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ABSTRACT 

Platinum group minerals are abundant in South Africa. Platinum is of great significance in 

catalytic applications and many other medical and pharmaceutical industries. 

Our studies of PtSb2 and PtBi2 were carried out using Density Functional Techniques, 

including LDA and GGA methods. We investigated the pressure dependences of lattice 

parameters and bond lengths of the materials. All these properties were shown to decrease 

with increasing pressure, in a linear fashion. Other features that were studied are the 

electronic properties like density of states (DOS) and optical properties to determine the type 

of material being studied. 

A set of interatomic potentials has been derived for the study of bulk and surface properties 

of PtSb2 using the GULP code (General Utility Lattice Program). These potentials have 

proved to be reliable since they reproduced bulk properties of PtSb2 such as lattice 

parameters and elastic constants. As there are no experimental studies on surfaces we have 

been able, for the first time, to calculate surface energies for the low index surfaces and 

found out that the most stable surface is the {100} Sb terminated one, with the energy of 

0.933 J.m-2 and the least stable is the {111} Sb terminated surface with the energy of 2.586 

J.m-2. 
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Chapter 1 

Introduction 
1.1 General Introduction 

In the past decade, there has been a considerable increase in the computational study of 

materials and the efficiency of the methods employed has improved with the passing of time. 

Studies are carried out using ab initio methods and atomistic methods, which have different 

advantages in the results that they produce. The other difference comes from the fact that ab-

initio calculations take a lot of computational time and that the atomistic methods do not last 

long to complete. 

1.2 Structural Aspects 

The space group of pyrite is Th
6 (Pa-3) where the four metal atoms are located at 4(a) 

positions: (0,0,0), (0,1/2,1/2), (1/2,0,1/2) and (1/2,1/2,0) and the eight antimony atoms are in 

8(c) positions: ±(u,u,u) , ±(u+1/2,1/2-u,-u), ±(-u,u+1/2,1/2-u) and ±(1/2-u,-u,u+1/2). There 

are additional symmetry positions (24d) (x,y,z) with x=0.31681,y=0.09448 and z=0.21362. 

The internal parameter of PtSb2 is u=0.375Å and the lattice parameter of the unit cell a=6.44 

Å [Emtage et al, 1965] obtained from experimental measurements. PtBi2 has the internal 

parameter of 0.3725 Å from calculations and the experimental lattice parameter is 6.625 Å 

[http://webmineral.com/data/Insizwaite.shtml] 

These structures have a pyrite form and therefore their space group is 205 in the 

crystallographic table. They have the same form as the sodium chloride structure, but have a 

dimer of Sb2 (Bi2). This feature makes the bond between the Sb (Bi) to be more covalent. 
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The melting point of PtSb2 is estimated to be around 1500K, which indicates that it takes a 

lot of energy to dissociate this structure. The melting temperature gives a guide as to the 

strength of the material and therefore its crystal energy or lattice energy. 

 

 

Figure 1: A two dimensional pyrite-structured PtSb2

 

1.2.1 PtSb2 

The pyrite crystal is best described in terms of the NaC1 structure with the sublattices 

occupied by platinum atoms and the centres of gravity of antimony and bismuth atoms pairs, 

respectively. The dumbbells are antimony (Sb) along the [111] direction. Whereas the 

antimony/bismuth atoms are tetrahedrally co-ordinated by one antimony/bismuth and three 

platinum atoms, the six nearest neighbour antimony/bismuth atoms at each platinum site 

form slightly deformed octahedra. Due to the deformations of the octahedra, the local 
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symmetry at the sites is reduced from cubic (0h) to trigonal (C3i). The distorted PtSb2 

octahedra are interlinked by common corners and, due to the formation of the <111> 

antimony pairs, have rotated away from the cartesian axes by about 23. For a two-

dimensional crystal the situation is sketched in figure 1 above. Obviously the formation of 

the <111> arresting pairs does not destroy the square planar coordination of the platinum 

atoms. Instead the squares built by the antimony atoms just shrink and rotate. Since the 

orientation of dumbbells conforms to the cubic point group, the underlying Bravais lattice is 

not longer face centered but simple cubic and the unit cell comprises four formula units. Yet 

as will be seen below, some features of the electronic structure my still be understood in 

terms of the face-centered-cubic (fcc) lattice. 

1.2.2 PtBi2 

PtBi2 have a lot in common with PtSb2 in terms of atomic arrangement and the space group. 

It has the pyrite structure, but it is metallic in nature. It is of hydrothermal origin, in a vein 

cutting massif pyrrhotite ore, mostly found in South Africa. The lattice parameter of this 

compound is a = 6.625 Å and the volume 290.78 Å3 determined experimentally. Calculated 

density is given as 13.01 g/ Å3. This material has a tin white colour 

[http://webmineral.com/data/Insizwaite.shtml]. A lot has to be researched and investigated 

about this compound, as there are no known studies carried out on it thus far. 

 

1.3 Literature Review 

Compounds with the pyrite structure especially FeS2 have been studied extensively both 

experimentally [Deer et al 1992, Eyert et al 1998, Jaegerman and Tributsch 1993, Ennaoui 

and Tributsch 1984] and theoretically [Temmerman et al, Zhao et al 1993]. PtSb2 and PtBi2, 

are found in platinum ores and have a similar structure. Little experimental work has been 
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carried out on these compounds. Recent ab initio TB-LMTO and pseudopotential planewave 

studies have shown that FeS2 [Sithole, 2000] and PtAs2 [Ntoahae et al, 1999] are 

semiconductors with an indirect bandgaps of 0.75 and 0.34 eV respectively. In the case of 

PtAs2, the As (4s) states form a separate bonding-antibonding gap at high binding energy 

similar to those of S (3S0) states in pyrite FeS2. The semiconductor gap was found to 

originate from the Pt (5d) and As (4p) hybridization effect. Furthermore, the lattice parameter 

was predicted quite well, without even relaxing the internal parameter. Full relaxation of 

volume and internal parameters of iron pyrite and marcasite FeS2, were also carried out using 

plane-wave pseudopotential methods [Sithole, 2000]. It was found that the internal parameter 

of pyrite decreases with increasing hydrostatic compression and P-V equation of state fell 

slightly closer to the experimental curve that the previous unrelaxed TB-LMTO calculations 

[Sithole, 2000]. 

On the atomistic simulations a new model has been derived for pyrite [de Leeuw et al 2000, 

Sithole et al 2003] and marcasite FeS2 [Sithole et al 2000], and has reproduced bulk and 

surface properties of these materials quite well at both high pressures and temperatures. In 

the current work full relaxation and pressure dependent calculations of the lattice and internal 

parameters, together with charge distributions, density of states and optical properties will be 

carried out using plane-wave pseudopotential (PWP) methods. 

1.3.1 Structural Properties 

Structural properties of a material tell us about the strength of the material. These are more 

pronounced when they are being studied under extreme conditions of high pressure and high 

temperature. Also the colour of materials might give an indication as to what type of material 

we are studying. 
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1.3.2 Electronic and Optical Properties 

Electronic properties of a material help us to consider the material under three main groups, 

namely, metals, semiconductors and insulators. The existence and size of the energy gap (the 

gap between the highest occupied orbitals and the lowest unoccupied orbital) determines the 

type of material. In the case of a metal there is no gap as there is overlap of the orbitals, but 

for semiconductors and insulators there is a gap but is large in insulators. For PtSb2 work has 

been carried out experimentally, and it was found that it has a narrow band gap of about 0.11 

eV [Emtage et al 1965]. The room-temperature elastic-coefficient values calculated from 

sound-velocity measurements made by the pulse-echo technique are from Damon et al (1965) 

and are given in Table 2. Little is known about the compound PtBi2. 

1.3.3 Short review of techniques 

Recent technological developments have led to increasing demands for the materials with 

special properties. Accordingly, qualitatively new classes of materials have emerged with 

properties that are fascinating for both scientists and engineers. The dominating approach in 

studying materials is experiments. However, the possibilities to study materials properties 

from the first-principles electronic theory were enormously enhanced when the density 

functional theory (DFT) was formulated by Kohn and co-workers in the mid-60's. At the 

same time, rapid progress is taking place in the field of numerical computations. These put 

on the agenda the possibility of ab initio design of structural materials. 

In the past twenty years Catlow and co-workers in the field of computer modelling have 

pioneered the study in atomistic modelling, including Molecular Dynamics. The principle 

techniques used in the simulation field are energy minimisation, molecular dynamics and 

Monte Carlo [Catlow and Kotomin, 1990]. 
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Computer simulation studies provide reliable models at the atomistic level by shedding 

insight and understanding of simulated systems, assist in the interpretation of experimental 

data and also by providing numerical data on important parameters difficult to measure using 

experiment. In molecular dynamics, the work of Catlow is very profound, as it involves the 

use of interatomic potentials. Much of this work involves the calculation of surface energies, 

temperature dependency of materials and other interesting properties, like diffusion of 

molecules. 

 

An atomistic simulation involves potential functions and their evaluation. The potential 

energy function expresses the energy of an assembly of atoms or ions as a function of their 

nuclear coordinates. Many successes of this method can be found in the reference given 

above which are benchmarked with experiment. Extensive work has also been done by 

people involved in the development of the theory like Wimmer (1985), Perdew (1986) and 

Payne (1992).  

 

Figures 2 and 3 give an overview on the evolution of computational approaches and the 

choices of the techniques that are being routinely used in the study of materials and their 

properties. 
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Figure 2: Evolution of computational approaches 

 

1.4 Intentions of the Study 

The aim of this work is to study the structures of PtSb2 and PtBi2 using ab-initio and 

atomistic simulations. It will be indicated in the subsequent sections the kinds of methods 

that are traditionally used. We will derive inter-atomic potentials for the study of the bulk 

structure and surface properties, including the calculation of surface energies. Our work on 

atomistic simulations will entail subjecting our materials to high temperatures and pressures 

to find what effect that will have, as they are found in ores under these extreme conditions. 

For studies involving ab initio techniques, we will be focusing our attention on determining 

the structural, electronic and optical properties of PtSb2 and PtBi2. 
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Figure 3: Choices of computational methods 

 

1.5 Outline of the Study 

In chapter 1 there will be topics on literature review, the structure and general aspects 

including the introduction. Chapter 2 will deal with the theoretical basis (foundation), 

concentrating initially on density functional theory. In chapter 3 we will give the results for 

our structural, electronic and optical calculations obtained using CASTEP. Chapter 4 focuses 

on potential models that we will employ in the derivation of interatomic potentials and the 

calculation of surface energies. In chapter 5 a conclusion is given together with the appendix 

and references. 

 19



Chapter 2 

Theoretical Methods 
General Introduction 

Simulation methods are an ideal tool to understand and predict the properties of matter at the 

atomistic level. There are various theoretical methods available for the investigation of 

different properties of materials, and these include ab initio (e.g. Density Functional Theory, 

Hartree-Fock, semi-empirical and classical empirical methods. The first method is about 

treating the system involving the electron (all-electron) and forming the functionals 

(pseudopotentials) for calculations of a myriad of properties of interest. The third focuses on 

the interatomic potentials derived for the attainment of more or fewer properties as the above 

but with less computational effort and time invested. 

2.1 Ab initio methods 

Ab initio, from Latin meaning from first principles, is a group of methods in which molecular 

structures can be calculated using nothing but the Schrödinger equation, the values of the 

fundamental constants and the atomic numbers of the atoms present. In this case, no 

empirical data is used. These methods include density functional theory, Hartree-Fock 

methods and post-Hartree-Fock methods, which are described in the subsequent subsections. 

2.1.1 Formalism of Density Functional Theory 

Shortly after the formulation of quantum mechanics in the mid 1920's, Thomas (1926) and 

Fermi (1928) introduced the idea of expressing the total energy of a system as a functional of 

the total electron density. Because of the crude treatment of the kinetic energy term, i. e. the 

absence of molecular orbitals, the accuracy of these early attempts was far from satisfactory. 

It was not until the 1960's that an exact theoretical framework called Density Functional 
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Theory (DFT) was formulated by Hohenberg and Kohn and Kohn and Sham (1965) that 

provided the foundation for accurate calculations. Earlier, motivated by the search for 

practical electronic structure calculations, [Slater, 1951] had developed an approach, later to 

become the Xα method [Slater, 1974] which was originally intended as an approximation to 

Hartree-Fock theory. Today, the Xα method is generally viewed as a simplified form or 

precursor of density functional theory.  

In contrast to the Hartree-Fock picture, which begins conceptually with a description of 

individual electrons interacting with the nuclei and all other electrons in the system, density 

functional theory starts with a consideration of the entire electron system. In density 

functional theory, the total energy is decomposed into three contributions, a kinetic energy, a 

Coulomb energy due to classical electrostatic interactions among all charged particles in the 

system, and a term called the exchange-correlation energy that captures all many-body 

interactions. This decomposition is formally exact, but the actual expressions for the many-

body exchange and correlation interactions are unknown.  

The Local Density Approximation (LDA) turned out to be computationally convenient and 

surprisingly accurate. In this approximation, the exchange-correlation energy is taken from 

the known results of the many-electron interactions in an electron system of constant density 

(homogeneous electron gas). The LDA amounts to the following picture: at each point in a 

molecule or solid there exists a well defined electron density; it is assumed that an electron at 

such a point experiences the same many-body response by the surrounding electrons as if the 

density of these surrounding electrons had the same value throughout the entire space as at 

the point of the reference electron. The exchange-correlation energy of the total molecule or 

solid is then the integral over the contributions from each volume element.  
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The contributions are different from each volume element depending on the local electron 

density. The LDA is exact for a perfect metal (which has a constant electron density) and 

becomes less accurate for systems with varying electron density. Remarkably, the LDA is 

also quite well suited for systems with a high electron density such as transition metals. In 

DFT, the total electron density is decomposed into one-electron densities, which are 

constructed from one-electron wave functions. These one-electron wave functions are similar 

to those of Hartree-Fock theory. For molecular systems, DFT leads to a molecular orbital 

(MO) picture in analogy to the Hartree-Fock approach.  

DFT has been successfully extended to open-shell systems and magnetic solids [von Barth 

and Hedin, 1972; Gunnarsson et al, 1972]. In these cases, the local exchange-correlation 

energy depends not only on the local electron density, but also on the local spin density 

(which is the difference between the electron density of spin-up electrons and that of spin-

down electrons). The resulting generalization of LDA is called local spin density 

approximation (LSDA). 

A priori it is not clear which of the two pictures, the Hartree-Fock approach or the local 

density functional approach gives better results. In fact, the applicability of the Hartree-Fock 

picture vs. the local (spin) density approximation depends on the effective range of many-

body interactions between electrons. If these interactions are of dimensions of several 

interatomic distances, then the Hartree-Fock description is better. The mathematical objects 

used in Hartree-Fock based approaches to describe these many-body or electron correlation 

effects are molecular orbitals which are quite large, extending over many interatomic 

distances. If, however, these many-body effects are of a more short-range nature, perhaps 

smaller than interatomic distances, then the local density approximation is more appropriate. 

In such a case, a description of these short-range phenomena with large mathematical objects 
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such as molecular orbitals is extremely slowly converging. As quantum chemists are 

painfully aware of, this is indeed the case with configuration interaction methods. 

Experience shows that for many systems including metals, transition metal compounds, but 

also organic and inorganic molecules, the LDA gives surprisingly good results, especially for 

the prediction of structural properties. Configuration interaction expansions, on the other 

hand, are known for their notoriously slow convergence. This may be taken as evidence of 

the more local character of many-body interactions for many systems of interest.  

2.1 2 Evolution of DFT methods 

Prior to the developments of density functional theory, the calculation of energy band 

structures for crystalline solids had become a major goal of computational solid state physics. 

During the 1960's, when quantum chemists began systematic Hartree-Fock studies on small 

molecules, energy band structure calculations of solids were possible only for simple systems 

such as crystals of copper and silicon containing one or a few atoms per unit cell. The aims 

of these efforts in solid-state physics were different from those of quantum chemistry. 

Whereas quantum chemistry focused on the ab initio determination of molecular structures 

and energies, the goal of energy band structure calculations for solids was the understanding 

of conducting and insulting behaviour, the elucidation of the types of bonding, the prediction 

of electronic excitations such as energy band gaps, and the interpretation of photoexcitation 

spectra. 

To this end, semiempirical pseudopotential theory [Phillips, 1958; Cohen and Heine, 1970] 

became a successful and pragmatic approach especially for semiconductors. All-electron 

band structure calculations were applied mostly to transition metals and their compounds. 

Initially, these calculations were carried out non-self-consistently. For a given crystal 
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structure and atomic positions in the lattice, a crystal potential was constructed from 

superposed atomic densities and the energy bands evaluated for selected points in momentum 

space without improving the electron density through a self-consistency procedure. The 

shape of the crystal potential was simplified in the form of a "muffin-tin" potential [Slater, 

1937] with a spherical symmetric potential around the atoms and a constant potential 

between the atomic spheres. For close-packed structures such as fcc Cu, this is an excellent 

approximation and substantially simplifies the calculation of the energy bands. During the 

1960's, self-consistency was introduced still using the simplified "muffin-tin" potential. 

Around 1970, self-consistent muffin-tin energy band structure calculations were possible for 

systems containing a few atoms per unit cell. 

At that time, quantum chemists had already recognized the power of total energies as a tool 

for geometry optimisation of molecules and had developed analytic energy gradients (forces) 

that greatly facilitated geometry optimisations. Shape approximations to the potential are 

questionable for open molecular structures and hence the use of the muffin-tin approximation 

in the form of the so-called multiple-scattering X-alpha method [Slater, 1974] for molecules 

and clusters met with scepticism among many ab initio quantum chemists.  

In computational solid state physics, total energy calculations as a predictive tool for crystal 

structures and elastic properties of solids came into general use only in the mid to late 1970's, 

which was almost 10 years later than the corresponding development in Hartree-Fock theory 

for molecules.  

By 1970, density functional theory had become a widely accepted many-body approach for 

first-principles calculations on solids, superseding the X-alpha-approach. Initially, energy 

band structure methods such as the augmented plane wave (APW) method [Slater, 1937] and 

the Korringa-Kohn-Rostoker (KKR) method [Korringa, 1947; Kohn and Rostoker, 1954] 
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were very tedious since the system of equations to be solved in each iterative step of the self-

consistency procedure were non-linear (the matrix elements depended on the energy). 

Furthermore, the computer hardware at that time was limited both in processor speed, but 

perhaps even more by memory size. A major step forward was the introduction of linearized 

methods, especially the linearized augmented plane wave (LAPW) method [Koelling and 

Arbman, 1975; Andersen, 1975] and the linearized muffin-tin orbital (LMTO) method 

[Andersen, 1975].  

By 1980, quantum chemists had developed analytical second derivatives in Hartree-Fock 

theory for the investigation of structural and vibrational properties of molecules. During the 

same time, computational solid state physicists worked on the formulation of all-electron 

self-consistent methods without muffin-tin shape approximations, such as the full-potential 

linearized augmented plane wave (FLAPW) method with total energy capabilities as 

reviewed by Wimmer et al (1985). Analytic first derivatives (forces) within solid state 

calculations were first introduced in pseudopotential plane wave methods as reviewed by 

Payne et al (1992) and only fairly recently in other solid-state methods. Larger unit cells of 

bulk solids with more degrees of freedom and especially the investigation of surfaces 

required tools for predicting the position of atoms, for example in the case of surface 

reconstructions. Hence, total energy and force methods for solids and surfaces became more 

urgent.  

In solid state calculations, the emphasis had shifted from the prediction of electronic structure 

effects for a given atomic arrangement to the prediction of structural and energetic properties 

as revealed by novel techniques such as extended x-ray absorption fine structure 

spectroscopy (EXAFS) and the scanning tunnelling microscope (STM). Pseudopotential 

theory, originally used in the form of a parameterised semiempirical approach for calculating 
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energy band structures of semiconductors, had been developed into a first-principles method 

with rigorous procedures to construct reliable pseudopotentials [Bachelet et al, 1982]. 

Pseudopotentials turned out to be particularly elegant and useful for the investigation of 

main-group element semiconductors.  

Using the pseudopotential plane wave approach, Car and Parrinello (1985) made an 

important step in the unification of electronic structure theory and statistical mechanics. In 

this approach, it is possible to simulate the motions of the atomic nuclei, as they would occur, 

for example, in a chemical reaction while at the same time relaxing the electronic structure, 

all within a single theoretical framework. Until then, molecular dynamics had been mostly 

the domain of empirical force field approaches, which are not intended for describing the 

formation, and breaking of chemical bonds. 

Density functional theory, originally intended for metallic solid state systems, turned out to 

be also surprisingly successful for describing the structure and energetics of molecules. First 

clear evidence for the capabilities of the local density functional approach for molecular 

systems was given already in the 1970's, but only recent systematic calculations on a large 

number of typical molecules together with the introduction of gradient corrected density 

functionals [Perdew, 1986; Becke, 1988] have made density functional theory an accepted 

approach for quantum chemistry [Labanowski and Andzelm, 1991]. These capabilities of 

density functional theory as tool for molecular and chemical problems are remarkable, since 

the theory was originally developed as approach in solid-state physics.  

2.1.3 Assessment of DFT methods 

In view of the criteria introduced earlier, the status of density functional calculations for 

solids, surfaces, and molecules can be characterized as follows. 
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Capability

Like Hartree-Fock methods, density functional calculations provide structural, energetic, and 

vibrational properties. More than Hartree-Fock calculations, density functional calculations 

enable also the prediction of electronic, optical, and magnetic properties of condensed 

phases. 

Generality

The density functional approach is applicable to all atoms of the periodic table provided 

relativistic effects are taken into account for heavier elements such as third-row transition 

metals, rare earths, and actinides. The approach can be used for metallic, covalent, and ionic 

bonds. Its greatest strength is metallic condensed systems, yet its range includes as well 

organic molecules. With the inclusion of gradient corrections for the exchange-correlation 

term, even weaker interactions such as hydrogen bonds can be reasonably well described. 

Furthermore, so-called "difficult" molecules such as ozone seem to be treated by density 

functional methods with the same level of accuracy as other molecules. Within molecular 

applications, the approach is particularly useful for organometallic systems. Thus, in terms of 

generality and robustness, density functional theory seems to be superior to the Hartree-Fock 

approach. 

Local density functional calculations do encounter problems for narrow-gap insulators and 

certain oxides. The LDA tends to overemphasize the metallic character and one needs to be 

careful in the interpretation of the density functional one-electron energies. Furthermore, 

weaker bonds such as hydrogen bonds are significantly overestimated in the LDA. The 

primary results of density functional calculations are the electron density, the spin density, 

the total energy, and the one-particle energies and wave functions. From these quantities, one 
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can derive important electronic, optic and magnetic properties including dipole (and higher) 

moments, polarizabilities and hyper-polarizabilities, and magnetic moments. LDA 

calculations for systems in their electronic ground state can be used to estimate electronic 

excitation energies including work functions, optical and UV spectra, and core level spectra 

for solids, surfaces, and molecules. 

Accuracy 

Quite consistently, for a great number of strong bonds in solids, molecules, and surfaces, 

interatomic equilibrium distances are predicted by precise density functional calculations to 

within about 0.02 Å of experiment; bond angles and dihedral angles are found within a few 

degrees of their experimental values. Within the local density approximation, binding 

energies are typically overestimated, sometimes by as much as a factor of two. Inclusion of 

non-local gradient corrections [Perdew, 1986; Becke, 1988] improves the values of binding 

energies and brings them to within about 10 kJ/mol of experiment. 

The results obtained at this level of theory are comparable with sophisticated correlated 

quantum mechanical methods such as coupled cluster theory. Vibrational frequencies are 

predicted to within 10-50 cm-1. At present, there is no clear theoretical path that would allow 

the systematic improvement of the accuracy of density functional methods. This is a major 

conceptual difference to Hartree-Fock based methods, where at least in principle there is a 

way for systematic improvements. Practical density functional calculations involve numerical 

integrations in addition to the evaluation of analytical expressions. These numerical 

integrations introduce a numerical noise that can be noticed, for example, in geometry 

optimisations of highly flexible molecules. 
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By increasing the size of the numerical grid, this numerical noise can be controlled, albeit at 

the expense of computational effort. This is in contrast to Hartree-Fock methods, which are 

usually implemented in a completely analytical way. Thus, the numerical precision of 

Hartree-Fock calculations is limited by the machine precision (typically 14 decimal figures) 

whereas the precision of density functional calculations is governed by the grid resolution. 

One could argue that if a theory has a certain intrinsic error compared with experiment, any 

computational approach that gives results within that error range is acceptable and any 

improvement in numerical precision has no physical meaning. On the other hand, it can be 

desirable, for example in the investigation of subtle trends, to have a high numerical 

precision.  

System size 

Density functional calculations are possible for systems of the order of 100 atoms. By 

exploring point-group symmetry, calculations for clusters of over 1000 atoms have been 

demonstrated for fixed geometries. While the self-consistent-field procedure converges 

typically in 10-20 iterations for organic materials and semiconductors, metallic systems and 

especially magnetic transition metals such as Fe and Ni are very difficult to converge. In 

practice, this limits the size of systems that can be treated to perhaps less than 50 atoms per 

unit cell or cluster.  

Tractable time scale 

With the work of Car and Parrinello, density functional calculations have become possible 

for studying dynamic phenomena. However, for a system with about 100 atoms, accurate 

density functional calculations are about 1000 times slower than force field calculations, thus 

reducing the accessible time scales to the range of picoseconds. In practice, the Car-
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Parrinello method is presently used for structure optimisations by simulated annealing rather 

than for dynamic simulations, which has been done so far only for a few cases.  

Computational efficiency 

Depending on the system under investigation, for example a metallic alloy or a molecular 

crystal, density functional theory can be implemented in quite different ways thus leading to 

efficient methods for particular materials. On the other hand, practical Hartree-Fock methods 

require the use of Gaussian basis functions, which can be fairly inefficient, for example for 

close-packed systems. Thus, in general, density functional theory tends to be computationally 

more efficient than Hartree-Fock calculations. 

Without doubt, compared with correlated post-Hartree-Fock methods, density functional 

calculations are by far more efficient computationally, scaling at worst with a third power in 

the number of basis functions. In fact, significant effort is dedicated to the development of 

so-called order-N methods, i.e. methods for which the computational effort increases linearly 

with system size. Such methods have been successfully demonstrated, yet the pre-factor is 

rather large so that these methods are competitive with conventional density functional 

implementations only for systems with several hundred atoms [Mauri et al, 1993; Li et al, 

1993]. 

In molecular calculations it can be important to calculate vibrational frequencies in order to 

determine ground state structures, transition states, and to predict infrared spectra. In Hartree-

Fock theory, this approach is well established, whereas the evaluation of vibrational 

frequencies (i.e. the calculation of the second derivatives of the total energy with respect to 

nuclear displacements) for molecular density functional is been done by a finite difference 

technique using analytic first derivatives. This is computationally not very efficient compared 

with analytical methods. While this type of calculations has been used for density functional 
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methods within the pseudopotential plane wave approach for some time, the implementation 

of analytic second derivatives in localized orbital density functional calculations is a fairly 

recent development (Komornicki and Fitzgerald, 1993). However, this type of calculation is 

quite time consuming and may require supercomputer resources for larger molecules. 

2.1.4 Solution of the Kohn-Sham equation 

The one particle Schrödinger equation, referred to as Kohn-Sham equation is written as 

)()()]()(
2
1[ 2 rrrrV iixcc εψψμ =++∇−    (1) 

 where 2

2
1
∇−  is the kinetic energy,  is the Coulomb energy and )(rVc )(rxcμ  is the exchange 

–correlation. 

 This equation is derived from the three energy terms defined by ][][][ ρρρ xco EUTE ++= . 

The one particle wavefunctions which are the solution of the Kohn-Sham equation, are 

related to the total electron density as 
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where  is the occupation number of state i. The unknown wavefunction in )(riψ  is expanded 

in terms of known basis functions φi(r) with unknown linear coefficients, cij. 
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To obtain the unknown coefficients cij, a variational procedure is applied to solve the 

following matrix: 
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where H and S have matrix elements 
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ε=eigenvalue and c are coefficients of a solution represented as a column vector. Thus to 

obtain the eigenvalues and coefficients the matrix )( SH ε−  is diagonalised, the dimension of 

which is determined by the type of expansion on the wavefunction ψi(r). The matrix can be 

diagonalised using the conjugate gradient scheme. The coulomb potential and the exchange 

correlation potential depend on the charge density, which is constructed from the one-particle 

wavefunction. 

2.1.5 Plane-wave pseudopotential method 

Any periodic function can be expanded in Fourier series, of which the convergence is 

determined solely by the highest frequency at which the series is terminated. Solution of the 

Kohn-Sham equation can be expanded into a three dimensional Fourier series 

 32



 

∑
=

+=
max

0

).()(
j

rGki
ij

k

i
jeCrψ        (6) 

 

where Gj is a reciprocal lattice vector. A large Gmax is required for the resolution of rapid 

variations in the wavefunctions and charge density. These plane wave basis functions are 

delocalized, since they are not associated with any particular atom in the crystal, but defined 

over the entire unit cell. Thus the number of plane-waves to be used in computation depends 

on the size of the unit cell. The eigenfunctions, ψi(r), show nodes near atomic cores which 

causes convergence problems when dealing with closely packed structures, effectively 

rendering plane-waves expansion useless. 

This problem can be handled by coupling the use of plane waves with pseudopotentials (PP) 

[Trollier and Martins, 1991]. Pseudopotential approximation allows the replacement of the 

strong electron-ion potential with a much weaker potential, a pseudopotential, which 

describes all the salient features of a valence electron moving through a crystal, including 

relativistic effects. Hence, pseudo valence electrons and pseudo ion cores now replace the 

original solid. 
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Figure 4: A schematic illustration of all-electron (solid lines) and pseudo- (dashed lines) 

potentials and their corresponding wavefunctions. The radius at which all-electron and 

pseudopotential values match is rc 

 

The pseudo valence electrons experience the same potential outside the core region as the 

original electrons, but have a much weaker potential inside the core region as Figure 4 

shows. Since the potential is weaker, the solution of the Schrödinger equation is faster due to 

small set of plane waves required to expand the wavefunction. Local pseudopotentials are 

those that use the same potential for all angular momentum components of the wavefunction. 

The norm conserving PP by Kleinmann and Bylander [1992], are an example of the non-

local PP.  
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To date, there has been a lot of interest in generating pseudopotentials, to increase the 

efficiency of the method, which will also include all the atoms in the periodic table. Recently, 

the ultrasoft pseudopotentials (US_PP) [Vanderbilt, 1990] implemented in plane-wave 

calculations covers a wide range of atoms, including the transition metals and rare earth 

metals, which were not well represented by the earlier PP. Some of the computer codes based 

on this approach are Vienna Ab initio Simulation Package (VASP) and Cambridge Serial 

Total Energy Package (CASTEP) (Cerius2 and Materials Studio) 

[http://www.accelrys.com/products] 

 

2.2 Potential Model and Atomistic Simulations 

The potential model describes the variation of energy of the system as a function of atomic 

co-ordinate. This energy is derived from the long-range electrostatic forces, short-range 

attractive and repulsive forces. A potential model that accurately describes the lattice 

properties is essential if quantitative results are to be obtained. This is particularly important 

for surfaces where it is necessary to describe the interaction at distances possibly far removed 

from those found in the bulk lattice [Allan, 1993]. An advantage of using the potential model 

over quantum mechanical calculations is that the size of the systems that can be studied is 

larger. 

 The total energy of a crystal is defined as the energy released when different ions making up 

the crystal are brought together from infinite distance to their lattice sites. Thus the lattice 

energy is made up of the electrostatic interactions between the ions and the short-range 

interactions, such as van der Waals attractions and short-range repulsions. In this chapter 

model used to describe short-range interactions in solids, including the derivation of 

potentials will be discussed. 
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2.2.1 Ionic Polarisability 

Ionic polarisability is the induction of a dipole in an ions electron charge cloud when brought 

close to an asymmetric electric field. This dipole can affect the short-range interactions 

between the ions. Rigid Ion Models ignore ionic polarisability and the ions are considered to 

be point charges. Although this may seem simplistic, this type of model has been found to 

work well over a wide range of systems [Harding, 1990]. 

The neglect of ionic polarisability does reduce the accuracy of certain types of calculations. 

For example, lattice vibrations are mainly influenced by ionic polarisation, leading to the 

inability of the Rigid Ion Potential to predict the dynamical properties of the lattice. In 

addition this method is thought to be unsatisfactory when evaluating the effect of a charged 

defect on the lattice [Harding 1990]. A simple description of ionic polarisability can be 

obtained by using the point polarisable model. 

2.2.2 Point Polarisable Model (PPM) 

In the point polarisable model, an electric field E induces a fixed dipole μ, the size of which 

is related via the polarisability α. 

 

Eαμ =          (7) 

The energy of the interacting dipoles can therefore be calculated. This approach is very 

simple and has been used in the calculation of defect energies [Norgett, 1971]. However this 

method does not account for the coupling between short-range repulsions and polarisability, 

leading to calculated values for defect energies being considerably lower than experiment. 

[Faux, 1971] showed that there is a critical distance, rcrit, between the approaching ions, 

above which their mutual interaction is divergent: 
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The shell model can largely overcome these problems. 

2.2.3 Born Model of Solids 

The Born model of solids assumes that the sum of all pairwise interactions between atoms i 

and j gives the lattice energy of the crystal. The lattice energy is given by: 
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The first component defines the long-range electrostatic interactions and the second and third 

defines short-range two-body and many-body interactions. The dash above the summation is 

to show that the interaction where i=j is not included. It is considered adequate to calculate 

only the two body interactions for systems where the interactions are non-directional, such as 

ionic solids. However, when studying systems containing a degree of covalent bonding, the 

evaluation of higher body terms, bond bending and bond stretching terms is necessary to 

include their directionality. 

2.2.4 The Coulombic Potential 

Potential energy of the long-range interactions takes the form: 
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Where qi and qj are the charges on the ions, εo is the permittivity of free space and rij is the 

inter-ion separation. This is the coulombic interaction for long-range interactions and the 

short-range interactions are described using simple parameterised functions, as discussed 

below. The coulombic interaction has a problem of slow convergence as a function of r. 

Hence it is necessary to use mathematical models to deal with this summation. 

Ewald Summation: 

The approach developed by Ewald for summing long ranged potentials in periodic systems 

assumes that the unit cell is periodical in three dimensions and utilises the convergence 

properties of periodic arrays of Gaussian functions. The charge density θ for a point ion i is 

given by 

 

)( latticeii rr −= δθ                 (11) 

 

i.e. using the point ion as the origin, in any direction through the lattice the charge density at 

that point rlattice , can have a value of either 0 or 1. Each ion is then replaced by a Gaussian 

charge distribution of equal magnitude but opposite sign, leading to the expression below 
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where γ is the half width of the Gaussian. This effectively neutralises each ion and so 

removes interactions between neighbouring charges. These charges are short ranged and can 

be calculated in real space. A cancelling charge of the same sign as the original charge is then 

added which reduces the overall potential to that of the original set of point charges. The 

charge density is then as given below:  
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2.2.5 Short Range Two-Body Potential Functions 

Two body potentials represent short-range interaction between two charge clouds, and can be 

attractive (van der Waals) or repulsive .The interaction energies, which comprise the short-

range interaction term, are given by simple parameterised analytical functions. The 

specificity is introduced by having different parameters between different pairs of ions. Thus 

the model depends on using analytical functions that are of appropriate form for the 

interaction energies and the parameters must be carefully chosen. The kinds of functions that 

are successful are given below. All the analytical forms can be classified under bonded and 

non-bonded interactions. 

Harmonic Potential: 

Modelling interactions between bonded ions can be achieved by using the harmonic potential 

form, given below by  
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In which case kij represents the bond force constant associated with the deviation from 

equilibrium bond separation, rij is the interatomic separation and ro is the equilibrium 

separation. This potential is harmonic due to the energy being dependent on the square of the 

displacement of the current bond length rij from the equilibrium bond length, and is used only 

when the bond length does not vary much from the equilibrium. 

Morse Potential: 

The Morse potential is used to model covalently bonded interactions where separations vary 

significantly from equilibrium, such as atoms in molecular ions, displaying the anharmonic 

behaviour missing from the harmonic function. This potential is thus able to model systems 

away from their equilibrium bond distances such as point defects and surfaces or when 

temperature or pressure is applied. It takes the form given below: 

ijoijijijij ArrBArV −−−−= 2)])(exp[1()(           (15) 

 

Where Aij is the bond dissociation energy, ro is the equilibrium bond distance and BBij is 

related to the curvature of the slope of the potential energy well and can be obtained from 

spectroscopic data. Due to its inclusion of the bond energy, the Morse potential is often used 

with subtraction of the Coulomb interaction, allowing it to completely describe the bond for 

nearest neighbours. 

Buckingham Potential: 

The general form of the Buckingham potential is given by the equation below, which 

describes the interaction of second nearest neighbours, as it is a non-bonded pair potential. 
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In the above equation Aij represents the size of the ions whilst ρij represents the hardness 

thereof, and these two terms are tied together in an effective pair potential. The first term 

represents the repulsive interaction between the ions and the second one the van der Waals 

attractive interaction of the ions. In the last term Cij is the dispersion parameter that must be 

fitted like the other two to be able to represent the structure well. However, assigning 

physical meanings to potential parameters is risky because fitting procedure can not fit to 

individual components of the interactions, but to the whole potential surface. 

Lennard-Jones Potential: 

This is another form of non-bonded potential having a repulsive part and an attractive part 

respectively being dependent on r-12 and r-6 as in the Buckingham case. This potential is 

given by the expression below: 
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The Lennard-Jones potential was originally developed to describe noble gases and later 

applied to intermolecular interactions in molecular systems. It is an approximation that 

describes the complicated nuclear and electronic repulsions, which dominate the attractive 

interactions at short distances. 

2.2.6 Many Body Potential Functions 

All of the potential functions discussed in the previous sections have been radial in nature 

with no account to directionality in bonding. Simulating systems in which covalency is 

important, multiple body interactions are commonly employed to confer directionality on the 
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two body bonds. This can take the form of three body interactions for σ bonding and four 

body interactions for π bonding. 

Bond Bending: 

The three body potential is used for modelling partially covalent materials. Changes in 

interaction energy caused by deviation from the equilibrium bond angle,θo, described as the 

angle between a central ion, i, and two adjoining ions j and k are modelled by the three-body 

potential. The potential is dependent on the square of the deviation from the equilibrium 

angle. The term will be zero only at the equilibrium angle and it is given by: 
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kijk is the harmonic force constant, and θ is the bond angle and θo is the equilibrium bond 

angle. 

 

 

Figure 5: Representation of the three body potential or bond bending term. 
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Torsion: 

Four body potentials or torsionals are used to model systems that have planar nature due to π 

bonding. The structural arrangement of four atoms i, j, k and l is shown in the figure below 

 

Hydrogen 

Oxygen 

 

Figure 6: Description of the torsionals by four atoms 

 

2.2.7 The Shell Model 

The shell model by Dick and Overhauser (1958) successfully describes the polarisation and 

the physical distortion of the ion in response to an electric field. The ion is assumed to be 

composed of a core, representing the nucleus and core electrons, and a shell, representing the 

outer electrons. The core and shell carry charges that sum to the ionic charge, and are 

connected by an ionic spring with force constant ki, allowing polarisation of the ion. The total 

interaction of the core and shell of an ion is given by the expression below: 
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where ri is the distance between the core and the shell and Y is the massless shell charge. The 

polarisability of the free ion is given by: 
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Figure 7: The shell model with balls surrounded by springs. 

 

Short-range forces are considered to act between shells whereas the coulombic forces act 

between the shells and cores (except on the same ion). The Shell Model has proved very 

successful in the reproduction of properties such as defect energies, phonon dispersion curves 

and dielectric constants [Cochran, 1973]. An advantage of this method is that if the ions 

distort the polarisability changes. A disadvantage of the shell model is that the parameters 

must be obtained by empirical fitting and experimental data is not always available. In 

addition, the number of species involved in computer simulations is doubled and therefore 

the computing time is doubled. Hence, Rigid Ion Models are often used in Molecular 

Dynamics. Thus to model a system, knowledge of the nature of bonding is important to make 

a proper choice of potential functions. Once these functions are identified, their parameters 

could be derived. 
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2.3 Energy Minimisation techniques 

In this study minimum energy techniques have been applied to study surface energies and the 

one being used in particular is Minimum Energy Techniques Applied to Dislocations, 

Interfaces and Surface Energies (METADISE) which takes the two dimensional periodicity 

into account when calculating their energies. The surface is divided into two regions in which 

case the regions are also divided into blocks. One region is allowed to move whilst the other 

is held fixed and atoms are allowed to assume their most stable positions, as the structure is 

relaxed. 

Static lattice energy minimisations have been used in this work to calculate surface and block 

energies. This type of minimisation is effectively carried out at 0K since it ignores the 

vibrational properties of the crystal, including the zero point energy contribution. However, 

other methods are available which take into account the temperature of the system, like the 

Molecular Dynamics methods. METADISE [Watson et al, 1996] used to calculate minimum 

energies of the surfaces of PtSb2 is partly derived from the MIDAS code developed by 

Tasker (1978). The crystal is considered to consist of a series of charged planes parallel to 

the surface and periodic in two dimensions.  
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Chapter 3 

Electronic Structure Calculations 
3.1 Introduction 

Calculations carried out on both PtSb2 and PtBi2 were performed using planewave-

pseudopotential methods embodied in CASTEP code. We performed geometry optimisations 

and volume relaxation on the structures, equation of states, electronic and optical properties 

were calculated. 

3.2 Methodology 

The plane-wave pseudopotential (PWP) method was used to predict the equilibrium lattice 

parameter, pressure-volume (equation of state (EOS)), bond lengths and internal parameters 

of both PtSb2 and PtBi2. Calculations were performed using the CASTEP code from Accelrys 

[www.accelrys.com/about/msi.html].  

In this code, geometry optimisation is achieved by varying the hydrostatic pressure and 

allowing the lattice to relax using the Broyden-Fletcher-Goldfard-Shanno (BFGS) 

minimisation method to obtain the equilibrium geometry [Broyden, 1970, Fletcher, 1970, 

Goldfard, 1970, Shanno, 1970]. (BFGS) is a quasi-Newton method for energy minimization. 

This method minimizes a real valued function (in this case the heat of formation, ΔHf) 

evaluated for the system after each SCF convergence. Electronic minimisation was 

performed through band-by-band conjugate gradient minimisation technique. 

3.2.1 Energy cut off and k-points sampling 

Some convergence tests were performed for obtaining the energy cut-off, since this is 

important as it determines the number of plane waves required for the calculation. In both 

PtSb2 and PtBi2 the energy cut-off obtained is 600 eV after sampling of the k-points, which 
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were found to be 6x6x6. These tests gave us the minimum energies for both of the structures. 

Figures 8 and 9 indicate the way in which the energy cut-off was chosen upon, for both PtSb2 

and PtBi2 respectively. 
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Figure 8: The variation of the total energy with kinetic energy cut-off for PtSb2. 

 

The minimum energy obtained for PtSb2 is about -4130.0 eV, as opposed to that of PtBi2 of 

approximately -4127.5 eV. In both compounds under study, the convergence of the total 

energies is within a few eV of the kinetic energy cut-off. Convergence is also dependent on 

the number of k-points for the Brilloin zone integration, which for semiconductors/insulators, 

a lot less number of k-points are needed, unlike for metals. 
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Figure 9: The variation of the total energy with kinetic energy cut-off for PtBi2 

 

3.3 Results and Discussions 

In the following subsections, the results obtained are classified under the headings: structural 

properties, electronic properties (density of states), charge distributions and optical 

properties. Our calculations have been performed using Generalized Gradient Approximation 

of Perdew-Burke-Ernzerhof (GGA-PBE), using geometry optimisations, meaning that the 

internal parameters of the Sb and Bi atoms were allowed to vary. As Figures 10 and 11 

indicate, it is possible to predict the lattice parameters (volumes) of systems being studied, 

which is equivalent to calibration in experiments. 
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In Figure 10 of PtSb2 it is clear that the minimum of the total energy is at the lattice 

parameter of 6.400 Å, coming very close to the experimental value of 6.440 Å [Emtage 

1965].  

This is further illustrated in Figure 11 for PtBi2, having an experimental lattice parameter of 

6.625 Å. Our calculation corresponds to the minimum total energy found at 6.600 Å. 

 

3.3.1 Structural Properties 
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Figure 10: Total energy versus the lattice parameter for PtSb2 at ambient pressure. 
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Figure 11: Total energy versus lattice parameter of PtBi2 
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Figure 12: Lattice parameters of PtSb2 and PtBi2 as functions of pressure. 
 

Pressure dependences of the lattice parameters of both PtSb2 and PtBi2 are given in Figure 12 

and these were carried out between –10GPa and 50GPa. The observation is that both 

compounds decrease in size with pressure. 

 

Table 1: Structural properties of PtSb2 and PtBi2. 

 
Bond Lengths Calculated (Å) Experimental (Å) 

Pt-Sb 2.653 - 

Pt-Pt 4.520 - 

Sb-Sb 2.742 2.67* 

Pt-Bi 2.706 - 

Pt-Pt 4.623 - 

Bi-Bi 2.887 - 

* [Emtage 1965] 
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Table 1 gives the structural parameters of both PtSb2 and PtBi2, calculated and experimental 

values. Experimental values of the bond lengths for PtBi2 are not available at this stage. The 

Pt-Sb(Bi) bond lengths are shorter than the  Sb(Bi)-Sb(Bi) lengths. Pt-Pt for PtSb2 is about 

0.103 Å shorter than that of PtBi2 as seen in Figures 13 and 14. Corresponding bond lengths 

of PtSb2 are shorter than those of PtBi2, as is the case of the lattice parameter. 

As expected, the bond lengths shorten with increasing pressure as illustrated in Figures 13 

and 14. The decrease in the bond lengths for both PtSb2 and PtBi2 is similar throughout the 

pressure range. This also applies to the variation of the lattice parameters with pressure. 
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Figure 13: Bond lengths of PtSb2 dependences on pressure. 
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Figure 14: Bond lengths of PtBi2 dependences on pressure. 

 

PtSb2 and PtBi2 have different internal parameters (u), i.e., 0.375 Å and 0.371 Å as it is 

shown in Figure 15. As pressure is increased, the internal parameters decrease. The ambient 

pressure internal parameters for PtSb2 and PtBi2 are respectively and change by 0.267% and 

0.269% at 50 GPa. The decrease in internal parameters indicate that the Sb(Bi)-Sb(Bi) 

positions changes with an increase in pressure. 
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Figure 15: Internal parameters against hydrostatic pressure for PtSb2 and PtBi2 
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Figure 16: Equations of state of PtSb2 and PtBi2 
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3.3.2 Elastic Constants 

From the equation of state in Figure 16, the bulk modulus was calculated using cubic curve 

fitting be 134.8 and 115.4 GPa for PtSb2 and PtBi2 respectively. The bulk modulus of PtSb2 

compares well with the experimental one, 134 GPa, deduced from the elastic constants. 

Elastic constants of PtSb2 were also calculated by planewave pseudopotential methods and 

the values are given in Table 2.  

Room temperature elastic constants of PtSb2 [Damon et al, 1965] have been determined from 

sound-velocity measurements made by the pulse echo technique and the corresponding 

values are reflected in Table 2. There is a good correspondence between calculated and 

experimental elastic constants. The bulk moduli determined from calculated elastic constants 

and equation of states for PtSb2 and PtBi2 are in good agreement. 

 Table 2: Elastic constants 

Elastic Moduli Calculated (GPa) 

PtSb2

Experimental (GPa) 

PtSb2

Calculated (GPa) 

PtBi2 (manually) 

C11 268.8 266.0 243.48 

C12 62.50 68.00 38.86 

C44 - 59.05 - 

2
' 1211 CC

C
−

=  
103.05 99.00 - 

3
2 1211 CC

B
+

=  
131.3 134.0 107.1 

B(EOS) 134.8 134.0 115.4 

Damon et al (1965) 
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3.3.3 Electronic Properties 

Density of States 

Total and partial density of states for PtSb2 and PtBi2 will be presented in this section. The 

density of states calculations were carried out at 0 GPa and show that PtSb2 is a 

semiconductor with a band gap of 0.11 eV. This value is in good agreement with the 

measured energy gap, which ranges between 0.07 eV and 0.11 eV [Emtage, 1965]. As shown 

in Figure 17, the valence part of the DOS consists of a double peak at –13 and -10 eV (bands 

1–4), and a broader distribution extending from –7.5 eV up to the valence-band maximum 

(VBM). The lower part of the conduction band consists of a continuous distribution. A clear 

understanding of the features above can be obtained by studying partial densities of states. In 

Figure 17 the peak at –13 and -10 eV emanates predominantly from the Sb(3p) and Pt(5d) 

states. The broad peak below the bandgap is a contribution from the Sb(3s) and Pt(5d) states.  

 

The portion of this broad peak, which appears immediately below the valence band 

maximum, consists of predominantly of the Pt(4p) and Sb(3s) states. The features of the 

density of states for PtBi2, as depicted in Figure 19, are slightly different. Firstly the 

calculations show no obvious bandgap at the Fermi level, though it passes through a 

pseudogap. This suggests that PtBi2 is metallic and stable. The valence part of the DOS 

consists of two isolated peaks at –12.5 and -10 eV and the partial density of states reflect 

contributions from the Bi(3p) and Pt(5d and 4s) states where the latter are small.  

 

A broader band extending from –6 eV up to the valence-band maximum (VBM) is noted and 

mainly consists of the Bi(3s) and Pt(5d) states. As in PtSb2, immediately below the Fermi 

level, contributions of the Pt(5d), Pt(4p) and Bi(3s) states are observed. The latter states also 

dominate the lower energy end of the conduction band. Figure 17 is an indication of the 
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electronic property of PtSb2 showing that it is a semiconductor by the show of the energy 

gap, as projected around the Fermi level. 
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Figure 17: Partial and total density of states for PtSb2. 
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Figure 18: Finding the energy gap to 0.15 eV, obtained from the total density of states 
for PtSb2. 
 

Experimentally it has been determined that the energy gap ranges between 0.07 eV and 0.11 

eV, and from ab initio calculations we have been able to find it to be approximately 0.15 eV, 

as indicated in Figure 18. Reynolds et al (1968) have also measured the energy gap and have 

found that it shows little dependence on temperature up to 300 K. 
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Figure 19: Partial and total density of states for PtBi2. 
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Figure 20: Total density of states of FeS2. 
 

FeS2 has an indirect band gap of between 0.60 eV and 0.75 eV as obtained using GGA and 

LDA respectively [Sithole 2000] and the band structure also gives the indirect energy gap of 

0.75 eV as the density of states. It also alluded that the energy gap depends strongly on the 

bonding between Fe and S owing to strong hybridisation of Fe (3d) and S (3p). 

3.3.4 Charge Distribution Plots 

Figures 21, 22 and 23 show the charge density differences of three pyrite compounds. The 

first one shows that of PtSb2 followed by those of PtBi2 and FeS2. The red colour in these 

figures shows a charge gain, green indicates a neutral region between the atoms whilst the 
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blue colour signifies charge loss, from the transition metal. The orientation of these slices is 

along the [110] direction in all the structures. 

These kinds of plots give an indication of the type of bonding that is found in a material or 

compound. In the case of PtSb2, we can be able to analyse the bonding between Pt-Sb, Pt-Pt, 

and Sb-Sb. In the case of Pt-Sb, Pt-Bi, Sb-Sb and Bi-Bi there is covalent bonding. The same 

thing applies to other compounds like FeS2 and PtBi2. Bonding in PtSb2 is mainly attributed 

covalency where the electrons from both the elements contribute. There is a very strong 

interaction between the Sb-Sb, Sb-Pt and some kind of metallic bond between the Pt atoms. 

 

 

Figure 21: Charge density differences of PtSb2. 

 

In case of FeS2, there is a high concentration of charge around the Fe atom, depicted as red, 

and the plots appear almost spherical [Sithole, 2000]. For all the compounds, mentioned, 

 61



strong covalent bonding is experienced between the metals and the non-metals, i.e. Fe, Pt and 

S, Sb, Bi. Covalent bonding is also found on the dimers whilst for metal-metal bonding it is 

metallic. 

 

 

Figure 22: Charge density differences of PtBi2. 

 

The red colour around the bismuth atoms bonds indicate the accumulation of charge and this 

is an indication of a strong bond that is formed. Also the bonding between the Pt and Bi seem 

to be strong, and likely to be metallic in nature. Between the metal atoms there is a depletion 

of charge due to the d-orbital, and this gives a picture that there is ionic bonding. 
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3.3.5 Optical Properties 

In general, the difference in the propagation of an electromagnetic wave through vacuum and 

some other material can be described by a complex refractive index.  

iknN +=              (21) 

 
In vacuum, it is real and equal to unity. For transparent materials, it is purely real, the 

imaginary part being related to the absorption coefficient by,  

c
kωη 2

=                                     (22) 

 
the fraction of energy lost by the wave on passing through a unit thickness of the material 

concerned. This is derived through considering the rate of production of Joule heat in the 

sample.  

 
Figure 23: Charge density differences of pyrite, FeS2. 
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The reflection coefficient can be obtained for the simple case of normal incidence onto a 

plane surface by matching both the electric and magnetic fields at the surface,  

 

22

222

)1(
)1(

1
1

kn
kn

N
NR

++
+−

=
+
−

=             (23) 

 

However, when performing calculations of optical properties it is common to evaluate the 

complex dielectric constant, and then express other properties in terms of it. The complex 

dielectric constant )(ωε is given by,  

 

2
21 Ni =+= εεε            (24) 

 

and hence the relation between the real and imaginary parts of the refractive index and 

dielectric constant is,  

 

nkkn 22
22

1 =−= εε          (25) 

 

A further frequent form for the expression of optical properties is the optical conductivity, 

)1(
421 −−=+= ε
π
ωσσσ ii             (26) 

However, this is most useful for metals. A further property we may calculate from the 

complex dielectric constant is the loss function. It describes the energy lost by a point 

electron passing through a homogeneous dielectric material, and is given by,  
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          (27) 

 

Connection to experiment  

Experimentally, the most accessible optical parameters are the absorption )(ωη , and the 

reflection )(ωR  coefficients. In principle, given the knowledge of both, the real and 

imaginary parts of N can be determined, through equations 22 and 23. Equation 24 allows 

expression in terms of the complex dielectric constant. However, in practice, the experiments 

are more complicated than the case of normal incidence considered above. Polarization 

effects must be accounted for, and the geometry can become quite involved (for example, 

transmission through multi-layered films or incidence at a general angle). Only transitions 

between properly selected bands are allowed, i.e., only the bands with the same sign of spin. 

 Connection to electronic structure  

The interaction of a photon with the electrons in the system under study is described in terms 

of time dependent perturbations of the ground state electronic states. Transitions are caused 

between occupied and unoccupied states by the electric field of the photon (the magnetic 

field effect is weaker by a factor of v/c). When these excitations are collective they are 

known as plasmons (which are most easily observed by the passing of a fast electron through 

the system rather than a photon, in a technique known as Electron Energy Loss Spectroscopy 

(EELS), since transverse photons do not excite longitudinal plasmons). When the transitions 

are independent they are known as single particle excitations. The spectra resulting from 

these excitations can be thought of as a joint density of states between the valence and 

conduction bands, weighted by appropriate matrix elements. 

Figures 24-28 show reflectivity and absorption of PtSb2, PtBi2 and FeS2. Comparison is made 

with the reflectivity of pyrite (FeS2), which has been determined both experimentally and 
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computationally. The experimental reflectivity has been measured at different pressures as 

shown in Figure 28. 
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Figure 24: Calculated absorption coefficient of PtSb2 and PtBi2 with frequency. 
 

The absorption versus frequency graph in Figure 24 has enabled us to determine the energy 

gap of PtSb2 noting how it changes towards the origin. The absorption coefficient becomes 

~500 cm-1 at the energy (frequency) of ~0.15 eV, which is comparable to the energy gap of 

0.15 eV determined by density of states (DOS). Reynolds et al report that band to band 

optical absorption threshold is 0.11 eV at 10 K. Intrinsic absorption is small for photon 

energies near 0.11-0.29 eV [Reynolds 1968]. 

Figure 25 shows the experimental absorption coefficient of PtSb2, which [O’Shaughnessy 

and Smith, 1970] comes close to our calculated results. 
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Figure 25: Experimental absorption coefficient of PtSb2 with photon energy 

[O’Shaughnessy and Smith, (1970)]. 

 

Certain transitions occur between 0.0 eV and 15 eV with noticeable absorption peaks 

observed around 8 eV and 13 eV. From Figure 25 it cannot be said with certainty, which 

kinds of transitions are we noting, but they are likely to be associated with the Pt d-states and 

Sb p states. There could also be transitions between the valence and the conduction band 

(intraband transitions) for both occupied and unoccupied orbitals. 

In the case of the calculated PtBi2 absorption in observed throughout the frequency range, 

that is, 0-15eV, and there are possibly transitions that are taking place between the bands as 

 67



they overlap; and we could surmise that there is free movement of electrons from the valence 

to the conduction band. Transitions around 2.0 eV, 6.0 eV, 8 eV and 12.0 eV show strong 

absorption ranging from 200 000 cm-1 to 150 000 cm-1 in magnitude. 

In Figure 26 the reflectivity of PtSb2 is high, above 45.0 % around the frequency of 4.0 eV, 

and it is observed throughout the frequency range though it is smaller in magnitude. In the 

frequency range of interest the lowest reflectivity is just over 20.0 % near 12.0 eV. 

 

Frequency (eV)

0 2 4 6 8 10 12 14

R
ef

le
ct

iv
ity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PtSb2
PtBi2

 
Figure 26: Calculated reflectivity of PtSb2 and PtBi2 with frequency. 
 

Figure 26 gives the reflectivity of PtBi2 over the frequency range 0.0 eV to 15.0 eV, and it is 

evident that high reflectivities occur at lower frequencies, between 0 0 eV and 3.0 eV, where 
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values in excess of 60.0% are attained. It can be seen that over the entire spectrum there are 

intra and inter-band transitions due to the shoulders appearing in the figure. 

 

Figure 27: Calculated reflectivity of pyrite, FeS2 with photon energy [Sithole (2000)]. 

 

The calculated reflectivity for pyrite [Sithole (2000)], between 0.0 eV and 16.0 eV, is shown 

in Figure 27, and can be compared with the experimental results at different pressures 

(Figure 28). The highest reflectivity is slightly in excess of 50.0 % for both the calculated and 
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experimental results, and the lowest is at about 30.0 %. The experimental reflectivity of FeS2 

shows that under high pressure the peaks are shifted to higher energy levels as shown in 

Figure 28. 

 

Figure 28: Experimental reflectivity of pyrite, FeS2 [Mori and Takahashi (1997)]. 

 

Experimental reflectivity of FeS2 performed by Mori and Takahashi, (1997) in the range 0.2 

GPa and 4.2 GPa and also Ferrer et al (1990)) with energy shows a good correspondence 

with calculated reflectivity as depicted in Figures 27 and 28. It can hence be surmised from 
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the validity of the calculated FeS2 reflectivities that those of PtSb2 and PtBi2 are likely to be 

good predictions. 

3.4 Conclusion 

In this chapter we have calculated the lattice parameters and elastic properties of PtSb2 and 

PtBi2. Using DFT (LDA and GGA), which are in good agreement with the available 

experimental results. The study has further depicted that PtSb2 is a semiconductor as deduced 

from the calculated density of states and optical properties, and the estimated energy gap was 

found to be 0.15 eV, which agrees well with the experimentally determined value.  

The density of states for PtBi2 revealed that the material is metallic. It has been shown that 

the bonding between Pt-Sb(Bi) and Sb(Bi)-Sb (Bi) is covalent and that between the Pt and Pt 

is metallic, as deduced from charge density difference plots. 

A very good agreement is found between the experimental and calculated FeS2 and PtSb2 

reflectivity plots, which is a strong indication of the credibility of the ab initio techniques that 

we employed. PtSb2 has reflectivity and conductivity quite at variance with that of PtBi2 as 

the latter material reflects and conducts over the entire frequency range, since it is metallic. 
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Chapter 4 

Potential Derivation and Simulation of the Surfaces 
of PtSb2 

4.1 Introduction 

In this chapter we will outline steps taken in the derivation of interatomic potentials of PtSb2 

and their application to the study of surfaces. 

 

4.2 Potential Derivation 

In the chapter 2 the different models for the interactions between the ions were described and 

it was shown that for any pair of ions there are at least two parameters describing that 

interaction as a function of distance and angle. The specificity and reliability of this approach 

also depend on the quality of the parameters derived. Therefore the methods used to obtain 

parameters are discussed. It should be noted that this step can be by-passed by performing 

direct ab-initio simulations on these systems, however, the ab-initio methods can currently 

only handle a limited number of atoms. 

4.2.1 Non-empirical 

Potential parameters can also be calculated using quantum mechanical methods. In this case, 

the interaction energy between two ions is calculated as a function of distance. The potential 

parameters are then evaluated by fitting to the obtained energy surface. The most common 

method of calculating the interactions is via the electron gas method [Gordon and Kim, 1972] 

The electron density of a lattice of atoms is considered to be the sum of the electron densities 

of the isolated ions. The electron densities around the ions are determined via Hartree-Fock 
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or other electronic structure procedures. A density functional method is then used to calculate 

the components of the short-range energy. 

Potentials derived by direct calculation are valid over a wide range of interionic separations 

or relative interatomic configuration, but external influences must be taken into account. 

Experimental data is often relied upon to modify parameters to yield reliable results. 

4.2.2 Empirical 

This approach uses experimentally observed structure and lattice properties to fit the 

parameters of the short-range functions. Taking a trial set of potential parameters and 

calculating a set of crystallographic, thermodynamic and dynamic data usually initialises the 

fitting procedure. Crystal structure must be included; other properties that can be used are 

cell dimensions, elastic and dielectric constants, and phonon dispersion curves. The 

parameters are then adjusted iteratively, usually by least squares fitting so that they reproduce 

known experimental values and strains are minimised. The empirical approach relies on the 

availability of experimental data. 

A disadvantage of this type of potential is that they are fitted to equilibrium interatomic 

distances, thus they may not give satisfactory results in the calculation of surfaces, defects, or 

molecular dynamics or lattice dynamics calculations at high temperature or pressure where 

the separations are far from the equilibrium configuration. 

 

4.3 Fitting Methodology 

The first issue to be considered when deriving potential parameters is the matching of the 

calculated and observed structural parameters, which requires a least squares fitting of 

calculated parameters to observable properties. The greater the number and the higher the 

quality of observables available, the better will be the quality of determined potential 
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parameters. In the case of empirical potentials, typically the crystal structure, dielectric 

constants and elastic constants are chosen as observables. For non-empirical potentials the 

observables are energy at a given configuration. The approach is to adjust the parameters 

until the smallest sum of squares is obtained. The sum of squares, F, is defined as: 

 

( )2∑ −= obscalc ffwF                      (28) 

 

where fcalc and fobs  are the calculated and observed quantities respectively and w is an 

appropriate weighting factor. The sum of squares is taken over all observables. The choice of 

the weighting factor depends on the magnitude and the reliability of the observable. 

Fitting of the potential parameters is performed as in the case of simultaneous equations, 

where the constants are the observable and the unknown parameters being the potential 

parameters. Thus the number of parameters that could be varied at a time depends on the 

number of observables available. As an example, if the lattice parameter is used as the sole 

observable, only one parameter, say Buckingham Aij could be varied at a time. The parameter 

is then fixed and varies Cij and so on. However, for a number of observables, one can vary all 

parameters describing the potential function at a time and in case of the Buckingham 

potential, Aij, Cij, and ρij could be varied simultaneously.  

A minimum sum of squares does not always lead to accurate prediction of other properties, 

which were not used as observables, for example, phonon frequencies. This condition could 

be occur when the structure is at a local minimum rather than the global minimum, and the 

structure will show instabilities, such as distorted structure and or imaginary phonon 

frequencies. 
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4.4 Types of Surfaces 

Surfaces can be divided into two classes, those that are polar and those that are non-polar as 

shown in Figures 29 and 30. Non-polar surfaces are the easiest and most reliable to model, 

since no corrections need to be made to compute the surface energy (which is the energy 

required to cleave the crystal in order to create the surface) or attachment energy (the energy 

released when a growth slice is attached to the surface). 

Accurate modeling of polar surfaces requires special attention, as it is necessary to neutralize 

the dipole in some way, either mechanically, environmentally or chemically. Mechanical 

neutralization involves moving some ions from one face to another to counteract the dipole; 

chemical neutralization removes some of charge by attaching new charged species, such as 

hydroxy groups to the surface; while environmental neutralization is effected by polarization 

of the surrounding solvent. 

A type I surface, represented in Figure 29, has each plane consisting of anions and cations in 

a stoichiometric ratio. Therefore each plane has an overall zero charge which implies no 

dipole moment perpendicular to the surface. A type II stacking sequence in Figure 29 has 

charged planes, but the repeat unit consists of several planes which when considered together 

have no dipole moment perpendicular to the surface. In both type I and type II surface the 

electrostatic energy converges with the increase in region size. Thus it is important to 

calculate surface energies for different region sizes and obtain minimum surface energy for 

convergence. 

The final type, type III, Figure 30 however, alternately charged planes are stacked and 

produce a dipole moment perpendicular to the surface if cut between any of planes. In nature 

these surfaces are stabilized by defects and/or adsorbed species. We can generate a 

stoichiometric surface by removing half of the ions in the surface layer at the top of the 
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repeat unit and transferring them to the bottom Figure 30, thereby producing a highly 

defective structure. 

 

 

 

 
Figure 29: Types I and II surfaces 
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Figure 30: Type III surfaces 
 

 

The crystal is then divided into two blocks, each of which is divided into two regions, I and 

II, as shown in Figure 31. The ions in region I are allowed to relax explicitly while those in 

region II are fixed at their equilibrium bulk positions, although the two region IIs are allowed 

to move relative to each other. It is necessary to include region II to ensure that the potential 

of an ion at the bottom of region I is modelled correctly [Tasker, 1979]. A surface is created 

when block II is removed with the top of region I as the free surface. Interfaces such as 

stacking faults and grain boundaries can be studied by fitting two surface blocks together in 

different orientations. 
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Figure 31: The two-region approach used in METADISE. (a) The complete crystal and 
(b) half the crystal revealing the surface. 

4.5 Results and Discussion 

In this section we give the calculated surface energies and bulk properties of PtSb2 obtained 

by energy minimisation method using METADISE code.  

 

4.5.1 Bulk Properties of PtSb2 

The bulk properties of PtSb2 were obtained using the energy minimisation code GULP 

(General Utility Lattice Program) [Gale, 1996, 1997, 2003]. Dependences of the elastic 

constants and bulk modulus with temperature and pressure were obtained using GULP, as 

shown in Figures 32, 35, 36 and 37. 
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Table 3: Interatomic potentials for PtSb2. 

Morse (bonded) De (eV) ao  (Å) ro(Å) 

Sb-Sb 4.9655   1.011   2.762 

Buckingham (non-bonded) Aij (eV) ρij (Å) Cij (eVÅ6) 

Sb2-Sb2 342064.086595 0. 226518 183.54707 

Pt-Sb 1686174.889654 0.172432 0.00 

Three-body Potential kb (eV.rad-2) θo (degrees) 

Sb-Sb-Pt 8.151451 103.0 

 

 
Cut off distance 35 Å 

 

Table 3 gives the interatomic potentials, which are robust and produces bulk properties 

consistent with experiment as shown in Table 4. These potentials were derived using the 

GULP code. In Table 4 a validation of our results is presented for the lattice parameter, 

volume, and internal parameter and bond lengths. De is the equilibrium dissociation energy of 

the molecule (measured from the potential minimum) and ao and ro is the bond length and 

equilibrium bond length respectively. Other parameters have their usual meaning as 

explained in Chapter 2. 

 

 

 

 

 79



Table 4: Calculated and experimental structural parameters for PtSb2. 

Parameter Calculated Experimental 

Lattice parameter (Å) 6.441 6.440 

Volume (Å3) 267.2 267.1 

Internal parameter (Å) 0.3438 0.3752 

Bond Lengths (Å)   

Sb-Sb  2.703 2.670 

Pt-Sb  2.678 2.642 

Elastic constants (GPa)   

C11 262.2 266.0 

C44 57.91 59.05 

C12 64.07 68.00 

Bulk Modulus (GPa) 130.1 134.0 

Shear Modulus (GPa) 99.05 N/A 

Young’s Modulus (GPa) 182.2 N/A 

Poisson’s ratio 0.267 N/A 

 

Table 4 gives the relationship of calculated and experimental structural parameters of PtSb2, 

and they all agree within 10 %. The lattice parameter gives an error of 0.2 % while the 

internal parameter has a percentage difference of 9.1 %. Bond lengths are giving errors in the 

region of 1.2 and 1.3 %, which is reasonable enough compared to the experimental values. 

C11 and C44 are in excellent agreement with experiment and C12 gave an error of 6.1 %. 
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These values were obtained by fitting as explained in Section 4.3 (Fitting Methodology) and 

gives good agreement with experimental values, as the interatomic parameters derived in 

Table 3 are reproducing lattice and structural parameters well. 

Temperature and Pressure dependences of Elastic Constants 
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Figure 32: The calculated temperature variation of elastic constants for PtSb2. 

 
All the elastic constants decrease linearly with temperature until 1200K. This is apparent 

by the sudden change at around the melting point, i.e. ~1200K, as when the temperature 

increases the elastic constants decreases. Elastic constants C11 and C12 show some less 

appreciable change at about 1200K. An anomalous behaviour is displayed by C44 at 

around 1200K, as it seems not to decrease with increasing temperature.  
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As other studies have shown [Sithole, 2000], especially for FeS2 (pyrite), the melting 

temperature of materials can be observed by plotting the elastic constants against 

temperature. Ngoepe et al (1990, 1992) also carried studies of LaF3 using Brillouin 

scattering techniques and found that elastic constants decrease linearly with temperature, 

and this is ascribed to lattice expansion. These changes are attributed also to 

anharmonicity in the lattice vibration 
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Figure 33: The calculated variation of the lattice parameter with temperature for PtSb2. 
 

For all real structures the volume increases with increasing temperatures is depicted in 

Figure 33 for PtSb2. This relationship bears testimony to the rule,
bNk

PVT =  where T is 
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the temperature, P, pressure, V, volume, N, number of particles and kb the Boltzmann 

constant. 
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Figure 34: The calculated equation of state for PtSb2. 
 

In Figure 34 the equation of state is shown and has enabled us to calculate the bulk modulus 

of PtSb2 using the Birch-Murnaghan fit [Birch, 1947, Murnaghan. 1944]. The bulk modulus 

obtained using derived interatomic potentials is 138.9 GPa, close to the one found by 

planewave pseudopotential method of 134.8 GPa. The Birch-Murnaghan fit is obtained from 

the equation relation pressure to the reduced volume ,(Vo/V), given by: 
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where  is the first derivative of the bulk modulus and BOB′ Bo is the bulk modulus at zero 

pressure, Vo the equilibrium volume while V is the volume. Fitting to the Murnaghan 

EOS and taking the derivative at zero pressure, yield the bulk modulus 

 

                     )(
dV
dPVB O−=                                                                                          (30) 

 

Thus we are able to determine the bulk modulus at any pressure for materials under 

study. 
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Figure 35: The calculated bulk modulus as a function of temperature for PtSb2. 
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Figure 36: The calculated pressure variation of elastic constants for PtSb2. 

 

The bulk modulus follows the same trend as the elastic constants as shown in Figure 37. 

Pressure dependence of bulk modulus also follows the trend as displayed in Figure 37. Figure 

36 shows change of the elastic constants of PtSb2 with pressure. There is a marked increase 

of the C11 and C12 elastic constants with pressure in contrast to the C44, as is the figure 

indicates. The fact that C44 seem not to increase with increasing pressure or decrease with 

increasing temperature could signal some interesting feature of PtSb2 which needs further 

investigation. 
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Figure 37: The calculated bulk modulus as a function of pressure for PtSb2. 
 

Figure 37 also shows the relationship between the bulk modulus and pressure, which is 

similar to that of elastic constants, particularly C11. Comparison can be drawn with FeS2 

calculated results, [Sithole, 2000], but no experimental results are available for pressure 

work of the elastic moduli. 

 

4.5.2 Surface Properties 

The surface energy γ is a measure of the thermodynamic stability of the surface with a low, 

positive value indicating a stable surface. It is given by: 
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   A
UU bs −=γ                  (31) 

Where Us is the energy of the surface block of the crystal, Ub is the energy of an equal 

number of atoms of the bulk crystal and A is the surface area. The energies of the blocks are 

essentially the sum of the energies of interaction between all atoms. The long-range 

Coulombic interactions are calculated using the Parry technique [Parry, 1975, Parry, 1976] 

whereas the short-range repulsions and Van der Waals attraction are described by 

parameterised analytical expressions.  

Table 5 gives the calculated surface energies of PtSb2 from the derived set of potentials, 

employing energy minimisation technique METADISE. It can be noted that the Sb 

terminated (100) surface is more stable than the others, with the least stable being (111) Sb 

terminated after (111) Pt terminated one. In the appendix the (100) surface slices/cuts are 

given for different terminations. 

The equilibrium surface morphology of a crystal is determined by the surface energy of the 

most stable, or the most dominant surface structure. According to Wulff [1901], the 

equilibrium shape of a crystal is determined by the surface energies of its various surfaces, in 

such a way that the equilibrium morphology is the shape of the crystal with minimum surface 

free energy. If the crystal is limited in space by n flat faces, then: 

 

   
n

n

i

i

hhhhh
σσσσσ

===== .....
3

3

2

2

1

1            (32) 

 

where σi is the specific free energy of the ith face and hi is the distance from the centre of the 

crystal to the plane of the ith face [Tauson et al. 1989] and is normal to the face. Hence the 

height of the face is directly proportional to its specific free energy. At zero Kelvin, the 
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specific free energy is approximately equal to the surface energy as calculated by static 

lattice simulations. Thus the surface energies can be assumed to determine the equilibrium 

morphology of the crystal as follows: 

 

∑= iis AE γ =minimum for constant volume   (33) 

 

where Es is the excess energy for the surface defined by Stoneham (1976) and γi and Ai are 

the surface energy and the surface energy of the ith crystallographic face. 

Table 5: Surface energies of PtSb2

Surface termination γunrelaxed (J.m-2) γrelaxed (J.m-2) 

{100} Pt  2.374 2.271 

{100} Sb  0.948 0.933 

{110} Sb  1.679 1.629 

{110} Pt  1.477 1.432 

{111} Pt  3.054 2.466 

{111} Sb  3.232 2.586 

 

 

Similar surface energies were calculated with the DFT based ab initio codes and are with 

METADISE results in Table 6. A slight percentage difference is observed for the two 

methods employed, but generally there is an overall agreement. As in the other set of 

potentials for which their surface energies are given in the table preceding the previous one, 
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the (100) Sb terminated surface has the lowest surface energy as regards the others, with 

(111) Sb terminated surface having the highest surface energy in the case of METADISE, but 

for CASTEP the highest is the (111) Pt surface with the energy of 1.528 J.m-2. 

It is found that the {100} Sb terminated has the lowest energy (0.933 J.m-2) and is the most 

stable as compared to the least stable (2.586 J.m-2) {111} Sb terminated surface. We only 

looked at the low-index surfaces, as they are the ones that will tell us more about the fastest 

growing faces when considering crystal growth and morphology of the structure. But from 

what is known the surface with the lowest surface energy grows slowest whilst the one with 

the highest surface energy grows fastest. The cut-off for the potential was taken to be 35 Å. 

 

Table 6: Surface energies of PtSb2 in J.m-2. 

Surface termination  CASTEP VASP METADISE 

100 Sb 0.809 0.950 0.933 

111 Sb 1.027 1.990 2.586 

111 Pt 1.528 1.900 2.466 

110 Sb 0.884 1.390 1.628 

110 Pt 1.462 2.400 1.432 

100 Pt 1.247 1.840 2.271 
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Figure 38: Sb terminated (100) surface of PtSb2 before relaxation. 

 

 

Figure 39: Sb terminated (100) surface of PtSb2 after relaxation. 

 91



Figures 38, 39, 40 and 41 gives the simulated low index surfaces employing energy 

minimisation technique, i.e., METADISE, and it was found that relaxation of the atoms is 

between 0.03 Å and 0.07 Å, which is not quite significant. 

 

 

Figure 40: Sb terminated (110) surface of PtSb2 before relaxation 

 

The relaxation is quite observable by looking at the surface energy differences for relaxed 

and unrelaxed calculations. For the most stable (100) Sb surface the energy difference is 

0.015 J.m2 and the least stable surface (111) Sb it is 0.646 Jm2. For other surfaces we 

obtained intermediate values. 
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Figure 41: Sb terminated (110) surface of PtSb2 after relaxation 
 

4.6 Conclusion 

From the above, it is abundantly clear that the sets of potentials that we derived work very 

well for both the bulk structure and the surfaces. Unfortunately there are no surface energies 

found experimentally to compare with but we feel confident that what we have calculated 

using the present set of potentials reproduces the bulk structural properties very well. We saw 

that the {100} Sb terminated surface is the most stable one as compared to the others, with 

the {111} Pt terminated the least stable or unstable, with the highest surface energy amongst 

the other surfaces. Elastic constants decrease linearly with an increase in temperature, whilst 

they increase proportionately with an increase in pressure. 
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Chapter 5 

Conclusions 
 

In the previous chapters we have been able to use different techniques, ab initio (Density 

Functional Theory, GGA-PBE and LDA) and atomistic simulation methods (Free Energy 

Minimisation (METADISE. From this study we were able to investigate several electronic 

and thermodynamic properties of the pyrite structures (PtSb2 and PtBi2). The equation of 

state (EOS) enabled determination of the bulk modulus, which agrees very well to that 

obtained from calculated elastic constants, which in turn accords well with experimental 

results. 

Our ab initio calculations predicted the energy band gap from the density of states 

(electronic) and also from the absorption graphs, which has a relationship with the energy 

gap. The electronic structures indicate the band gap to be dependent on the hybridisation of 

the metal 4d orbitals and metalloids 3p orbitals. The charge distribution plots further indicate 

shows that the Pt- (Sb, Bi), Sb-Sb and Bi-Bi bonding in the structures is mainly covalent. We 

also observed that bond lengths of Pt(Sb,Bi)2 and the internal parameters decrease linearly 

with hydrostatic compression. 

In the atomistic simulation study we managed to derive the first interatomic potentials using 

the code GULP (General Utility Lattice Programme), which we then employed in the 

calculation of surface energies using METADISE code. The interatomic potentials 

reproduced the structure well and yielded elastic constants that are in excellent agreement 

with experimental results. We also carried out high pressure and high temperature 

dependences on structures and elastic properties, which normally occur under laboratory 

conditions, or under extreme conditions in the earth’s mantle/crust. Surface energy 

calculations generally showed the {100} Sb terminated surface to be the most stable and the 
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second most stable surface is {110} Pt terminated surface. Our model also shows that at high 

temperatures the Sb are diffusing faster than the Pt for the surfaces. 

 

5.1 Recommendation for Future Work 

The next study of PtSb2 should consider the hydration of surfaces and also the interaction of 

other ligands in terms of their reactivity with these minerals. In the case of PtBi2 the study of 

surfaces should be pursued, as there are available potentials, which need to be refined to cater 

for the fact that the material is a metallic mineral. 

 

Appendix 

Surface Slices 

This section shows various possible cuts for each surface in geversite (PtSb2). The miller 

index shows the surface, e.g. Miller 1 0 0 represents the {100} surface, and the height is the 

depth of the surface, whilst other terms like charge are self-explanatory. Each code has its 

unique arrangement of atoms, which could be classified under three types of surface as 

discussed in Section 4.4 (Types of Surfaces). 

Below is the part that gives the surface cuts of PtSb2, and similar ones can be obtained for 

other surface cuts like the {110} and {111} surfaces and so are not shown. 

 

 

Miller Index:        1       0       0 

 NORMAL AXIS   1.000000000000000      0.0000000000000000E+00 

   0.0000000000000000E+00 

 PLDRAW: Code (           3 ) with dipole =   8.8817841970012523E-16 
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  height       charge         atom arrangement  

      0.0      -2.0   SBSB 

      0.2       0.0    

      0.4       0.0    

      0.6       0.0    

      0.8       4.0   PT--PT 

      1.0       0.0    

      1.2       0.0    

      1.4       0.0    

      1.6      -2.0   SBSB 

      1.8       0.0    

      2.0       0.0    

      2.2       0.0    

      2.4       0.0    

      2.6       0.0    

      2.8       0.0    

      3.0       0.0    

      3.2      -2.0   SBSB 

      3.4       0.0    

      3.6       0.0    

      3.8       0.0    

      4.0       4.0   PT--PT 

      4.2       0.0    

      4.4       0.0    

      4.6       0.0    
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      4.8      -2.0   SBSB 

 

Miller Index:        1       0       0 

 Normal Axis   1.000000000000000      0.0000000000000000E+00 

   0.0000000000000000E+00 

 PLDRAW: Code (           6 ) with dipole =   1.7763568394002505E-15 

  height       charge         atom arrangement  

      0.0       2.0   PT 

      0.2       0.0    

      0.4       0.0    

      0.6       0.0    

      0.8      -2.0   SBSB 

      1.0       0.0    

      1.2       0.0    

      1.4       0.0    

      1.6       0.0    

      1.8       0.0    

      2.0       0.0    

      2.2       0.0    

      2.4      -2.0   SBSB 

      2.6       0.0    

      2.8       0.0    

      3.0       0.0    

      3.2       4.0   PT--PT 

      3.4       0.0    
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      3.6       0.0    

      3.8       0.0    

      4.0      -2.0   SBSB 

      4.2       0.0    

      4.4       0.0    

      4.6       0.0    

      4.8       0.0    

      5.0       0.0    

      5.2       0.0    

      5.4       0.0    

      5.6      -2.0   SBSB 

      5.8       0.0    

      6.0       0.0    

      6.2       0.0    

      6.4       2.0   PT 

 

Miller Index:        1       0       0 

 Normal Axis   1.000000000000000      0.0000000000000000E+00 

   0.0000000000000000E+00 

 PLDRAW: Code (           9 ) with dipole =   1.7763568394002505E-15 

  height       charge         atom arrangement  

      0.0      -2.0   SBSB 

      0.2       0.0    

      0.4       0.0    

      0.6       0.0    
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      0.8       4.0   PT--PT 

      1.0       0.0    

      1.2       0.0    

      1.4       0.0    

      1.6      -2.0   SBSB 

      1.8       0.0    

      2.0       0.0    

      2.2       0.0    

      2.4       0.0    

      2.6       0.0    

      2.8       0.0    

      3.0       0.0    

      3.2      -2.0   SBSB 

      3.4       0.0    

      3.6       0.0    

      3.8       0.0    

      4.0       4.0   PT--PT 

      4.2       0.0    

      4.4       0.0    

      4.6       0.0    

      4.8      -2.0   SBSB 

 

Miller Index:        1       0       0 

 Normal Axis   1.000000000000000      0.0000000000000000E+00 

   0.0000000000000000E+00 
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 PLDRAW: Code (          12 ) with dipole =  -1.7763568394002505E-15 

  height       charge         atom arrangement  

      0.0       2.0   PT 

      0.2       0.0    

      0.4       0.0    

      0.6       0.0    

      0.8      -2.0   SBSB 

      1.0       0.0    

      1.2       0.0    

      1.4       0.0    

      1.6       0.0    

      1.8       0.0    

      2.0       0.0    

      2.2       0.0    

      2.4      -2.0   SBSB 

      2.6       0.0    

      2.8       0.0    

      3.0       0.0    

      3.2       4.0   PT--PT 

      3.4       0.0    

      3.6       0.0    

      3.8       0.0    

      4.0      -2.0   SBSB 

      4.2       0.0    

      4.4       0.0    
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      4.6       0.0    

      4.8       0.0    

      5.0       0.0    

      5.2       0.0    

      5.4       0.0    

      5.6      -2.0   SBSB 

      5.8       0.0    

      6.0       0.0    

      6.2       0.0    

      6.4       2.0   PT 
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