA 0.16485 0.05095 -0.18074 0.05413 -0.07431 

 EM 0.17211 -0.10808 -0.10459 -0.04039 -0.10339 

 AC 0.23604 0.00925 -0.23363 -0.09931 -0.06872 

 OEE 0.13532 -0.14031 -0.17131 0.00520 -0.13323 
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Table A1. 6 Forecasts 

Variable Obs Forecast 
Standard 

Error 95% Confidence Limits 

LQ 
 
 
 
 
 
 
 
 
 
 
 

157 103.82648 18.67673 67.22077 140.43220 

158 135.10234 21.63721 92.69418 177.51050 

159 135.10576 21.83135 92.31710 177.89442 

160 132.35126 22.57571 88.10367 176.59885 

161 127.84389 23.10495 82.55901 173.12876 

162 126.62595 23.43864 80.68705 172.56484 

163 130.34132 23.86800 83.56090 177.12173 

164 127.69958 24.17746 80.31263 175.08654 

165 124.13445 24.46087 76.19203 172.07688 

166 124.90920 24.80979 76.28291 173.53549 

167 124.39387 25.07073 75.25614 173.53159 

168 122.95097 25.30451 73.35503 172.54690 

CA 
 
 
 
 
 
 
 
 
 
 
 

157 86.51797 12.93857 61.15885 111.87710 

158 116.07019 14.92668 86.81443 145.32596 

159 118.61271 15.79018 87.66454 149.56089 

160 101.75406 16.65078 69.11912 134.38900 

161 105.45309 17.08120 71.97456 138.93162 

162 110.40802 17.31248 76.47619 144.33986 

163 106.42927 17.56205 72.00828 140.85025 

164 104.40048 17.74573 69.61949 139.18147 

165 103.94694 17.86810 68.92612 138.96776 

166 102.95575 17.95803 67.75865 138.15284 

167 102.49948 18.04632 67.12934 137.86963 

168 101.71263 18.12134 66.19546 137.22980 

EM 
 
 
 
 
 
 
 
 
 
 
 

157 107.38086 10.60524 86.59498 128.16675 

158 137.72875 12.63635 112.96197 162.49554 

159 138.90971 12.76542 113.88995 163.92946 

160 125.45760 13.26197 99.46461 151.45059 

161 125.11731 13.65827 98.34760 151.88703 

162 127.04832 13.80376 99.99345 154.10318 

163 125.59209 13.91014 98.32872 152.85547 

164 124.14142 14.07411 96.55666 151.72617 

165 122.61662 14.20272 94.77981 150.45344 

166 122.05349 14.31631 93.99404 150.11293 

167 122.10189 14.42802 93.82348 150.38030 

168 121.33065 14.52108 92.86986 149.79144 

AC 
 
 
 
 
 
 
 
 
 
 
 

157 113.86360 13.31788 87.76103 139.96616 

158 136.40091 14.98576 107.02937 165.77245 

159 136.72940 15.28678 106.76786 166.69094 

160 127.23349 16.71689 94.46898 159.99800 

161 123.46743 17.70822 88.75997 158.17490 

162 120.70007 18.25395 84.92299 156.47715 

163 121.59867 18.90234 84.55077 158.64657 

164 120.23382 19.48628 82.04141 158.42623 

165 116.77065 19.95130 77.66682 155.87447 

166 116.73547 20.46367 76.62740 156.84353 

167 116.83717 20.89864 75.87659 157.79776 

168 115.55664 21.25808 73.89156 157.22171 

OEE 
 
 
 
 
 
 
 
 
 
 

 

157 151.76812 15.40583 121.57325 181.96298 

158 182.82548 17.48486 148.55578 217.09518 

159 181.69966 18.03519 146.35134 217.04798 

160 159.72135 19.22842 122.03434 197.40836 

161 162.28042 20.31700 122.45983 202.10101 

162 168.53131 20.79012 127.78342 209.27919 

163 162.13956 21.17073 120.64569 203.63343 

164 159.11905 21.62427 116.73627 201.50184 

165 159.36807 21.99500 116.25866 202.47748 

166 157.31157 22.26130 113.68022 200.94292 

167 156.11279 22.52984 111.95511 200.27047 

168 155.17581 22.77553 110.53660 199.81503 



 
116 

 

A2 EXPONENTIAL SMOOTHING RESULTS USING SINGLE AND DOUBLE EXPONENTIAL SMOOTHING 

 A2.1      Analysis for communication apparatus using SES          Analysis for communication apparatus using DES 

 

 

 

 

 

 Time series plot of communication apparatus against the predicted using SES and DES 

                 

 Residual analysis of communication apparatus using SES and DES 

                 

Single Exponential Smoothing 

Variable Communication apparatus 

Smoothing Constant 

Alpha (for data) 0.3 

Accuracy Measures 

Mean Absolute Error (MAE) 11.05716 

Sum Square Error (SSE) 33225.93 

Mean Squared Error (MSE) 212.9867 

Mean Percentage Error (MPE) -2.07491 

Mean Absolute Percentage Error (MAPE) 11.90639 

Double Exponential Smoothing 

Variable Communication apparatus 

Smoothing Constant 

Alpha (for data) 0.2 

Gamma (for trend) 0.1 

Accuracy Measures 

Mean Absolute Error (MAE) 11.31952 

Sum Square Error (SSE) 35558.06 

Mean Squared Error (MSE) 227.9363 

Mean Percentage Error (MPE) -2.03383 

Mean Absolute Percentage Error (MAPE) 12.20871 
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A2.2    Analysis for lighting equipment using SES and DES 

 

Time series plot using SES and DES of lighting equipment 

           
 

Reiduals using SES and DES of lighting equipment 

         

  

SES 

  Variable Lighting equipments 
Smoothing Constant   
Alpha (for data) 0.2 
Accuracy Measures   
Mean Absolute Error (MAE) 15.62779 
Sum Square Error (SSE) 65044.05 
Mean Squared Error (MSE) 416.9491 
Mean Percentage Error (MPE) -2.55327 
Mean Absolute Percentage Error (MAPE) 15.8997 

DES 

Variable Lighting equipments 
Smoothing Constant 

Alpha (for data) 0.1 
Gamma (for trend) 0.1 

Accuracy Measures 
Mean Absolute Error (MAE) 16.46535 
Sum Square Error (SSE) 69671.5 
Mean Squared Error (MSE) 446.6122 
Mean Percentage Error (MPE) -4.11169 
Mean Absolute Percentage Error (MAPE) 16.79785 
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A2.3     Analysis for electric machines using and DES 

 

 

 

 

 

 

 

 
Time series plot using SES and DES of electric machines 

 

      
 
Residual analysis for SES and DES of electric machines 

 

   

  

SES 

Variable Electric machines 

Smoothing Constant 

Alpha (for data) 0.1 

    

Accuracy Measures 

Mean Absolute Error (MAE) 9.812919 

Sum Square Error (SSE) 23623.91 

Mean Squared Error (MSE) 151.4354 

Mean Percentage Error (MPE) 0.011204 

Mean Absolute Percentage Error (MAPE) 9.214591 

DES 

Variable Electric machines 

Smoothing Constant 
Alpha (for data) 0.1 

Gamma (for trend) 0.1 

Accuracy Measures 

Mean Absolute Error (MAE) 9.660573 

Sum Square Error (SSE) 24015.37 

Mean Squared Error (MSE) 153.9447 

Mean Percentage Error (MPE) -1.1232 

Mean Absolute Percentage Error (MAPE) 9.238326 
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A2.4      Analysis for other electrical equipment using SES and DES  

       
Time series SES and DES of other electrical equipment 

 

        

Residuals using SES and DES of other electrical equipment 

        

SES 

Variable Other electrical equipment 

Smoothing Constant 

Alpha (for data) 0.2 

Accuracy Measures  

Mean Absolute Error (MAE) 12.35709 

Sum Square Error (SSE) 39575.35 

Mean Squared Error (MSE) 253.6881 

Mean Percentage Error (MPE) -0.20997 

Mean Absolute Percentage Error (MAPE) 9.74933 

DES 

Variable Other electrical equipment 

Smoothing Constant 

Alpha (for data) 0.2 

Gamma (for trend) 0.1 

Accuracy Measures 

Mean Absolute Error (MAE) 12.47085 

Sum Square Error (SSE) 39767.38645 

Mean Squared Error (MSE) 254.919144 

Mean Percentage Error (MPE) -0.908801 

Mean Absolute Percentage Error (MAPE) 9.933617 


