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ABSTRACT 

 

This study used statistical methods to determine the relationship between matric pass rates 

and interventions in the schools in the Letlhabile area. Nine schools were identified in this 

area. Five years (2007 to 2011) were looked at. Regressions methods were tried in which 

various forms of relationships were compared. The methods were linear, curvilinear 

(quadratic to polynomial of 4
th

 power), exponential and power regressions were used in the 

tentative models investigated. The measures of bias and precision were used to compare the 

models. Multicollinearity was also investigated where it was possible. Time series analysis 

was used to illustrate the trend patterns of the pass rates in the various schools as well as the 

pattern of the numbers of interventions. In most of these schools the numbers of interventions 

increased over the five years and in only a few schools the number of interventions decreased 

over these years. A highlight of this study is that more interventions enhanced the matric pass 

rates. It was also evident that in the years in which the interventions decreased, the pass rates 

also decreased. The regression methods investigated were all showing to be applicable in the 

prediction of pass rates from the numbers of interventions. This was concluded from realising 

that the measures of bias, precision and quality all ratified them. The methods were compared 

in order to select the best one based on the measures. The linear regression in which the pass 

rates are regressed on the number of interventions came out as the leading model in terms of 

all the criteria used. 
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CHAPTER 1: PROLOGUE 

 

1.1 Introduction 

 

The pass rates at the exit level of high school in South Africa hold the key to the entry of 

learners to a path to become tertiary education graduates, and in some cases to careers of the 

interest of learners. Over the years in the history of education in South Africa, this exit level, 

known as matric, has been a nightmare for learners with ambitions to follow their chosen 

career paths when they grow up. It was at matric where most students failed and could not 

pursue their education further. In some cases intervention programmes were introduced to 

help improve the matric pass rates. These interventions occurred as remedial programmes to 

help where the schools showed deficiencies. These programmes enhanced motivation of 

learners to study with more confidence and relaxation. Intervention, just like motivation, is 

believed to enhance school performance. In particular, experience shows that matric pass 

rates are higher in schools where learners and educators are more motivated. In South Africa 

unfortunately, schools are not equally resourced. Some are less resourced or equipped than 

others. It is, however, still necessary to find scientific explanations that would enhance 

performance of school learners even in schools that are not well resourced because history 

shows that poorly resourced schools of the past could still manage to produce national icons 

that are visible sometimes even more than those coming from fully resourced schools. 

 

A pass in matric is vital, firstly as a gateway to work and careers, and secondly as a bridge to 

tertiary education. It is also used as access to higher learning. Applicants competing for space 

at higher education institutions are admitted in higher learning institutions of their choice 

ahead of others if they can demonstrate superior performance at matric. In South Africa, the 

most preferred contact higher learning institutions include the Universities of the 

Witwatersrand, Cape Town, Johannesburg, Pretoria, KwaZulu-Natal, Stellenbosch, and 

Rhodes. Those who lose to leading applicants at these universities would probably opt for the 

University of South Africa (Unisa), which is also a preferred university for its perceived high 

standard through distance learning and not through contact. There are other good universities 

in South Africa, but due to shorter history and less resources, they are least preferred, mainly 

because of perceptions. Nevertheless, matric certificate is the main requirement for admission 

in all of them. Without matric there is no admission into higher learning. 



2 

 

 

Thus, matric achievement is the ultimate goal at school education. For instance, in families 

without parents, oldest sibling children may need to use the limited family resources to earn 

matric, find a job and then help the younger siblings to go to school. People from poor 

families with no money to further their studies beyond matric could just want to reach and 

obtain a matric certificate. Others may just intend to obtain matric and find a job, instead of 

pursuing higher education. Thus, for these and other learners with ambitions to further their 

studies, matric certificate is enviable to have, both as a need and as a desire. 

 

1.2 Background 

 

Despite being desirable to have matric, for black communities who had a difficult education 

system, matric results have been a historical nightmare since the days of apartheid. Passes at 

matric were scarce for most schools due to lack of support and resources. The resources (such 

as libraries and books, good teachers and so on) that are necessary to improve pass rates and 

to equip learners were commonly lacking in these schools. These schools still remain less 

resourced compared to former white schools and private schools. As a result they do not have 

physical or tangible resources to enhance high performance at matric grade. 

 

Obviously, the high passes were enhanced by consistent hard work and focus. These are often 

the outcomes of intervention or remedial programmes. Often learners experiencing remedial 

exercises tend to be stimulated to work and focus more on their studies. Intervention comes in 

different forms and frequencies. In the interest of improving matric results (and general 

performance in school) it is essential to find scientific relationships between the number of 

interventions and matric pass rates. Any model developed for this purpose should enhance 

pass rates, be theoretically sound and be pragmatic. This means that the model should be easy 

to use (i.e. a black box is not required) by educators. This study intends to develop a 

statistical model that associates/links intervention with achievement in the schools. Students 

may be discouraged to study if they know that they lack resources that are used elsewhere to 

enhance good performance. This study wants to find ways to offset such possibilities, and 

instead determine useful factors to ensure high matric pass rate. 
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1.3 Research Problem  

 

There are no known models that represent a connection between the number of interventions 

and matric results in the rural areas of South Africa whose aim is to improve performance of 

learners in their matric studies. 

 

1.4 Aim and Objectives 

 

1.4.1 Aim 

The aim of this study is to develop a statistical model that would signify a relationship 

between the number of interventions and performance at matric level for secondary and high 

schools in the Letlhabile area. 

 

1.4.2 Objectives 

The objectives were: 

 To determine methods to present the numbers of interventions in a scientifically agreeable 

manner for use in enhancing matric pass rates. 

 To develop a mathematical model that relates the numbers of interventions with matric 

performance 

 

1.5 Hypothesis 

 

This study hypothesised that high performance and achievement in schools are possible even 

without the required tools (finances, libraries, books and teachers, etc.) that make the most 

resourced schools succeed. It argues that intervention is one desirable approach to education 

to be applied in this study to ensure that the pass rates remain high. 

 

1.6 Context 

 

The area of focus was Letlhabile district. This area office was located in the township of 

Letlhabile in the North-West Province of South Africa. Letlhabile is about 40 km north-west 

of Pretoria, the capital city of South Africa, in the Gauteng Province. The four circuits of 

Letlhabile are Thuto Lesedi, Retlakgona, Toloane and Morula. Retlakgona is about 15 km on 
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the northern side of Letlhabile township. Thuto Lesedi is a township in Letlhabile. Toloane 

and Morula circuit are housed at Madidi Resource Centre which is about 35 km to the eastern 

side of Letlhabile. Letlhabile is a township, meaning that it is semi-developed, but the other 

areas around it are undeveloped rural areas. Intervention measures of matric learners initiated 

inside school campuses or that may come from outside the school is initiated by the school 

itself, usually by the educators dealing with careers or psychological services. It is understood 

that schools motivate their learners to work hard. 

 

1.7 Methods 

 

The study uses census of all the high schools presenting matric in the Letlhabile area. There 

are 19 of these. In the different circuits they are distributed as follows: five are in Morula 

circuit, five in the Retlakgona circuit, five in the Toloane circuit and four are in the Thuto-

Lesedi circuit. Data consisted of matric pass rates in different years and the numbers of 

interventions that the learners in these schools were exposed to during their studies. There 

were comparisons of the various circuits as well as clustering of the schools according to 

similarities in the way they are motivated. Correlations where necessary, were also used in 

the establishment of the comparisons and relationships. 

 

1.8 Benefits of the Study 

 

The contributions of the study were anticipated at the theoretical and applied levels of 

statistics. These were as follows: 

 

Contributions to theoretical statistics 

 The study intends  

o To establish recording of number of intervention exercises for matric learners in 

relation to their pass rates. 

o To develop a model in which the number of interventions enhances improvement in 

matric results. 

o Since no statistical model exists for a relationship between performance and number 

of interventions at school, this served as a contribution to initiate that modelling. 
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Contributions to applied statistics 

 Use of a real example can benefit the application of the scientific methods of educator 

selection in this study. 

 The study intends to demonstrate use of numbers of interventions in enhancing 

improvement in matric results. 

 A successful study is of benefit to schools that fall in the same category of lacking 

resources and needing a boost to enhance performance. 

 

1.9 Studies on Pass Rates 

 

Dealing with various relationships of pass rate regarding the Grade 12 learners is a positive 

initiative. According to Maharaj and Gokal (2006), a considerable amount of work has been 

published on the relationship between school leaving results and the success at various first-

year university courses. Other scholars who have studied predictions of performance using 

other variables include Butcher and Muth (1985), Campbell and McCabe (1984), Golding 

and McNamarah (2005) as well as Kruck and Lending (2003). All these studies show that the 

pass rates at university are related to the level of performance at school level. However, no 

literature is available on the correlation between the number of interventions and performance 

at school level, which is an early entry for preparedness of the students for entry into higher 

education. Those authors made statements to motivate for a study on the relationship of 

matric passes and performance at university. Other related studies investigated the 

relationship between language results and university performance. 

 

One attention-grabbing study by Rauchas et al. (2006) showed that high school first language 

results correlate better with university results than do the high school mathematics results. 

Other investigations investigated factors that cause student failure. Africa (2005) investigated 

reasons for and causes of failure of African students at the University of KwaZulu-Natal in 

March to April of the year 2005. That study did not find a single outstanding reason. Instead 

it exposed a mixture of several reasons as contributory factors for the abnormally high failure 

rate. The major reasons for this high failure rate were a combination of personal, financial, 

institutional, attitudinal, racial and academic reasons. 
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Campbell and McCabe (1984) studied the statistical relationship between a student’s entrance 

characteristics and his/her success in the first year of a computer science major. That study 

found that students who majored in the sciences differed from those who left computer 

science for other degrees. These differences were related to the student’s background in 

mathematics and science. Gender was not an achievement indicator, but it persistently 

appeared as a variable in their classification models. 

 

Kruck and Lending (2003) described a model to predict academic performance in an 

introductory college level information systems course. They hypothesised that academic 

performance is affected by gender. This hypothesis was not supported by any tests or data, 

and hence it was rejected. 

 

International researchers also contributed to studies of relationships between school 

performance and tertiary studies. In Jamaica, Golding and McNamarah (2005) investigated 

the existence of relationships between students’ personal attributes and other factors, and 

their performance in the School of Computing and Information Technology. This was 

undertaken at the University of Technology in Jamaica. They found that mathematics is a 

weak predictor of performance in Information Technology. 

 

This study did not intend to focus on a single subject. Instead it aimed at focusing on the way 

overall school performance can benefit from intervention. It was therefore vital to determine 

interventions of significance to make a difference in matric performance. 

 

1.10 Study Layout 

 

Chapter 1 motivated the research by pointing at the problem being addressed, the study aim 

and objectives, the methods used, and the significance of the study. 

 

Chapter 2 discussed various regression methods and formulae used in the study. It also 

presented necessary mathematical results used. 

 

Chapter 3 provided time series methods as well as measures of bias. 
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Chapter 4 presented the data analyses using graphs, tables, statistical tests, and measures of 

bias. 

 

Chapter 5 closed the study by providing the necessary conclusions, critiques, exposing 

limitations and strength of the study and reflecting on the extent of achievement of the study 

objectives. 
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CHAPTER 2: REGRESSION ANALYSIS 

 

2.1 Overview of Regression Analysis 

 

Regression analysis includes techniques for modeling and analysing several variables, when 

the focus is on the relationship between a variable of interest (which is the dependent 

variable) and one or more independent variables (Draper & Smith, 1998). It is beneficial to 

understand how the typical value of the dependent variable changes when any one of the 

independent variables is varied, while the other independent variables are held fixed. It also 

estimates the conditional expectation of the dependent variable given the independent 

variables; that is, the average value of the dependent variable when the independent variables 

are fixed. It may, even though rarely, focus on a quantile, or other location parameter of the 

conditional distribution of the dependent variable given the independent variables. 

 

The methods used to perform regression analysis are collectively known as regression 

methods. As a result, saying regression analysis may be stated as regression methods without 

limiting the sense of regression. In all regression analyses cases, the estimation target is a 

function of the independent variables called the regression function. It is also of interest to 

characterise the variation of the dependent variable around the regression function, which can 

be described by a probability function. Several authors (Fox, 1997; Meade & Islam, 1995) 

point out that regression analysis is widely used for prediction and forecasting, where its use 

has substantial overlap with the field of machine learning. According to Chatfield (1993, 

regression analysis is also used to understand which among the independent variables are 

related to the dependent variable, and to explore the forms of these relationships. In restricted 

circumstances, regression analysis can be used to infer causal relationships between the 

independent and dependent variables. However this can lead to illusions or false 

relationships, so caution is advisable (Scott, 2012). 

 

A large body of techniques for carrying out regression analysis has been developed (Kutner, 

Nachtsheim &. Neter, 2004). Familiar methods such as linear regression and ordinary least 

squares regression are parametric, in that the regression function is defined in terms of a finite 

number of unknown parameters that are estimated from the data. Nonparametric regression 

refers to techniques that allow the regression function to lie in a specified set of functions, 
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which may be infinite-dimensional (Hardle, 1990). The performance of regression analysis 

methods in practice depends on the form of the data generating process, and how it relates to 

the regression approach being used (Freedman, 2005). The true form of the data-generating 

process is generally not known. Hence, regression analysis often depends to some extent on 

making assumptions about this process. These assumptions are sometimes testable if a large 

amount of data is available. Regression models for prediction are often useful even when the 

assumptions are moderately violated, although they may not perform optimally (Cook & 

Weisberg, 1982). However, in many applications, especially with small effects or questions 

of causality based on observational data, regression methods give misleading results. 

 

2.2 Regression Models 

 

Kutner, Nachtsheim and Neter (2004) explain that regression models involve three 

fundamental variables. They are the unknown parameters, denoted as β , which may represent 

a scalar or a vector; the independent variables, X ; and the dependent variable, Y . In various 

fields of application, different terminologies are used in place of dependent and independent 

variables. A regression model relates Y  to a function of X and β. 

 

 

.        (2.1) 

 

 

In statistical practice, the approximation is usually formalised using the relationship 

E(Y | X) = f(X, β). In order to carry out regression analysis, the form of the function f  must 

be specified. Sometimes the form of this function is based on knowledge about the 

relationship between Y and X that does not rely on the data. If no such knowledge is 

available, a flexible or convenient form for f  is chosen. For technique’s sake, assume that the 

vector of unknown parameters β is of length k. In order to perform a regression analysis the 

user must provide information about the dependent variable Y: 

 If N data points of the form (Y, X) are observed, where N < k, most classical approaches 

to regression analysis cannot be performed: since the system of equations defining the 

regression model is underdetermined, there is not enough data to recover β. 
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 If exactly N = k data points are observed, and the function f is linear, the equations 

Y = f(X, β) can be solved exactly rather than approximately. This reduces to solving a set 

of N equations with N unknowns (the elements of β), which has a unique solution as long 

as the X are linearly independent. If f is nonlinear, a solution may not exist, or many 

solutions may exist. 

 The most common situation is where N > k data points are observed. In this case, there is 

enough information in the data to estimate a unique value for β that best fits the data in 

some sense, and the regression model when applied to the data can be viewed as an 

overdetermined system in β. 

 

In the last case, the regression analysis provides the tools for: 

1. Finding a solution for unknown parameters β that will, for example, minimise the 

distance between the measured and predicted values of the dependent variable Y (also 

known as method of least squares). 

2. Under certain statistical assumptions, the regression analysis uses the surplus of 

information to provide statistical information about the unknown parameters β and 

predicted values of the dependent variable Y. 

 

2.2.1 Necessary number of independent measurements 

 

Suppose that in a regression model which has k  unknown parameters, an experimenter 

performs n  measurements all at exactly the same value of independent variable vector X 

(which contains the independent variables X1, X2, and X3k)  where nk  . In such a case, 

regression analysis fails to give a unique set of estimated values for the three unknown 

parameters; the experimenter did not provide enough information. The best one can do is to 

estimate the average value and the standard deviation of the dependent variable Y. Similarly, 

measuring at two different values of X would give enough data for a regression with two 

unknowns, but not for three or more unknowns (Mogull, 2004). If the experimenter had 

performed measurements at k  different values of the independent variable vector X, then 

regression analysis would provide a unique set of estimates for the k  unknown parameters in 

β. In the case of general linear regression, the above statement is equivalent to the 

requirement that matrix X
T
X is invertible. 
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2.2.2 Statistical assumptions 

 

When the number of measurements, N, is larger than the number of unknown parameters, k, 

and the measurement errors εi are normally distributed, then the excess of information 

contained in (N - k) measurements is used to make statistical predictions about the unknown 

parameters (Galton, 1989). This excess of information is referred to as the degrees of freedom 

of the regression. Classical assumptions for regression analysis include: 

 The sample is representative of the population for the inference prediction. 

 The error is a random variable with a mean of zero conditional on the explanatory 

variables. 

 The independent variables are measured with no error. (Note: If this is not so, modeling 

may be done instead using errors-in-variables model techniques). 

 The predictors are linearly independent, i.e. it is not possible to express any predictor as a 

linear combination of the others. 

 The errors are uncorrelated, that is, the variance-covariance matrix of the errors is 

diagonal and each non-zero element is the variance of the error. 

 The variance of the error is constant across observations (homoscedasticity). (It should be 

noted that if this assumption is not valid, then weighted least squares or other methods 

might instead be used.) 

 

Galton (1989) showed that there are sufficient conditions for the least-squares estimator to 

possess desirable properties, which imply that the parameter estimates will be unbiased, 

consistent and efficient in the class of linear unbiased estimators. However, actual data rarely 

satisfies the assumptions. That is, the method is used even though the assumptions are not 

true. Variation from the assumptions can sometimes be used as a measure of how far the 

model is from being useful. Many of these assumptions may be relaxed in more advanced 

treatments. Reports of statistical analyses usually include analyses of tests on the sample data 

and methodology for the fit and usefulness of the model. Assumptions include the 

geometrical support of the variables (Cressie, 1996). 

 

Independent and dependent variables often refer to values measured at point locations. There 

may be spatial trends and spatial autocorrelation in the variables that violate statistical 
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assumptions of regression. Geographic weighted regression is one technique to deal with 

such data (Fotheringham, Brunsdon & Charlton, 2002). Also, variables may include values 

aggregated by areas. With aggregated data the Modified Areal Unit Problem can cause 

extreme variation in regression parameters (Fotheringham & Wong, 1991). When analysing 

data aggregated by political boundaries, postal codes or census areas results may be very 

different with a different choice of units. 

 

2.3 Linear Regression 

 

2.3.1 Simple linear regression 

 

In linear regression, the model specification is that the dependent variable, iy   is a linear 

combination of the parameters (but need not be linear in the independent variables). For 

example, in simple linear regression (SLR) for modeling n data points there is one 

independent variable: ix , and two parameters, 0  and 1 ; i  is some random variation 

assumed to be normally distributed with mean zero and variance 1, and the straight line 

equation is 

 

iii xy   10 ,  ni .,..,3,2,1 .    (2.2) 

 

In multiple linear regression there are several independent variables or functions of 

independent variables. Adding a term in 
2

ix  to the preceding regression gives a parabola with 

equation 

 

iiii xxy   2

210 ,  ni .,..,3,2,1 .   (2.3) 

 

This is still linear regression even though the expression on the right hand side is quadratic in 

the independent variable ix , it is linear in the parameters 0 , 1  and 2 . In both cases, i  is 

an error term and the subscript i  indexes a particular observation. Given a random sample 

from the population, we estimate the population parameters and obtain the sample linear 

regression model: 
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ii xy 10 


 .        (2.4) 

 

The residual, iii yye


 , is the difference between the value of the dependent variable 

predicted by the model, iy


 and the true value of the dependent variable iy . One method of 

estimation is ordinary least square. This method obtains parameter estimates that minimise 

the sum of squared residuals, SSE (Ravishankar & Dey, 2002), also sometimes denoted RSS 

and called the residual sum of squares: 

 





N

i

ieSSE
1

2
.         (2.5) 

 

Minimisation of this function results in a set of normal equations, a set of simultaneous linear 

equations in the parameters, which are solved to yield the parameter estimators, 0  and 1 . 

The two parameters are the intercept and slope of the linear equation obtained after 

estimation. A graphical example takes the form in the following graph. 

 

 

Illustration of linear regression on a data set. 

 

http://en.wikipedia.org/wiki/File:Linear_regression.svg
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In the case of simple regression, the formulas for the least squares estimates are 

 

  

 












N

i

i

N

i

ii

xx

yyxx

1

2

1
1



        (2.6) 

 

and 

 

xy


10   .         (2.7) 

 

where x  is the mean (average) of the  x  values and y   is the mean of the y  values. Under 

the assumption that the population error term has a constant variance, the estimate of that 

variance is given by: 

 

2

2




N

SSE



.         (2.8) 

 

This is called the mean square error (MSE) of the regression. The standard errors of the 

parameter estimates are given by 

 

 





N

i

i xx

x

N

1

2

1
0 



  .       (2.9) 

 





N

i

i xx
1

2

1
1 


  .       (2.10) 

 

Under the further assumption that the population error term is normally distributed, the 

researcher can use these estimated standard errors to create confidence intervals and conduct 

hypothesis tests about the population parameters. 
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2.3.2 General linear model 

 

In the more general multiple regression model, there are p independent variables: 

 

iippiiii xxxxy   ...3322110 ,  ni .,..,3,2,1 . (2.11) 

 

where xij is the i
th

 observation on the j
th

 independent variable, and where 0  is the regression 

intercept. The least squares parameter estimates are obtained from p normal equations. The 

residual can be written as 

 

ippiii xxye 


 ...11 .      (2.12) 

 

The normal equations are 

 

   (2.13) 

 

In matrix notation, the normal equations are written as 

 

       (2.14) 

 

where the ij element of X is xij, the i element of the column vector Y is yi, and the j element of 




 is j


. Thus X is n×p, Y is n×1, and 


 is p×1. The solution is 

 

       (2.15) 

 

2.3.3 Regression diagnostics 

 

Models need to be verified for quality use. As a result, once a tentative regression model has 

been constructed, it should be tested, adapted and then validated (Aldrich, 2005). It is always 

important to confirm the goodness-of-fit of the final model and the statistical significance of 
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the estimated parameters. Commonly used checks of goodness of fit include the R-squared, 

analyses of the pattern of residuals and hypothesis testing. Statistical significance can be 

checked by an F-test of the overall fit, followed by t-tests of individual parameters. 

Interpretations of these diagnostic tests rest heavily on the model assumptions. 

 

Although examination of the residuals can be used to validate or invalidate a model, the 

results of a t-test or F-test are sometimes more difficult to interpret if the model's assumptions 

are violated (Fisher, 1922). For example, if the error term does not have a normal 

distribution, in small samples the estimated parameters will not follow normal distributions 

and this usually complicates inference. With relatively large samples, however, a central limit 

theorem can be invoked such that hypothesis testing may proceed using asymptotic 

approximations. 

 

2.3.4 Regression with "limited dependent" variables 

 

The phrase "limited dependent" is commonly used in econometric statistics for categorical 

and constrained variables (Ramcharan. 2006). The response variable may be non-continuous 

("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis 

proceeds with least-squares linear regression, the model is called the linear probability model. 

Nonlinear models for binary dependent variables include the probit and logit model. The 

multivariate probit model is a standard method of estimating a joint relationship between 

several binary dependent variables and some independent variables (Chiang, 2003). For 

categorical variables with more than two values there is the multinomial logit. For ordinal 

variables with more than two values, there are the ordered logit and ordered probit models. 

Censored regression models may be used when the dependent variable is only sometimes 

observed, and Heckman correction type models may be used when the sample is not 

randomly selected from the population of interest. An alternative to such procedures is linear 

regression based on polychoric correlation (or polyserial correlations) between the categorical 

variables. Such procedures differ in the assumptions made about the distribution of the 

variables in the population. If the variable is positive with low values and represents the 

repetition of the occurrence of an event, then count models like the Poisson regression or the 

negative binomial model may be used instead. 
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2.3.5 Interpolation and extrapolation 

 

Regression models are used to predict a value of the Y variable given known values of the X 

variables (Chatfield, 1993). Prediction within the range of values in the dataset used for 

model-fitting is known informally as interpolation. Prediction outside this range of the data is 

known as extrapolation. Performing extrapolation relies strongly on the regression 

assumptions. The further the extrapolation goes outside the data, the more room there is for 

the model to fail due to differences between the assumptions and the sample data or the true 

values. It is generally advised that when performing extrapolation, one should accompany the 

estimated value of the dependent variable with a prediction interval that represents the 

uncertainty (Strutz, 2010). Such intervals tend to expand rapidly as the values of the 

independent variable(s) moved outside the range covered by the observed data. For such 

reasons and others, some tend to say that it might be unwise to undertake extrapolation 

(Chiang, 2003). However, this does not cover the full set of modeling errors that may be 

made: in particular, the assumption of a particular form for the relation between Y and X. A 

properly conducted regression analysis will include an assessment of how well the assumed 

form is matched by the observed data, but it can only do so within the range of values of the 

independent variables actually available (Yang-Jing, 2009). Thus, any extrapolation is 

particularly reliant on the assumptions being made about the structural form of the regression 

relationship. 

 

A scientific perspective is that a linear-in-variables and linear-in-parameters relationship 

should not be chosen simply for computational convenience, but that all available knowledge 

should be deployed in constructing a regression model (Tofallis, 2009). If this knowledge 

includes the fact that the dependent variable cannot go outside a certain range of values, this 

can be used in selecting the model even in a case where the observed dataset has no values 

particularly near such bounds. The implications of this step of choosing an appropriate 

functional form for the regression can be great when extrapolation is considered. At a 

minimum, it can ensure that any extrapolation arising from a fitted model is "realistic" (or in 

accord with what is known). 
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2.4 Nonlinear Regression 

 

Most of the linear regression models used in practice are estimations of nonlinear models 

mainly because linear regression has advanced in usage and relative simplicity. In reality, 

many situations are nonlinear and the relationships should have been modeled with nonlinear 

regression. When the model function is not linear in the parameters, the sum of squares must 

be minimised by an iterative procedure.  

 

2.4.1 Power and sample size calculations 

 

There are no generally agreed methods for relating the number of observations versus the 

number of independent variables in the model. One rule of thumb suggested by Good and 

Hardin (2009) is , where  is the sample size, n is the number of independent 

variables and  is the number of observations needed to reach the desired precision if the 

model had only one independent variable. For example, a researcher is building a linear 

regression model using a dataset that contains 1000 patients ( ). If he decides that five 

observations are needed to precisely define a straight line ( ), then the maximum number of 

independent variables his model can support is 4, because 

. 

 

2.4.2 Other methods of estimation 

 

The parameters of a regression model are usually estimated using the method of least squares, 

mainly because of long history of the method and its effectiveness. It is also not a difficult 

method to execute. However, there are other methods. Several authors (Good & Hardin, 

2009; Lindley, 1987; Tofallis, 2009; among others) inform that other methods used in the 

estimation of parameters include: 

 Bayesian methods, e.g. Bayesian linear regression.  

 Percentage regression, for situations where reducing percentage errors is deemed more 

appropriate.  

 Least absolute deviation, which is more robust in the presence of outliers, leading to 

quantile regression  
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 Nonparametric regression, requires a large number of observations and is computationally 

intensive 

 Distance metric learning, which is learned by the search of a meaningful distance metric 

in a given input space. 

 

2.5 Multicollinearity 

 

2.5.1 Collinearity 

 

Collinearity is a linear relationship between two explanatory variables. Two variables are 

perfectly collinear if there is an exact linear relationship between the two. For example, 1X

and 2X  are perfectly collinear if there exist parameters 0  and 1  such that, for all 

observations i, we have 

 

       (2.16) 

 

2.5.2 Multicollinearity  

 

Multicollinearity refers to a situation in which two or more explanatory variables in a 

multiple regression model are highly linearly related (Farrar & Glauber, 1967). We have 

perfect multicollinearity if, for example as in the equation above, the correlation between two 

independent variables is equal to 1 or -1. In practice, we rarely face perfect multicollinearity 

in a data set. More commonly, the issue of multicollinearity arises when there is a strong 

linear relationship among two or more independent variables. Mathematically, a set of 

variables is perfectly multicollinear if there exist one or more exact linear relationships 

among some of the variables. For example, we may have 

 

.    (2.17) 

 

holding for all observations i, where j  are constants and ji   is the i
th

 observation on the j
th

 

explanatory variable. We can explore one issue caused by multicollinearity by examining the 
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process of attempting to obtain estimates for the parameters of the multiple regression 

equation 

 

 

 

The ordinary least squares estimates involve inverting the matrix 

 

 

 

where 

 

 

 

An exact linear relationship (or perfect multicollinearity) exists among the independent 

variables if the rank of X (and therefore of X
T
X)  is less than k+1, and the matrix X

T
X will 

not be invertible. Perfect multicollinearity is unlikely in actual application. An analyst is 

more likely to face a high degree of multicollinearity. For example, suppose that instead of 

the above equation holding, we have that equation in modified form with an error term i : 

 

 

 

In this case, there is no exact linear relationship among the variables, but the jX  variables 

are nearly perfectly multicollinear if the variance of iv  is small for some set of values for the 

's. In this case, the matrix X
T
X has an inverse, but is ill-conditioned so that a given 

computer algorithm may or may not be able to compute an approximate inverse, and if it does 

so the resulting computed inverse may be highly sensitive to slight variations in the data (due 

to magnified effects of rounding error) and so may be very inaccurate. 
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2.5.3 Detecting multicollinearity 

 

There are indicators when multicollinearity may be present in a model. A common indicator 

is when large changes are observed in the estimated regression coefficients when a predictor 

variable is added or deleted. There may also be insignificant regression coefficients for the 

affected variables in the multiple regression, but a rejection of the joint hypothesis that those 

coefficients are all zero (using an F-test). Statistical tests can also be conducted to provide 

information about the existence of multicollinearity. O’Brien (2007) explains the use of the 

tolerance and variance-inflation factor (VIF) in detecting multicollinearity below: 

 

Let be the coefficient of determination of regression of explanator j on all the other 

explanators. The tolerance measure is given by the formula 

 

21 jRtolerance          (2.18) 

 

On the other hand The VIF is given by the formula 

 

tolerance
VIF

1
         (2.19) 

 

The VIF can therefore be written as 

 

21

1

jR
VIF


          (2.19a) 

 

Interpretation using tolerance and VIF 

According to O’Brien (2007), a tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 

and above indicates a multicollinearity problem. 

 

2.5.4 Consequences of multicollinearity 

 

A high degree of multicollinearity may lead to the matrix X
T
X to be invertible, a computer 

algorithm may be unsuccessful in obtaining an approximate inverse, and if it does obtain one 
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it may be numerically inaccurate. However, an accurate X
T
X matrix may still be obtained, 

but consequences of multicollinearity still arise. Multicollinearity may make the estimate of 

one variable's impact on the dependent variable while controlling for the others tends to be 

less precise than if predictors were uncorrelated with one another. There are also imprecise 

estimates of the effect of the independent changes in the individual variables. In some sense, 

the collinear variables contain the same information about the dependent variable. If 

nominally "different" measures actually quantify the same phenomenon then they are 

redundant. Alternatively, if the variables are accorded different names and perhaps employ 

different numeric measurement scales but are highly correlated with each other, then they 

suffer from redundancy. 

 

A major hazard of redundancy is overfitting in regression analysis models. The best 

regression models are those in which the predictor variables each correlate highly with the 

dependent (outcome) variable but correlate at most only minimally with each other. Such a 

model is often called "low noise" and will be statistically robust (that is, it will predict 

reliably across numerous samples of variable sets drawn from the same statistical 

population). 

 

Also, in multicollinearity, the standard errors of the affected coefficients tend to be large. In 

that case, the test of the hypothesis that the coefficient is equal to zero leads to a failure to 

reject the null hypothesis. However, if a simple linear regression of the explained variable on 

this explanatory variable is estimated, the coefficient will be found to be significant; 

specifically, the analyst will reject the hypothesis that the coefficient is zero. In the presence 

of multicollinearity, an analyst might falsely conclude that there is no linear relationship 

between an independent and a dependent variable. 

 

Recap 

Multicollinearity is a statistical phenomenon in which two or more predictor variables in a 

multiple regression model are highly correlated. In this situation the coefficient estimates 

may change erratically in response to small changes in the model or the data. It does not 

reduce the predictive power or reliability of the model as a whole, at least within the sample 

data themselves; it only affects calculations regarding individual predictors. That is, a 

multiple regression model with correlated predictors can indicate how well the entire bundle 
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of predictors predicts the outcome variable, but it may not give valid results about any 

individual predictor, or about which predictors are redundant with respect to others. A high 

degree of multicollinearity can also cause computer software packages to be unable to 

perform the matrix inversion that is required for computing the regression coefficients, or it 

may make the results of that inversion inaccurate (Van den Poel & Larivière, 2004). 

 

2.6 Software 

 

Modern statistical practice cannot be performed without a statistical package (Yang-Jing, 

2009). This is true with regression analysis as well. All major statistical software packages 

perform least squares regression analysis and inference. Simple linear regression and multiple 

regression using least squares can be done in some spreadsheet applications and on some 

calculators. While many statistical software packages can perform various types of 

nonparametric and robust regression, these methods are less standardised; different software 

packages implement different methods and a method with a given name may be implemented 

differently in different packages. Specialised regression software has been developed for use 

in fields such as survey analysis and neuroimaging. 

 

2.7 Implications for this Study 

 

This study is about matric pass rates and the number of interventions embarked on in the high 

schools in the district of Letlhabile in the Brits area of the North West Province of South 

Africa. The dependent variable therefore, is the matric pass rates.  The independent variable 

is the number of interventions or support systems administered on the matric learners. Since 

the number of interventions to which the learners were exposed is a univariate random 

variable, the envisaged relationship is univariate regression. Focus will be more on simple 

linear regression even though some analyses will be embarked on to explore (minimally) 

possibilities of other forms of relationships between the matric pass rates in the geographical 

area of interest and the number of interventions. 

 

Also, regarding the relationships explored in the study, nonlinear relationships may be more 

suitable. This study opens up further exploration or future research regarding the suitability of 

nonlinear models. The other point is that the interventions may require a different 
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representation in order to produce a more relevant and effective model. The current study 

seeks effective answers regarding the most effective statistical modeling of matric pass rates 

and the interventions taking place in order to apply it in the schools in question to improve 

the matric pass rate and the overall throughput. 

 

2.8 Conclusion 

 

The chapter discussed regression methods and its relevant aspects for this study. Various 

formulae and mathematical formations were introduced to back up the discussions. Many of 

these formations feature in the formation of regression models in conjunction with forecast 

functions for time series analysis and forecast development. The next chapter presents time 

series analysis.  
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CHAPTER 3: TIME SERIES ANALYSIS 

 

3.1 Overview of Time Series 

 

The field of time series is a specialised statistical technique useful in every field that can 

collect data in a pattern required by time series methodologies. Areas that benefit regularly 

from time series include business, communication, econometrics, economics, education, 

finance, health, housing, information mathematics, technology, mining, management, 

operations research, population studies, signal processing, transportation, and weather bureau. 

Also, almost all modern fields that have planning in them use time series methods in one way 

or the other. Hamilton (1994) defines a time series as a sequence of data points, measured 

typically at successive time instants spaced at uniform time intervals. 

 

In South Africa, examples of time series are the daily closing value of the in the Producer Price 

Index  (PPI), the annual flow volume of the Orange River in the Free State of South Africa, 

and the water levels of the Vaal Dam in the Vanderbijlpark area of the Gauteng Province. 

Time series analysis comprises methods for analysing time series data in order to extract 

meaningful statistics and other characteristics of the data. Time series forecasting is the use of 

a model to predict future values based on previously observed values. Time series are very 

frequently plotted via line charts. One special feature of time series is that time series data 

have a natural temporal ordering. This makes time series analysis distinct from other common 

data analysis problems, in which there is no natural ordering of the observations (e.g. 

explaining people's wages by reference to their respective education levels, where the 

individuals' data could be entered in any order). This also makes time series a specialised 

subfield within the field of statistics and requiring separate training. It is also an applied 

subfield when used in forecasting. Use of time series can also help to backcast, which is to 

use existing time series to figure out the way the past was in relation to the phenomenon of 

interest to a study. 

 

Time series analysis is also distinct from spatial data analysis where the observations 

typically relate to geographical locations (e.g. accounting for house prices by the location as 

well as the intrinsic characteristics of the houses). Since time series tends to occur as random 

variables, methods useful in stochastic modeling are also applicable in time series analysis. A 
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stochastic model for a time series would generally reflect the fact that observations close 

together in time are more closely related than observations further apart. In addition, time 

series models often make use of the natural one-way ordering of time so that values for a 

given period will be expressed as deriving in some way from past values, rather than from 

future values. Methods for time series analyses may be divided into two classes: frequency-

domain methods and time-domain methods. The former include spectral analysis and recently 

wavelet analysis (including autocorrelation and cross-correlation analysis). 

 

3.2 Time Series Analysis 

 

Analysis in this study means in-depth investigation of the data available. In this study the 

matric pass rates in the high schools in the Letlhabile area are explored from a few years to 

the latest available ones to date. There are several types of data analysis available for time 

series which are appropriate for different purposes. Use of time series in this study helps to 

understand the changes in pass rates pattern in the past few years, mainly the trend. An 

increasing trend is an indication of improvement while a decreasing one shows that there is a 

decline. Constant trend informs that there is neither improvement nor decline in pass rates. 

 

3.2.1 General exploration 

 

The clearest way to examine a regular time series is with a line chart, also known as the time 

plot. This chart plots time in the horizontal axis and the corresponding time values on the 

vertical axis. The line chart is easy to plot using pencil and ruler, but for better results modern 

practice dictates that a spreadsheet program be used. The advantage of using spreadsheets is 

that once the time period is chosen, the calculation of change over the periods can be easily 

calculated and with great accuracy. The nature of the trend can be easily revealed as well as 

the type of seasonality. Other time series analysis techniques mentioned by various time 

series practitioners (Bloomfield, 1976; Nikolić, Muresan, Feng & Singer, 2012) include: 

 Autocorrelation analysis to examine serial dependence  

 Spectral analysis is used to examine cyclic behaviour which need not be related to 

seasonality. For example, sun spot activity varies over 11 year cycles. Other common 

examples include celestial phenomena, weather patterns, neural activity, commodity 

prices, and economic activity. 
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3.2.2 Description 

 

A time series is easily described and comprehensible when decomposed or separated into its 

basic components. The decomposition of time series is a statistical method that deconstructs a 

time series into notional components (Shumway, 1988). One of the main objectives for 

decomposition is to estimate seasonal effects that can be used to create and present seasonally 

adjusted values. A seasonally adjusted value removes the seasonal effect from a value so that 

trends can be seen more clearly.  For instance, in many regions of the South Africa 

unemployment tends to decrease in the summer due to increased employment in agricultural 

areas. Thus, a drop in the unemployment rate in October compared to September does not 

necessarily indicate that there is a trend toward lower unemployment in the country. To see 

whether there is a real trend, we should adjust for the fact that unemployment is always lower 

in October than in September. 

 

Choosing between additive and multiplicative decompositions 

 The additive model is useful when the seasonal variation is relatively constant over time. 

 The multiplicative model is useful when the seasonal variation increases over time. 

 

For practical purposes, the components of time series, according to source, may be: 

1. average: the mean of the observations over time  

2. trend: a gradual increase or decrease in the average over time  

3. seasonal influence: predictable short-term cycling behaviour due to time of day, week, 

month, season, year, etc.  

4. cyclical movement: unpredictable long-term cycling behaviour due to business cycle or 

product/service life cycle  

5. random error: remaining variation that cannot be explained by the other four 

components  

 

It is important to know the extent of accuracy of your forecasts. For notation purposes the 

actual values are denoted by A  and the forecasts by F . Inspecting accuracy of forecasts is to 

determine the way the forecasts F  is relative to the actual value A , as well as the meaning 

of A  – F ? 
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3.2.3 Time series forecasting 

 

Forecasting is the complete formation of statistical models for stochastic simulation purposes, 

so as to generate alternative versions of the time series, representing what might happen over 

non-specific time-periods in the future (Box & Jenkins, 1976). By forecasting we shall mean 

a method for translating past experience into estimates of the future. Simple or fully formed 

statistical models are used to describe the likely outcome of the time series in the immediate 

future, given knowledge of the most recent outcomes (Shasha, 2004). This means that once a 

time series model is developed for forecasting purpose, it should be able to provide short term 

forecasts that give indication of the possible performance on medium (and maybe long term) 

forecasting. 

 

Time series forecasting methods are based on analysis of historical data (time series: a set of 

observations measured at successive times or over successive periods) (Bloomfield, 1976). 

They make the assumption that past patterns in data can be used to forecast future data points.  

1. Moving averages (simple moving average, weighted moving average): forecast is based 

on arithmetic average of a given number of past data points  

2. Exponential smoothing (single exponential smoothing, double exponential smoothing): a 

type of weighted moving average that allows inclusion of trends, etc.  

3. Mathematical models (trend lines, log-linear models, Fourier series, etc.): linear or non-

linear models fitted to time-series data, usually by regression methods  

4. Box-Jenkins methods: autocorrelation methods used to identify underlying time series 

and to fit the "best" model  

 

It is vital to be able to measure the optimality of a time-series forecast since we cannot expect 

a time-series forecast to be perfect. There will always be prediction errors. Suppose that t  

time series observations 1A , 2A , .  .  . tA  were realised and the corresponding forecasts 1F , 

2F , .  .  . tF  generated from a forecast model were . Defines the error terms: 

 

iii FAe   for  i  1, 2 , .  .  . t       (3.1) 
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This is the difference between the actual time-series iA  and the forecast iF . These error 

terms are useful in analysing and summarising the accuracy of the forecasts. Use of t  instead 

of n  is to be consistent with the notion of current time t  so that the next time becomes 1t . 

Apart from the next period 1t , other future periods are 2t , 3t , and so on. 

 

3.3 Measures of accuracy and bias 

 

3.3.1 Cumulative error 

 

The cumulative forecast error (CFE) is the sum of all prediction errors: 

 


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ieCFE
1         (3.2)

 

 

3.3.2 Mean error 

 

The mean error is the arithmetic average of all prediction errors: 
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3.3.3 Mean squared error 

 

The mean squared error (MSE) is the arithmetic mean of the sum of the squares of the 

prediction errors; this error measure is popular and corrects the 'cancelling out' effects of the 

previous two error measures: 
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3.3.4 Root mean squared error 

 

Another measure that is useful in almost precisely the same way as the MSE is the root mean 

squared error (RMSE).  The RMSE is the square root of the MSE. Mathematically is written 

as follows: 

MSERMSE          (3.5) 

 

3.3.5 Standard Deviation 

 

The standard deviation is as the name implies the standard deviation of the prediction errors. 
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      (3.6)

 

 

3.3.6 Mean absolute deviation 

 

The mean absolute deviation (MAD) is another popular error measure that corrects the 

'cancelling out' effects by averaging the absolute value of the errors: 
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3.3.7 Mean absolute percentage error 

 

The mean absolute percentage error (MAPE) is a very popular measure that corrects the 

'cancelling out' effects and also keeps into account the different scales at which this measure 

can be computed and thus can be used to compare different predictions: 
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3.4 Models 

 

In real-life situations models for time series data can have many forms and represent different 

stochastic processes. When modeling variations in the level of a process, three broad classes 

of practical importance are the autoregressive (AR) models, the integrated (I) models, and the 

moving average (MA) models. Gershenfeld (1999) point out that these three classes depend 

linearly on previous data points. Combinations of these ideas produce autoregressive moving 

average (ARMA) and autoregressive integrated moving average (ARIMA) models. The 

autoregressive fractionally integrated moving average (ARFIMA) model generalises the 

former three. Extensions of these classes deal with vector-valued data are available under the 

heading of multivariate time-series models and sometimes the preceding acronyms are 

extended by including an initial "V" for "vector". An additional set of extensions of these 

models is available for use where the observed time-series is driven by some "forcing" time-

series (which may not have a causal effect on the observed series): the distinction from the 

multivariate case is that the forcing series may be deterministic or under the experimenter's 

control. For these models, the acronyms are extended with a final "X" for "exogenous". 

 

Non-linear dependence of the level of a series on previous data points is of interest, partly 

because of the possibility of producing a chaotic time series. However, more importantly, 

empirical investigations can indicate the advantage of using predictions derived from non-

linear models, over those from linear models, as for example in nonlinear autoregressive 

exogenous models (Gershenfeld, 2000). Among other types of non-linear time series models, 

there are models to represent the changes of variance along time (heteroskedasticity). These 

models represent autoregressive conditional heteroskedasticity (ARCH) and the collection 

comprises a wide variety of representation (GARCH, TARCH, EGARCH, FIGARCH, 

CGARCH, etc.). Here changes in variability are related to, or predicted by, recent past values 

of the observed series. This is in contrast to other possible representations of locally varying 

variability, where the variability might be modeled as being driven by a separate time-varying 

process, as in a doubly stochastic model. In recent work on model-free analyses, wavelet 

transform based methods (for example locally stationary wavelets and wavelet decomposed 

neural networks) have gained favour among forecasting practitioners (Durbin & Koopman 
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2001; Nikolić et al., 2012). Multiscale (often referred to as multiresolution) techniques 

decompose a given time series, attempting to illustrate time dependence at multiple scales. 

 

3.4.1 Notation 

 

A number of different notations are in use for time-series analysis. A common notation 

specifying a time series X that is indexed by the natural numbers is written 

 

X = {X1, X2, ...}. 

 

Another common notation is 

 

Y = {Yt: t ∈ T}, 

 

where T is the index set. 

 

3.4.2 Conditions 

 

There are two sets of conditions under which much of the times series theory is constructed, 

namely; stationary process and ergodic process (Allen, 2010; Gardiner, 2004). A stationary 

process is a stochastic process which whose joint probability distribution does not change 

when shifted in time or space. Consequently, parameters such as the mean and variance, if 

they exist, also do not change over time or position. On the other hand, a stochastic process is 

said to be an ergodic process if its statistical properties (such as its mean and variance) can be 

deduced from a single, sufficiently long sample (realisation) of the process. Stationarity is 

important in time series analysis due to its easing of analysis of nonstationary processes. The 

practice of analysing nonstationary processes is based on the fundamentals developed for 

stationary processes. As a result the ideas of stationarity must be expanded to consider two 

important ideas: strict stationarity and second-order stationarity. Both models and 

applications can be developed under each of these conditions, although the models in the 

latter case might be considered as only partly specified. In addition, time-series analysis can 

be applied where the series are seasonally stationary or non-stationary. According to 

Boashash (2003), situations where the amplitudes of frequency components change with time 
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can be dealt with in time-frequency analysis which makes use of a time-frequency 

representation of a time-series or signal. 

 

3.4.3 ARIMA models 

 

The ARIMA models are made of a combination of the autoregressive (AR) and moving 

average (MA) models, and this model is also integrated (I). The general orders of these 

models are p for AR, d for I and q for MA. Their notations are individually written as AR(p), 

I(d) and MA(q) and then the general ARIMA model is written with as ARIMA(p, d, q). The 

general representation of an AR(p), is 

 

  (3.9) 

 

where the term εt is the source of randomness called the white noise process with the 

following characteristics: 

 

  

  

  

 

When the above assumptions are satisfied, the time series process is specified up to second-

order moments and, subject to conditions on the coefficients, may be second-order stationary. 

A noise that has a normal distribution is called normal or Gaussian white noise (Brillinger, 

1975; Box & Jenkins, 1976). In this case, the AR process may be strictly stationary, again 

subject to conditions on the coefficients. 

 

The moving-average (MA) model is a common approach for modeling univariate time series 

models. The notation MA(q) refers to the moving average model of order q, and its general 

representation is of the form: 
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where μ is the mean of the series, the θ1, ..., θq are the parameters of the model and the εt, 

εt−1,... are white noise error terms. The value of q is called the order of the MA model. That 

is, a moving-average model is conceptually a linear regression of the current value of the 

series against previous (unobserved) white noise error terms or random shocks. The random 

shocks at each point are assumed to come from the same distribution, typically a normal 

distribution, with location at zero and constant scale. The distinction in this model is that 

these random shocks are propagated to future values of the time series. 

 

A time series is said to be integrated when firstly it is nonstationary, but after a specific 

number of differencing, it becomes stationary (Granger, 1981). There are some nonstationary 

time series that are not integrated because they never become stationary even if they mat be 

differenced infinitely. Due to the depth of the concept especially when it is treated in a 

multivariate setting, it is presented separately. 

 

3.5 Integration 

 

3.5.1 Order of integration  

 

The order of integration, denoted I(d), is a summary statistic for a stochastic (including a time 

series) process that reports the minimum number of differences required to obtain a stationary 

series (Engle & Granger, 1987). This means that an I(d) process requires to be differenced d 

times to reach stationarity. One important integration value is d = 0, which may be confusing. 

It is obvious that a stationary process requires no (or d = 0) number of times to be differenced 

to reach stationarity.  

 

Integration of order zero 

A time series is integrated of order 0 if it admits a moving average representation with 
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which means that the autocovariance is decaying to 0 sufficiently fast. This is a necessary, 

but not sufficient condition for a stationary process (Granger & Newbold, 1974). Therefore, 

all stationary processes are I(0), but not all I(0) processes are stationary. 

 

Integration of order d 

A time series is integrated of order d if 

 

  t

d
XL1  

 

is integrated of order 0, where L   is the lag operator and  L1  is the first difference, that is: 

 

  tttt XXXXL  11  . 

 

In other words, a process is integrated to order d if taking repeated differences d  times yields 

a stationary process. 

 

Constructing an integrated series 

An I(d) process can be constructed by summing an I(d−1) process: 

 Suppose tX  is I(d-1) 

 Now construct a series 



t

k

kt XZ
0

  

 Show that Z is I(d) by observing its first-differences are I(d-1): 
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3.5.2 Cointegration  

 

The concept of integration extends to more than one variable and when the individually 

integrated time series are stationary when viewed relative to each other. The concept is 

known as cointegration. Therefore, cointegration is a statistical property of time series 

variables. In formal terms, two or more time series are cointegrated if they share a common 



36 

 

stochastic drift (Gregory & Hansen, 1996). The mathematical property of cointegrated time 

series is thought-provoking. In mathematical terms, if two or more series are individually 

integrated (in the time series sense) but some linear combination of them has a lower order of 

integration, then the series are said to be cointegrated. A common example is where the 

individual series are first-order integrated (I(1)) but some (cointegrating) vector of 

coefficients exists to form a stationary linear combination of them. 

 

Before the 1980s many economists used linear regressions on (de-trended) non-stationary 

time series data, which Nobel laureate Clive Granger and others showed to be a dangerous 

approach that could produce spurious correlation (Granger, 1981). His 1987 paper with Nobel 

laureate Robert Engle formalised the cointegrating vector approach, and coined the term 

(Engle & Grnger, 1987). The possible presence of cointegration must be taken into account 

when choosing a technique to test hypotheses concerning the relationship between two 

variables having unit roots (i.e. integrated of at least order one) (Granger & Newbold, 1974). 

The traditional method for testing hypotheses concerning the relationship between non-

stationary variables was to run ordinary least squares (OLS) regressions on data which had 

initially been differenced. This method is correct in large samples, but cointegration provides 

more powerful tools when the data sets are of limited length, which is the case with most 

economic time-series. 

 

3.6 Implications for the Study 

 

The matric passes in the study are explored over a period of five years from 2007 to 2011, 

which then become time series data. Due to several schools being studied, this becomes 

multivariate time series. Forecasting will be explored to anticipate what the pass rates could 

be if the conditions of learner support are maintained in the future years. Regarding forecast 

accuracy, the errors should be minimised for more reliable forecasts. As a result, an accurate 

forecast model should provide smaller measures of accuracy to reflect low errors. In addition, 

the matric pass rates will be tested for stationarity and nonstationarity, and the implications 

for their conditions will be explored in education exercises. The meaning of integration and 

cointegration issues for the pass rates is not comprehensible. Hence the theoretical study did 

not extend to presenting the various tests of cointegration. 
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3.7 Conclusion 

 

The chapter presented time series analysis and measures of bias and precision. Curvilinear 

polynomials (linear, quadratic and higher power polynomials), exponential, logarithmic and 

power functions were discussed for use in the tentative model for predicting pass rates from 

the numbers of interventions. The tests of hypotheses and various measures for determining 

the most suitable models are also discussed. The next chapter presents the findings. 
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CHAPTER 4: FINDINGS 

 

4.1 Introduction 

 

Multiple times series data on the 19 high schools of the Letlhabile area for the five years of 

this study (2007 to 2011) appear in Annexure A. They are given as pass rates (in percentages) 

for the schools and the numbers of interventions that took place in each school during the five 

years in question. Time series data were required to examine the trend patterns over these 

years for the different schools at individual and comparative level. Various mathematical 

models were established to determine their suitability in forecasting the matric pass rates in 

this area, based on the number of interventions that took place in a school. However, these 

models were also still going to be compared using regression methods and the appropriate 

statistical tests and measures. 

 

These same data were also presented for the regression relationships in which a bivariate 

setting was presented. This mode led to 95n  pass rates ( y ) that appear together with the 

corresponding numbers of interventions ( x ) (see Annexure B). Various forms that are 

evaluated against one another are the exponential relationship, curvilinear forms (linear and 

polynomial regressions), logarithmic, and the power relationship. The analyses are also given 

in the various graphical displays. Measures of bias and precision are also calculated for the 

various measures in order to fortify the comparisons made among the models developed. For 

this purpose, a table displaying the various measures is used. A discussion explaining the 

methods follows each table. One version of the comparisons of the models is based on these 

measures. The coefficients of determination values are estimated by the values of the 

respective R-squared. These coefficients are needed to provide the measures of the strengths 

of the relationships. In order to ensure that the final choice of the selected relationship 

between pass rates and the numbers of intervention, appropriate tests are also conducted. The 

statistical package used in the data analysis is STATA. 

 

The various data organisations and statistical analyses follow in the presentations of the next 

sections. 
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4.2 Graphical Display of Passes against Numbers of Interventions 

 

Figure 4.1: Scatter plot of pass rates vs. numbers of interventions 

 

 

The data show a pattern where relationship of a linear or slowly increasing (or lax) curve can 

be said to exist between the pass rates and the numbers of interventions. 

 

4.3 Mathematical Equations 

 

4.3.1 Exponential equation 

 

The exponential equation takes the form  

 

 bxaeY          (4.1) 

 

where the parameters a  and b  are to be estimated. Their formulae are: 
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where )ln(x  is the mean of the )ln( ix . 

 

Using the data, the values of the parameters are calculated as a = 17.777 and b = 0.1932. 

Then the estimated equation becomes 

 

yest = 17.777e
0.1932x

.        (4.4) 

 

The coefficient of determination, given by the R-squared, is 

 

R² = 0.8859. 

 

The exponential curve on the graph looks as follows: 

 

Figure 4.2: Exponential regression equation 

 

 

4.3.2 Linear equation 

 

The linear equation takes the form  

 

 bxaY          (4.5) 

 

where, again, the parameters a  and b  are to be estimated. The formulae for these two 

parameters are: 
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and 

 

xbya           (4.7) 

 

Using the data, the estimated equation is 

 

yest = 11.014x – 5.7484.       (4.8) 

 

The coefficient of determination, given by the R-squared, is 

 

R² = 0.9498. 

 

The linear graph on the graph looks as follows: 

 

Figure 4.3: Linear regression equation 

 

 

4.3.3 Logarithmic equation 

 

The logarithmic equation takes the form  

 

   bxaY ln         (4.9) 

y = 11.014x - 5.7484 
R² = 0.9498 
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where, again, the parameters a  and b  are to be estimated.  The formulae for these two 

parameters are: 
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and 

)ln(xbya          (4.11) 

 

Using the data, the estimated equation is 

yest = 62.3361ln(x) - 48.333.       (4.11) 

 

The coefficient of determination, given by the R-squared, is 

R² = 0.9225. 

 

The logarithmic graph on the graph looks as follows: 

 

Figure 4.4: Logarithmic regression equation 

 

 

4.3.4 Curvilinear regression 

 

The curvilinear regression (Bless & Kathuria, 1993) of the variable y  on x  is given by the 

formula 
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The above form is used to present the quadratic (second power) regression below, as well as 

the subsequent powers of the regressions. The value of R-squared for each equation is used if 

it is necessary to proceed beyond to a higher power/exponent. 

 

In order to find solutions for the coefficients of the polynomial we might use the least squares 

estimation. The solution is based on the linear equation. Rich and Schmidt (2004) explain the 

simple regression derivation that in the measured quantity y (depended variable) is a linear 

function of x (independent variable), i.e. xaay 10  , the most probable values of a0 

(intercept) and a1 (slope) can be estimated from a set of n pairs of experimental data (x1, y1), 

(x2, y2)…, (xn, yn), where y-values are contaminated with a normally distributed - zero mean 

random error (e.g. noise, experimental uncertainty). This estimation is known as least-squares 

linear regression. Higham (2002) states that least-squares linear regression is only a partial 

case of least-squares polynomial regression analysis. By implementing this analysis, it is easy 

to fit any polynomial of m degree 

 

m
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to experimental data (x1, y1), (x2, y2)…, (xn, yn), (provided that n≥m+1) so that the sum of 

squared residuals S is minimized: 

 
2

1

1
ˆ




n

i

i YYS
 

 



n

i

m

imiiii xaxaxaxaaY
1

23

3

2

210 ...  

 

By obtaining the partial derivatives of S with respect to a0, a1, .., am and equating these 

derivatives to zero, the following system of m-equations and m-unknowns (a0, a1, .., am) is 

defined: 

0221100 ... tasasasas mm   
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.................  
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0221100 ... tasasasas mm   
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Also, always, s0 = n. This system is known a system of normal equations. The set of 

coefficients: a0, a 1, …, a m is the unique solution of this system. For m = 1, the familiar 

expressions used in linear least-square fit are obtained: 
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Higham (2002) counsels that accuracy and stability of numerical algorithms in contemporary 

practice depend on generating values using a computer. Therefore, in the formulae of the 

forthcoming quadratic and higher power curvilinear functions the equations of formulae for 

the equations of the coefficients are not given. The coefficient values are generated from the 

spreadsheet of statistical packages.  

 

4.3.4.1 Quadratic equation 

 

The quadratic equation takes the form  

 

 cbxaxY 2         (4.12) 
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The parameters a , b and c are to be estimated. Using the data, .these values obtained for 

these coefficients are a = 0.0503, b = 10.391 and c = -3.9718. The estimated equation is 

 

yest = 0.0503x
2
 + 10.391x – 3.9718.       (4.13) 

 

The coefficient of determination, given by the R-squared, is 

 

R² = 0.9499. 

 

The quadratic form of the relationship appears on the following graph: 

 

Figure 4.5: Quadratic regression equation 

 

 

4.3.4.2 Polynomial of third power relationship 

 

The 3
rd

 power polynomial relationship takes the form  

 

 dcxbxaxY 23        (4.14) 

 

The parameters a , b, c and d are to be estimated. Using the data, estimates of the coefficient 

values are a = -0.0477, b = 0.9382, c = 5.1807 and d = 5.5083. The corresponding curvilinear 

equation then becomes 

 

yest = -0.0477x
3
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2
 + 5.1807x + 5.5083.     (4.15) 
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The coefficient of determination, given by the R-squared, is 

 

R² = 0.9501. 

 

The third power polynomial form of the relationship appears on the following graph: 

 

Figure 4.6: Power 3 polynomial regression equation 

 

 

4.3.4.3 Polynomial of fourth power relationship 

 

The 4
th

 power polynomial relationship takes the form  

 

 edxcxbxaxY 234       (4.16) 

 

The parameters a , b, c, d and e are to be estimated. Using the data, the estimates of these 

coefficients are a  = 0.0341, b = –0.8738, c = 8.1369, d = –21.403 and e = 40.412. The 

equation then becomes 

 

yest = 0.0341x
4
 – 0.8738x

3
 + 8.1369x

2
 –21.403x + 40.412.    (4.17) 

 

The coefficient of determination, given by the R-squared, is 

 

R² = 0.9503. 
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The fourth power polynomial form of the relationship appears on the following graph: 

 

Figure 4.7: Power 4 polynomial regression equation 

 

 

The higher exponents cannot be considered beyond this point because the R-square values of 

the last two have not shown any significant increase. 

 

4.3.5 Power relationship 

 

The power relationship takes the form  

 

 baxY          (4.18) 

 

The parameters a  and b are to be estimated. Using the data, the estimates are a  = 7.9308 and 

b   = 1.1264. The power relationship appears as 

 

yest = 7. 9308x
1.1264

.         (4.19) 

 

The coefficient of determination, given by the R-squared, is 

 

R² = 0.9125. 

 

y = 0.0341x4 - 0.8738x3 + 8.1369x2 - 21.403x + 40.412 
R² = 0.9503 
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Figure 4.8: Power regression equation 

 

 

Observation 

The regression equations are all optimistic in using the number of interventions to boost the 

matric pass rates in the schools of Letlhabile because all their R-squared values are high 

(close to 1). The correlations are also all positive by observing the positive slopes of their line 

charts. This means that the number of interventions improve the pass rates. At the moment 

the different patterns have to be compared.  

 

4.4 Preliminary Comparisons of Polynomials 

 

4.4.1 Coefficients of linear equation and polynomials 

 

The coefficients a = 0.8225 and b = 0.0862 of the linear equation are small (below 1). When 

the power of the independent variables is increased (to quadratic form and larger powers) the 

coefficients become even much smaller. These coefficients are tested in the next section to 

determine if they should be included. What is also not impressive is the increase in the value 

of R-squared. When the higher power from linear to quadratic and other higher power 

curvilinear equations are considered, the increase in the value of R-squared is slight. It is 

insignificant. 

 

4.4.2 Multicollinearity 

 

The polynomials are extensions of the linear equation. However, they are expected to have 

some multicolinearity in variables since the added variables are powers of the initial variable. 

y = 7.9308x1.1264 
R² = 0.9125 
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In comparing the linear equation with the quadratic equation the value of R-squared rises by 

0.0002 (from 0.9498 to 0.95) from linear to quadratic. This is an insignificant increase since 

it is an almost 0% increase. To estimate the tolerance, then 0002.02 x
R . Then 

 

9998.0

1 2




x

Rtolerance
. 

 

On the other hand 

 

1

1

1

2







••

R

tolerance
VIF

x
. 

 

There is no multicollinearity problem since tolerance is neither less than 0.1 nor 0.2. on the 

other hand the VIF is less than both 5 and 10. The increases in R-squared values from the 

quadratic equation to the third and fourth polynomials are also slight increases, almost 

insignificant. Even though there is no problem of multicollinearity, polynomials of higher 

than power 1 do not lead to improvement in the relationship between the matrix pass rates 

and the number of interventions. Thus the higher power exponential curvilinear equations are 

eliminated and only the linear equation will be used to contest the inclusion into viable 

prediction methods. As a result the methods being compared for use in using the numbers of 

observations to predict pass rates follow in Table 4.1 below. 

 

Table 4.1: Models in the contest 

Model Estimated equation 

Exponential model yest = 17.777e
0.1932x

 

Linear model yest = 11.014x – 5.7484 

Logarithmic model yest = 62.3361ln(x) – 48.333 

Power model yest = 7. 9308x
1.1264

 

 

 



50 

 

4.5 Bias and Precision, Goodness-of-fit, Statistical Tests of Coefficient Values 

 

4.5.1 Measuring error 

 

It is important to know the extent of accuracy of the estimated values and the reliability of the 

models developed. For notation purposes the actual values are denoted by A  and the 

estimates by E . This is the bases to understand how far the estimates would be relative to the 

actual values. This is estimated by the difference A  – E . The measures of importance to this 

study were discussed in Chapter 3. They are the cumulative forecast error, mean error, mean 

square error, root mean square error, standard deviation, mean absolute deviation, and mean 

absolute percentage error. Some of the measures are used in developing others as they do not 

need to be included when the main ones are used. Hence, the measures proposed in this 

section are the mean error (ME), mean square error (MSE), mean absolute deviation (MAD), 

standard deviation of errors (se) and mean absolute percentage error (MAPE). 

 

4.5.2 Bias and precision 

 

The measures of bias and precision are based on residuals, where each residual is based on 

the difference between the actual (i.e. observed) value and the corresponding estimate. Then, 

logic leads to that a smaller residual is more desirable because the estimate would be close to 

the actual value. Thus, the measures of bias and precision are lower for better model. The 

calculations for the various measures appear in Annexure C and the measures are presented in 

Table 4.2 below. 

 

Table 4.2: Measures of bias and precision 

 Exponential Linear Logarithmic Power 

ME 0.122799 -0.00219 0.989645 -19.7444 

se 194.6688 33.91778 41.19732 75.65476 

MAD 4.504603 3.461642 4.162263 19.91056 

MAPE 492087.4 10.95757 43510.31 29.95186 

MSE 31.78981 18.45349 29.50305 484.533 

R-squared 0.8859 0.9498 0.9225 0.9125 
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Mean error 

The linear regression and power functions overestimate the pass rates due to their negative 

mean deviation values. On the other hand, the exponential and the logarithmic functions, due 

to their positive mean deviation values, overestimate them. The linear regression does not 

seem to provide much deviant underestimates due to a very low value of its mean deviation. 

On the other hand the mean deviation from the power function is much higher in absolute 

value. The logarithmic regression’s deviation from the actual would be much lower than the 

power function, but still higher in absolute value from the linear regression. 

 

Standard deviation of errors 

The standard errors of the exponential and power functions are too high compared to those of 

linear and logarithmic functions. This makes these function  less desirable in using them to 

predict the pass rates using the numbers of observations. 

 

Mean absolute deviation 

The mean absolute deviation of the power function is much higher than for the other three 

functions. Thus, the power function becomes again unsuitable for use in this context.  

 

Mean absolute percentage error 

The mean absolute deviations of the exponential and logarithmic functions are much out of 

range of the other two. The values they produce indicate a high level of risking wrong 

predictions when estimating pass rates using numbers of interventions. 

 

Mean square error 

The means square error of the power function is too high. Others are much lower. 

 

R-squared 

The R-squared value of the linear function is the largest of the four. 

 

Observation 

The bias and precision measures (ME, se, MAD, MAPE, and MSE) of the exponential, 

logarithmic and power functions are all higher than those of the linear function. Also each of 

these methods has at least one measure that makes them undesirable to use in the predictions 
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of the pass rates based on the numbers of interventions. The power function is the worst 

method as it has no measure making it attractive. The exponential function has the standard 

deviation and the MAPE that are ‘way too high’. The logarithmic function has a MAPE that 

is too high, but less than that of the exponential function. In contrast the linear function has 

the least values in all these measures, and has no value that makes it undesirable. The linear 

function is the best method in terms of all the criteria. To make it even stronger, its R-squared 

value is the highest of all the others.  

 

4.6 Time Series Line Charts 

 

Line charts (or time plots) are used to present the examination mark percentages (displayed as 

pass percentages). The purpose was to examine the trend patterns of each school’s results, as 

well as determine the growth pattern of the pass rates of each school. Each line chart also has 

an accompanying trend line for this purpose. 

 

4.6.1 School number 1 

 

Figure 4.9: Line chart of school 1 matric pass rates 

 

 

The pass rates for this school are high, all ranging over 70% to as far as just above 90%. The 

pass rate for the second year of the study showed a decline, but the next year’s rate picked up 

again. It was the year in which the number of interventions also dropped. The last year also 

went slightly down, which was the year in which the new examination system was 

implemented for all South African schools. The trend line shows a slight upward slope, which 

is an indication of s slow increase in the pass rates for this school. It was also the year in 

which the number of interventions dropped. 
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4.6.2 School number 2 

 

Figure 4.10: Line chart of school 2 matric pass rates 

 

 

For this school the pass rates started with a high value. As it looks, every alternative year the 

rates go up and down. The numbers of interventions also fluctuate in the alternative years in 

the same way as the pass rates. The last year of the study was one of the years that showed 

low pass rates for the school. The high rates reach about 80%. The lower ones has a 75%, but 

all others are just below 60%. The trend line shows a decrease in the pass rates. 

 

4.6.3 School number 3 

 

Figure 4.11: Line chart of school 3 matric pass rates 

 

 

This school stared well in the first year of this study with a mark of about 85%. It was the 

year of most interventions in the study. From there onwards the other marks as well as the 

numbers of interventions have been constantly declining over the years. Even though the last 

year of the study showed a slight increase, it was high enough only to exceed the mark for its 

predecessor year. The trend line of pass rates was fast showing a decline. 
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4.6.4 School number 4 

 

Figure 4.12: Line chart of school 4 matric pass rates 

 

 

This one started badly. The numbers of interventions were also at its lowest. However, each 

year the interventions were also increased, and the pass rates have also been increasing. The 

highest increase occurred for the year in which the examination system was combined for all 

the schools of South Africa. The high the pass rates for this school have not matched the level 

of marks displayed by performing schools, but the increasing interventions indicate to have 

improved the pass rates. The trend line shows a fast upward trend. 

 

4.6.5 School number 5 

 

Figure 4.13: Line chart of school 5 matric pass rates 

 

 

This school also show an increasing trend, after having started poorly with a very low pass 

rate in the first year of the study. The number of interventions was also low at the time. In the 

following year the interventions were reduced, and the lowest pass rates were also realised in 

that year. The interventions have since increased slowly over the years, and the resulting pass 

rates have also shown an increase over the same years. The trend line shows an increase of 

the pass rates over the years as well. 
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4.6.6 School number 6 

 

Figure 4.14: Line chart of school 6 matric pass rates 

 

 

The pass rates in this school have been somewhat satisfactory. The trend line of the pass rates 

over the years shows a slight increase. The year showing the highest pass mark, which is the 

second year of the study, is also the year of the highest intervention. 

 

4.6.7 School number 7 

 

Figure 4.15: Line chart of school 7 matric pass rates 

 

 

This school started very low on pass rates, and the number of interventions was also low. The 

pass rates have been going rapidly up over the years, and this pattern is also showing in the 

numbers of interventions in the same years. The trend line is showing a very fast increase. In 

one of the years the maximum ideal pass rate (100%) was also achieved. The increases and 

decreases in pass rates occur in similar patterns. 
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4.6.8 School number 8 

 

Figure 4.16: Line chart of school 8 matric pass rates 

 

 

This school shows declines in pass rates in the earlier years and increases in the last years. In 

these same years the numbers of inventions were also declining in the early years and then 

increasing in the later years. The trend line displays an increase in the pass rates. 

 

4.6.9 School number 9 

 

Figure 4.17: Line chart of school 9 matric pass rates 

 

 

This school started badly, increased in the middle years showing progress in improving the 

pass rates. Then in a parabolic fashion the pass rates show a substantial decline. The numbers 

of interventions take the same pattern, they were low at the early and the late years of this 

study, and high in the middle years as for the pass rates. The trend line shows an increase 

though, which is an indication of improvement when compared with the earlier years. 
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4.6.10 School number 10 

 

Figure 4.18: Line chart of school 10 matric pass rates 

 

 

In this school improvement in pass rates is gradual over the years. Interventions have also 

been increased gradually. The school started very low, and then increased impressively. The 

years showing low marks coincide with those showing few interventions. The trend line also 

reveals a dramatic increase in pass rates that include 100% and over 90% rates. 

 

4.6.11 School number 11 

 

Figure 4.19: Line chart of school 11 matric pass rates 

 

 

This is another school that shows an increase in pass rates. A pass rate of below 40% came 

earlier in the study, and close to 95% was achieved during the increase period. The year of 

lowest pass rate was the same one in which least interventions were shown. Also, the highest 

pass rate was shown in the year of most interventions. The trend line shows an increase. In 

the last year of the study the number of interventions was reduced. In this year as well, the 

pass rate dropped. 
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4.6.12 School number 12 

 

Figure 4.20: Line chart of school 12 matric pass rates 

 

 

The pass rates of this school are also increasing impressively over the years. Alternative years 

show increase-decrease pattern, and this pattern occurs with the number of interventions as 

well. The trend line shows an increase. 

 

4.6.13 School number 13 

 

Figure 4.21: Line chart of school 13 matric pass rates 

 

 

A gradual increase in the pass rates is shown in this school over the study period. The second 

year showed a decline in the pass rate though. In the same year, it was realised that the 

number of interventions had been reduced. In the other years the interventions were 

increased. The trend line displays an increase. 
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4.6.14 School number 14 

 

Figure 4.22: Line chart of school 14 matric pass rates 

 

 

This school produce constantly good pass rates, with a slight increase over the years. In the 

second year of this study, most interventions were used. The pass rate for that year was also 

outstanding. In the years thereafter the interventions were immediately reduced but increased 

slowly compared to the first year. They have been increased gradually. The pass rates also 

show the same pattern. The years of more interventions are the ones of better pass rates. As 

for the trend line, a slow increase is shown in the pass rates. 

 

4.6.15 School number 15 

 

Figure 4.23: Line chart of school 15 matric pass rates 

 

 

This is one school showing mixed results in different years, with an overall pattern displayed 

by the trend line as increasing pass rates. The third year had the least interventions. The same 
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year showed the poorest pass rates. In the years of more interventions, higher pass rates were 

also shown. 

 

4.6.16 School number 16 

 

Figure 4.24: Line chart of school 16 matric pass rates 

 

 

The pass rates in this school were satisfactory from the start. A slow increase in the number 

of interventions was shown, except in the third year in which the interventions were few. In 

this year the pass rate dropped as well. The interventions have since been increased slowly, 

and the pass rates are gradually showing to increase. The trend line confirms this pattern 

 

4.6.17 School number 17 

 

Figure 4.25: Line chart of school 17 matric pass rates 

 

 

In this school the pass rates are showing to drop. They have a maximum pass rate of about 

85% in the third year when the interventions were many. The minimum occurs at 60% when 
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the interventions were fewest. The trend line confirms the decreasing pattern. In the third year 

of this study, interventions were increased expressively to a high number. An excellent pass 

rate was achieved. Since then the interventions were reduced gradually over the years. These 

same years also showed lower pass rates. 

 

4.6.18 School number 18 

 

Figure 4.26: Line chart of school 18 matric pass rates 

 

 

In this school as well, the pass rates are showing to drop, and the trend line confirms this 

pattern. In the third year of this study, interventions were increased expressively to a high 

number. An excellent pass rate of 100% was achieved in the year of most interventions. Since 

then the interventions were reduced gradually over the years. The minimum pass rate of 60% 

was reached in the fourth year of fewest interventions. These same years of declining pass 

rates also showed lower pass rates. 

 

4.6.19 School number 19 

 

Figure 4.27: Line chart of school 19 matric pass rates 
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The second year of this study had very few interventions. The pass rate for the year also went 

to its lowest. In other years the numbers of interventions were increased slowly. The pass 

rates in these years also increased gradually. The trend line also shows an increasing pattern. 

 

Observation 

Mixed pass rates are shown for the different schools as some generally do well while others 

cannot be classified this way. Also, some pass rates increase over the years while others 

decline over the same period. However, all the schools have shown a consistent pattern in 

that in the year of many interventions the pass rate also becomes higher. This study was 

aimed at examining the relationship between the number of interventions and the pass rates in 

the schools of this study. 

 

4.7 Significance of Correlations 

 

Correlational research assesses if the two population being related are correlated, hence in 

this study it would assess the existence of a relationship between pass rates and numbers of 

interventions are correlated. Curwin and Slater (2002) point out that the null hypothesis 

denies the existence of a linear relationship. Denote the correlation coefficient between the 

two populations by  . Hence, the null hypothesis is  

 

:0H  0          (4.35) 

 

Bless and Kathuria (2003) illustrates that in cases where 30n , the test statistic used is the 

z  given by the formula 

 

1 nrz          (4.36) 

 

At the 5% level of significance the critical values for this two sided test is 96.1z . The test 

is significant if the calculated value exceeds the critical value. The smallest R-squared is the 

one obtained for the logarithmic regression of 0.8829. The estimated correlation coefficient is 

about the square root of this value. Hence, the test statistic for the logarithmic regression is 

the value  
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11.9948829.01  nrz . 

 

The test is significant and the null hypothesis is rejected. Hence, in all the regression forms 

considered, the possibilities of the existence of all these relationships exist. This confirms that 

the measures of bias and precision considered earlier in the chapter were based indeed on 

feasible relationships. 

 

4.9 Conclusion 

 

The chapter used regression methods and time series analysis to establish a relationship 

between pass rates and the numbers of interventions in the various schools of Letlhabile area 

in the North-West Province of South Africa. The various relevant methods were considered 

and those that showed to be inadequate were eliminated in the early stages of the analyses. A 

statistical test was used to determine the suitability of the remaining methods for use in 

predicting the pass rates. The suitability was established, but the best from these methods was 

needed. The others were compared more comprehensively using the statistical measures. In 

the next chapter the analyses are consolidated and the best method is identified. That chapter 

will close with recommendations for increasing the pass rates, limitations of the study and the 

recommendations for further studies. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

 

5.1 Introduction 

 

This study evaluated the impact that the numbers of interventions have in matric classes of 

the Letlhabile area of the North-West Province of South Africa. Bivariate data consisting of 

the pass rates (Y) and the numbers of interventions (X) were obtained from the circuit office 

in Letlhabile. These data were provided for the 19 schools in tabular formats. Since the data 

required relationships between the pass rates and the numbers of interventions, regression 

methods were needed. These were discussed in Chapter 2. Also, the data were presented over 

five years. This made it necessary to establish the pattern over the five years involved, to 

determine how the numbers of interventions over these years for each of the 19 schools in the 

five years could have affected the pass rates. This was explainable using time series analysis 

since the data were time based. Hence, time series analysis was presented ion Chapter 3. The 

previous chapter introduced various tentative prediction models that seemed relevant for use 

in the prediction of the pass rates from numbers of interventions. Graphs and statistical tests 

were used to analyse the data. Preliminary tests were used to eliminate models that were 

showing inadequacy. The chapter then presented analyses of the remaining methods using 

regression analysis and time series. The various comprehensive comparisons were also 

presented. In addition, graphs were used to determine the way the numbers of interventions 

affected the pass rates. The findings obtained are explained in the forthcoming sections of 

this chapter: 

 

5.2 Selection of the Best Method 

 

Time series methods showed the changes over the different periods in which the study was 

undertaken. There were years in which the numbers of interventions were low for some 

schools, and the years in which they were high. Time series analysis was used to detect the 

patterns of the pass rates data during these changes. The methods that were included in the 

contest for determining the best method were the exponential, linear, logarithmic and power 

functions. This stage occurred after eliminating curvilinear methods which were indicating to 

be inadequate as they were showing multicollinearity of the variables involved. In this section 

the already clearly leading model for predicting pass rates from the numbers of interventions 
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is formally selected. All the five methods were found sensible to use when assessed through 

the correlation test. They were then compared using the measures of bias and precision, as 

well as arguing using the coefficient of determination (R-squared). The illustrations are in 

Table 4.2 of Chapter 4. The contents of the table are reproduced below. 

 

Table 5.1: Summary table of comparison statistics 

 Exponential Linear Logarithmic Power 

ME 0.122799 -0.00219 0.989645 -19.7444 

se 194.6688 33.91778 41.19732 75.65476 

MAD 4.504603 3.461642 4.162263 19.91056 

MAPE 492087.4 10.95757 43510.31 29.95186 

MSE 31.78981 18.45349 29.50305 484.533 

R-squared 0.8859 0.9498 0.9225 0.9125 

 

The bold values in Table 5.1 indicate that the values are the most desirable according to the 

way the measures are used. For example the first five measures should be low for a measure 

to be considered desirable while the last one (the R-squared) should be high for being 

desirable. The discussions and summary were presented below Table 4.2 of the previous 

chapter. That explanation is clarified in the next section. The bold numbers are shown to be 

all allocated to the linear function. 

 

5.3 Verdict from comparisons 

 

The measures of precision were used to compare the methods. These methods depend on 

error analysis which is used to determine the method leading to least error when used in the 

prediction of future values. A measure of quality of fit to the data was also calculated for the 

methods being compared. In brief, the linear function emerged as the leading model in terms 

of all the criteria used to determine the most accurate method. As a result the linear 

regression method has been selected as the model for use in predicting pass rates based on the 

number of interventions for the schools in the area of Letlhabile in the North-West Province 

of South Africa. In addition, the quality of this model, based on the R-squared value, has been 

estimated to about 95%, which is higher than the values obtained for the other methods. The 

95% quality measure means that in using the linear equation to predict the matric pass rates in 
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the high schools in the Letlhabile area, the number of intervention would be able to account 

for about 95% of the changes in the matric pass rates. 

 

5.4 Observations from numbers of interventions 

 

The schools varied in pass rates patterns over the five-year period of this study. Some schools 

showed increasing pass rates while others showed decreasing pass rates over the period. 

However, more schools showed to have improving pass rates compared to very few that 

showed declining pass rates. In all the schools involved though, the pass rates increased each 

time the number of interventions increased and decreased when interventions decreased. This 

was the case irrespective of the nature of the trend of the pass rates. That means, for the pass 

rates that were decreasing, during the time of more intervention the pass rates went high for 

that year while it went lower down when interventions decreased. For the schools that had the 

increasing trend, in the years of more interventions the pass rates went even higher while the 

years of reduced interventions showed reduction in pass rates. 

 

5.5 Limitations 

 

The problem with the data appearing as the number of interventions does not provide all the 

necessary details of the types of interventions. The interventions method in the Letlhabile 

area is usually in the forms of Saturday classes, camps where students are taught prior to final 

year-end examinations, as well as specialised revision classes. However, it fails to mention 

the calibre of people who are involved in such interventions. Also, the data did not state the 

way each intervention is counted. It thus gives the impression that one event of intervention is 

be counted as one case. The people who provided the data were not the ones who collected 

them and there was no one to provide details. 

 

It seems that certain small numbers of interventions could not make a sizable improvement in 

the pass rates. A minimum number of interventions that can make pass rates improvement 

possible should be known so that interventions can be geared to achieving improvement. This 

is because if a minimum is not reached the pass rates will not be improved. The other 

limitation is that it is not known how high the number of intervention will be to reach 

exhaustion. There could be a number of interventions beyond which no further improvement 
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in pass rates can be achieved. If this can be known, it will help so that no resources are 

provided. This is because any attempt to improve pass rates cannot happen if exhaustion is 

reached and will be wasted. 

 

5.6 Recommendations  

 

5.6.1 Recommendations for the study 

 

The education administration in the Letlhabile area should 

 Identify low performing schools in matric and introduce intervention programmes; 

 Ensure that schools involved in intervention programmes are supported for sustained 

interventions over the years; 

 Consider intervention at earlier schooling, not only at matric stage; and  

 Encourage research around intervention strategies to improve the methods. 

 

5.6.2 Recommendations for further research 

 

More research should be embarked on to determine: 

 The types of interventions that ensure pass rates improvements 

 The minimum number of interventions required to ensure improvements in pass rates 

 The maximum number of interventions to reach exhaustion 

 The caliber of people used in the interventions 
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ANNEXURES 

Annexure A: Original Pass Rates Data with Numbers of Interventions 

School  no.  2011 2010 2009 2008 2007 

1 Pass % 77.38 90.63 89.78 71.35 79.8 

 No of intervention 7 9 9 7 8 

2 Pass % 59.86 78.44 59.64 80.33 75.2 

 No of intervention 6 8 6 8 7 

3 Pass % 43.90 37.71 53.85 63.08 84.1 

 No of intervention 4 4 5 6 8 

4 Pass % 64.81 43.75 35.5 29.75 25.83 

 No of intervention 7 5 4 4 4 

5 Pass % 57.81 58.65 47.11 34.15 50.55 

 No of intervention 6 6 4 4 5 

6 Pass % 70.08 69.7 59.9 77.4 59.27 

 No of intervention 7 7 6 7 6 

7 Pass % 86.11 100 86.94 45.16 37.1 

 No of intervention 8 9 8 5 4 

8 Pass % 70.51 87.29 31.71 35.48 54.5 

 No of intervention 7 8 3 3 5 

9 Pass % 47.14 72.06 79.45 67.7 15.5 

 No of intervention 5 7 8 7 3 

10 Pass % 90.48 87.5 100 90 36.36 

 No of intervention 9 8 9 9 4 

11 Pass % 75.51 93.02 60.63 39.63 48.24 

 No of intervention 7 9 6 4 5 

12 Pass % 74.32 76.64 45.86 68.4 44.87 

 No of intervention 7 8 5 7 4 

13 Pass % 74.04 70.97 64.79 55.26 60.5 

 No of intervention 7 7 6 6 6 

14 Pass % 70.93 73.26 63.46 84.3 55.37 

 No of intervention 7 7 6 8 5 

15 Pass % 100.00 92.32 26.67 66.67 76.5 

 No of intervention 9 9 3 7 8 

16 Pass % 82.93 89.47 65.57 74.36 65.6 

 No of intervention 8 9 7 7 7 

17 Pass % 61.02 67.35 85 66.61 71.43 

 No of intervention 6 7 8 7 7 

18 Pass % 60.38 75.61 100 71.4 90.38 

 No of intervention 6 7 9 7 9 

19 Pass % 75.38 88.89 62.38 34.64 70.5 

 No of intervention 7 9 6 3 7 
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Annexure B: Regression Data 

Observation 

number 

Pass (%) 

rate (Y) 

Number of 

interventions (X) 

1 77.38 7 

2 90.63 9 

3 89.78 9 

4 71.35 7 

5 79.8 8 

6 59.86 6 

7 78.44 8 

8 59.64 6 

9 80.33 8 

10 75.2 7 

11 43.9 4 

12 37.71 4 

13 53.85 5 

14 63.08 6 

15 84.1 8 

16 64.81 7 

17 43.75 5 

18 35.5 4 

19 29.75 4 

20 25.83 4 

21 57.81 6 

22 58.65 6 

23 47.11 4 

24 34.15 4 

25 50.55 5 

26 70.08 7 

27 69.7 7 

28 59.9 6 

29 77.4 7 

30 59.27 6 

31 60.38 6 

32 75.61 7 

33 100 9 

34 71.4 7 

35 90.38 9 

36 75.38 7 

37 88.89 9 

38 62.38 6 

39 34.64 3 

40 70.5 7 
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41 86.11 8 

42 100 9 

43 86.94 8 

44 45.16 5 

45 37.1 4 

46 70.51 7 

47 87.29 8 

48 31.71 3 

49 35.48 3 

50 54.5 5 

51 47.14 5 

52 72.06 7 

53 79.45 8 

54 67.7 7 

55 15.5 3 

56 90.48 9 

57 87.5 8 

58 100 9 

59 90 9 

60 36.36 4 

61 75.51 7 

62 93.02 9 

63 60.63 6 

64 39.63 4 

65 48.24 5 

66 74.32 7 

67 76.64 8 

68 45.86 5 

69 68.4 7 

70 44.87 4 

71 74.04 7 

72 70.97 7 

73 64.79 6 

74 55.26 6 

75 60.5 6 

76 70.93 7 

77 73.26 7 

78 63.46 6 

79 84.3 8 

80 55.37 5 

81 100 9 

82 92.32 9 

83 26.67 3 

84 66.67 7 
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85 76.5 8 

86 82.93 8 

87 89.47 9 

88 65.57 7 

89 74.36 7 

90 65.6 7 

91 61.02 6 

92 67.35 7 

93 85 8 

94 66.61 7 

95 71.43 7 
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Annexure C: Multiple Time Series Data 

School no.  2011 2010 2009 2008 2007 

1 Pass % 77.38 90.63 89.78 71.35 79.8 

 No of intervention  7 9 9 7 8 

2 Pass % 59.86 78.44 59.64 80.33 75.2 

 No of intervention  6 8 6 8 7 

3 Pass % 43.90 37.71 53.85 63.08 84.1 

 No of intervention  4 4 5 6 8 

4 Pass % 64.81 43.75 35.5 29.75 25.83 

 No of intervention  7 5 4 4 4 

5 Pass % 57.81 58.65 47.11 34.15 50.55 

 No of intervention  6 6 4 4 5 

6 Pass % 70.08 69.7 59.9 77.4 59.27 

 No of intervention  7 7 6 7 6 

7 Pass % 86.11 100 86.94 45.16 37.1 

 No of intervention  8 9 8 5 4 

8 Pass % 70.51 87.29 31.71 35.48 54.5 

 No of intervention  7 8 3 3 5 

9 Pass % 47.14 72.06 79.45 67.7 15.5 

 No of intervention  5 7 8 7 3 

10 Pass % 90.48 87.5 100 90 36.36 

 No of intervention  9 8 9 9 4 

11 Pass % 75.51 93.02 60.63 39.63 48.24 

 No of intervention  7 9 6 4 5 

12 Pass % 74.32 76.64 45.86 68.4 44.87 

 No of intervention  7 8 5 7 4 

13 Pass % 74.04 70.97 64.79 55.26 60.5 

 No of intervention  7 7 6 6 6 

14 Pass % 70.93 73.26 63.46 84.3 55.37 

 No of intervention  7 7 6 8 5 

15 Pass % 100.00 92.32 26.67 66.67 76.5 

 No of intervention  9 9 3 7 8 

16 Pass % 82.93 89.47 65.57 74.36 65.6 

 No of intervention  8 9 7 7 7 

17 Pass % 61.02 67.35 85 66.61 71.43 

 No of intervention  6 7 8 7 7 

18 Pass % 60.38 75.61 100 71.4 90.38 

 No of intervention  6 7 9 7 9 

19 Pass % 75.38 88.89 62.38 34.64 70.5 

 No of intervention  7 9 6 3 7 

 


